CN110707409A - A High Quality Factor Hybrid Plasmon Resonator - Google Patents
A High Quality Factor Hybrid Plasmon Resonator Download PDFInfo
- Publication number
- CN110707409A CN110707409A CN201910931989.0A CN201910931989A CN110707409A CN 110707409 A CN110707409 A CN 110707409A CN 201910931989 A CN201910931989 A CN 201910931989A CN 110707409 A CN110707409 A CN 110707409A
- Authority
- CN
- China
- Prior art keywords
- resonator
- quality factor
- high quality
- layer
- sawtooth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 11
- 239000003989 dielectric material Substances 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000011133 lead Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/10—Dielectric resonators
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种高品质因数的杂化等离激元谐振器,所述谐振器为层状结构,其中最上层为传感区域层,最下层为大面积金属地,大面积金属地的上层为介质基片,传感区域层的下层为谐振器本体和微带线所在的传输层;谐振器本体为人工局域表面等离激元谐振结构和扇形谐振结构叠加形成;微带线与谐振器本体间设有缝隙。该谐振器通过多个谐振模式之间的干涉,具有高品质因数和高谐振强度的优点。
The invention discloses a hybrid plasmon resonator with high quality factor. The resonator is a layered structure, wherein the uppermost layer is a sensing area layer, the lowermost layer is a large-area metal ground, and the large-area metal ground is The upper layer is a dielectric substrate, and the lower layer of the sensing area layer is the resonator body and the transmission layer where the microstrip line is located; the resonator body is formed by superimposing an artificial localized surface plasmon resonance structure and a fan-shaped resonance structure; the microstrip line and the microstrip line are superimposed. There are gaps between the resonator bodies. The resonator has the advantages of high quality factor and high resonance strength through the interference between multiple resonance modes.
Description
技术领域technical field
本发明属于谐振器、传输线技术领域,具体涉及一种高品质因数和谐振强度的微波毫米波谐振器。The invention belongs to the technical field of resonators and transmission lines, and in particular relates to a microwave millimeter wave resonator with high quality factor and resonance strength.
背景技术Background technique
品质因数(Q-factor)是衡量电磁谐振器的重要指标,其数值表示了谐振模式的寿命,即电磁场模式与周围环境相互作用的时间。品质因数是由结构的损耗决定的,包括材料损耗、散射损耗、辐射损耗。材料损耗和散射损耗是由材料本身性质以及结构的粗糙度决定,而辐射损耗与谐振器的电尺寸密切相关。通常情况下,大的电尺寸意味着电磁波谐振经历的弯曲度更小,从而Q值更高。The quality factor (Q-factor) is an important indicator to measure the electromagnetic resonator, and its value represents the lifetime of the resonance mode, that is, the time for the electromagnetic field mode to interact with the surrounding environment. The quality factor is determined by the loss of the structure, including material loss, scattering loss, radiation loss. The material loss and scattering loss are determined by the properties of the material itself and the roughness of the structure, while the radiation loss is closely related to the electrical size of the resonator. In general, a large electrical size means that the electromagnetic wave resonance experiences less tortuosity and thus a higher Q value.
对于微波谐振器,由于微波波长较长,考虑到尺寸问题,谐振器通常在亚波长量级,如微带环(microstrip ring resonator)、开口环(split ring resonator)等,因此辐射损耗较大,品质因数值较低。虽然通过一些特殊的设计,如暗模、Fano谐振等可以实现较高品质因数的谐振器,但亚波长高品质因数的谐振器,其激励较为困难,其谐振峰或谷都较浅,激励效率不高。通常需要大规模谐振器阵列或将谐振器放入波导中,才可以实现较高的谐振强度。For microwave resonators, due to the long wavelength of microwaves, considering the size problem, the resonators are usually in the sub-wavelength order, such as microstrip ring resonator, split ring resonator, etc., so the radiation loss is large, The figure of merit is low. Although resonators with higher quality factors can be achieved through some special designs, such as dark mode, Fano resonance, etc., the excitation of sub-wavelength high quality factor resonators is more difficult, and the resonance peaks or valleys are shallow, and the excitation efficiency not tall. Large-scale resonator arrays or placing resonators in waveguides are often required to achieve high resonance strengths.
人工局域表面等离激元,为一种基于人工亚波长结构的谐振器,通常为周期锯齿状结构的圆柱或圆盘。人工局域表面等离激元具有和光频的局域表面等离激元相似的特性,如高度的场增强、深度亚波长的场局域性等;因此在制造高灵敏度器件、减小电路和器件尺寸、增强传感灵敏度方面等方面具有很大的应用潜力。但和其他微波谐振器一样,人工局域表面等离激元也具有品质因数和谐振强度难以兼得的问题。An artificial localized surface plasmon is a resonator based on an artificial subwavelength structure, usually a cylinder or disk with a periodic sawtooth structure. Artificial localized surface plasmons have similar properties to optical-frequency localized surface plasmons, such as high field enhancement, deep subwavelength field locality, etc. It has great application potential in terms of device size and enhanced sensing sensitivity. But like other microwave resonators, artificial localized surface plasmons also have the problem of difficult to achieve both quality factor and resonance strength.
发明内容SUMMARY OF THE INVENTION
发明目的:针对现有技术中存在的问题,本发明提供了一种杂化等离激元谐振器,该谐振器通过多个谐振模式之间的干涉,具有高品质因数和高谐振强度的优点。Purpose of the invention: In view of the problems existing in the prior art, the present invention provides a hybrid plasmon resonator, which has the advantages of high quality factor and high resonance strength through interference between multiple resonance modes .
技术方案:本发明采用如下技术方案:Technical scheme: the present invention adopts the following technical scheme:
一种高品质因数的杂化等离激元谐振器,所述谐振器为层状结构,其中最上层为传感区域层1,最下层为大面积金属地2,大面积金属地的上层为介质基片3,传感区域层的下层为谐振器本体4和微带线5所在的传输层6;A hybrid plasmon resonator with high quality factor, the resonator is a layered structure, wherein the uppermost layer is the
所述谐振器本体4为人工局域表面等离激元谐振结构7和扇形谐振结构8叠加形成;所述微带线5与谐振器本体4间设有缝隙,所述缝隙为传感区域的一部分。The
传感区域(1)为只覆盖谐振器本体(4),或覆盖全部谐振器本体(4)和部分和微带线(5),或覆盖全部谐振器本体(4)和全部微带线(5)。The sensing area (1) covers only the resonator body (4), or covers the entire resonator body (4) and part and the microstrip line (5), or covers the entire resonator body (4) and all the microstrip line ( 5).
所述传感区域(1)为由外壁罩起来的封闭区域或开放空间,所述传感区域材料的折射率在(1,3)范围内。The sensing area (1) is a closed area or an open space covered by an outer wall, and the refractive index of the material of the sensing area is in the range of (1, 3).
优选地,所述传感区域(1)材料的折射率在(1,1.8)范围内。Preferably, the refractive index of the material of the sensing region (1) is in the range of (1, 1.8).
所述人工局域表面等离激元谐振结构7为外周设有周期性锯齿的圆形,其圆形内径为r,圆环形锯齿结构9的半径为R;一周共有N个锯齿周期,每个周期中,金属条带为扇形,其弧长为a,单个周期宽度为d,其中d=2πR/N,a<d。The artificial localized surface
所述扇形谐振结构8为圆弧外侧设有周期性锯齿结构10的扇形,扇形内径为R1,扇环形锯齿结构10的半径为R2。The sector-shaped
扇环形锯齿结构(10)的单个锯齿周期宽度为d,锯齿宽度为a。The period width of a single sawtooth of the fan-shaped sawtooth structure (10) is d, and the width of the sawtooth is a.
所述介质基片3为FR4,F4B,Rogers公司生产的RO4003、3003、4350、RT5880、5870、6002、6006、6010、6035、6202,Nelco公司生产的N4000-13、N4000-13EPSI的印刷电路或微波电路的介质基板,或为Si、SiO2、Al2O3、GaAs、GaN的半导体或介质材料,或为柔性有机介质材料。The dielectric substrate 3 is FR4, F4B, RO4003, 3003, 4350, RT5880, 5870, 6002, 6006, 6010, 6035, 6202 produced by Rogers, printed circuits of N4000-13, N4000-13 EPSI produced by Nelco, or The dielectric substrate of the microwave circuit is either a semiconductor or dielectric material of Si, SiO 2 , Al 2 O 3 , GaAs, GaN, or a flexible organic dielectric material.
所述介质基片3的厚度为1μm~10mm之间。The thickness of the dielectric substrate 3 is between 1 μm and 10 mm.
所述大面积金属地2、谐振器本体4和微带线5为铜、锡、金、银、铬、铅、铂、锌、铝、镁或钛的单一材料或其复合材料。The large-
所述大面积金属地2、谐振器本体4和微带线5的厚度为50nm~1mm之间。The thicknesses of the large-
有益效果:本发明公开的杂化等离激元谐振器,利用多个电磁谐振模式间的相互干涉,形成了单个尖锐的谐振峰,可以同时增强谐振峰的品质因数和谐振强度,从而实现对介电环境的高灵敏度传感。该杂化激元谐振器在集成电路、传感芯片、微波毫米波和太赫兹传感中有着可观的应用前景。Beneficial effects: The hybrid plasmon resonator disclosed in the present invention utilizes the mutual interference between multiple electromagnetic resonance modes to form a single sharp resonance peak, which can enhance the quality factor and resonance strength of the resonance peak at the same time, thereby realizing the High Sensitivity Sensing of Dielectric Environments. The hybrid exciton resonator has considerable application prospects in integrated circuits, sensing chips, microwave millimeter wave and terahertz sensing.
本发明的工作原理如下:The working principle of the present invention is as follows:
谐振器可由时域耦合模理论(Coupled Mode Theory,CMT)分析。对于只有一个激励端口的情况,任意谐振模式nth,其振幅an,本征谐振频率ωn,本征衰减时间τn0,由端口耦合导致的衰减时间为τn1。则该模式遵循以下方程:The resonator can be analyzed by Coupled Mode Theory (CMT) in the time domain. For the case of only one excitation port, any resonant mode nth, its amplitude an, the intrinsic resonance frequency ωn, the intrinsic decay time τn0, and the decay time caused by port coupling is τn1. Then the pattern follows the following equation:
其中Sn,1+是从端口1流入的能量(S1+)进入第nth谐振模式的能量where Sn,1+ is the energy flowing from port 1 (S1+) into the nth resonant mode
除特殊情况,大部分谐振模式γn1≈1。是由S1+到Sn,1+的耦合相位.耦合系数Kn1由耦合时间τn1和相位系数θn1决定:Except for special cases, most of the resonance modes γn1≈1. is the coupling phase from S1+ to Sn,1+. The coupling coefficient Kn1 is determined by the coupling time τn1 and the phase coefficient θn1:
当结构中存在多个谐振模式时,整个结构的谐振由多个模式相互干涉决定,其反射能量为:When there are multiple resonance modes in the structure, the resonance of the whole structure is determined by the mutual interference of multiple modes, and the reflected energy is:
则整个结构的反射系数为:Then the reflection coefficient of the whole structure is:
从方程(5)可见多个谐振模式的叠加项。The superposition term of multiple resonant modes can be seen from equation (5).
在实施例一中,我们将结合具体案例阐述耦合模理论。In the first embodiment, we will illustrate the coupled mode theory with specific cases.
附图说明Description of drawings
图1为本发明公开的谐振器的结构示意图;1 is a schematic structural diagram of a resonator disclosed in the present invention;
图2为本发明公开的谐振器中谐振器本体的结构示意图;2 is a schematic structural diagram of a resonator body in the resonator disclosed in the present invention;
图3为本发明公开的谐振器中谐振器本体的几何参数示意图;3 is a schematic diagram of the geometric parameters of the resonator body in the resonator disclosed in the present invention;
图4为SLSP谐振器、扇形谐振器和杂化等离激元谐振器的S11曲线对比图;Fig. 4 is the S 11 curve comparison diagram of SLSP resonator, sector resonator and hybrid plasmon resonator;
图5为SLSP谐振结构、PR谐振结构两个谐振模式及杂化等离激元谐振器在谐振峰处的场分布和辐射方向图;Fig. 5 is the field distribution and radiation pattern of the two resonance modes of the SLSP resonance structure, the PR resonance structure and the hybrid plasmon resonator at the resonance peak;
图6为耦合模理论下各个谐振模式的S11频谱图;Fig. 6 is the S 11 spectrum diagram of each resonance mode under the coupled mode theory;
图7为本发明公开的谐振器在不同介电环境折射率变化下的S11曲线图;Fig. 7 is the S 11 curve diagram of the resonator disclosed in the present invention under the change of refractive index in different dielectric environments;
图8为本发明公开的谐振器对表面覆盖F4B介质板材不同厚度的传感S11曲线图。FIG. 8 is a graph showing the sensing S11 curve of the resonator disclosed in the present invention to different thicknesses of the F4B dielectric plate covered on the surface.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施案例做说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, specific implementation cases of the present invention are described below with reference to the accompanying drawings.
本发明公开了一种高品质因数的杂化等离激元谐振器,如图1所示,该谐振器为层状结构,图1-(a)为正视图,图1-(b)为侧视图。其中最上层为传感区域层1,最下层为大面积金属地2,大面积金属地的上层为介质基片3,传感区域层的下层为谐振器本体4和微带线5所在的传输层6;The present invention discloses a hybrid plasmon resonator with high quality factor. As shown in Figure 1, the resonator has a layered structure, Figure 1-(a) is a front view, and Figure 1-(b) is a side view. The uppermost layer is the
如图2所示,谐振器本体4为人工局域表面等离激元(Spoof localized surfaceplasmon,SLSP)谐振结构7和扇形谐振结构(Perturb Resonator,PR)8叠加形成。图3为谐振器本体的几何参数示意图。人工局域表面等离激元谐振结构7为外周设有周期性锯齿的圆形,其圆形内径为r,圆环形锯齿结构9的半径为R;一周共有N个锯齿周期,每个周期中,金属条带为扇形,其弧长为a,单个周期宽度为d,其中d=2πR/N,a<d。As shown in FIG. 2 , the
所述扇形谐振结构8为圆弧外侧设有周期性锯齿结构10的扇形,扇形内径为R1,角度为θ,扇环形锯齿结构10的半径为R2。人工局域表面等离激元谐振结构7和扇形谐振结构8的圆心重叠,微带线5与谐振器本体4间设有缝隙,缝隙为传感区域的一部分。缝隙间距为S,微带线的宽度为w。扇环形锯齿结构10的单个锯齿周期宽度为d,锯齿宽度为a,与人工局域表面等离激元谐振结构7中圆环形锯齿结构9的周期d和宽度a一致,使二者可以重合;其半径R1和R2以及锯齿周期数即角度为θ可调节。The sector-shaped
介质基片3可以为FR4,F4B,Rogers公司生产的RO4003、3003、4350、RT5880、5870、6002、6006、6010、6035、6202,Nelco公司生产的N4000-13、N4000-13EPSI的印刷电路或微波电路的介质基板,或为Si、SiO2、Al2O3、GaAs、GaN的半导体或介质材料,或为柔性有机介质材料。介质基片3的厚度为1μm~10mm之间。大面积金属地2、谐振器本体4和微带线5为铜、锡、金、银、铬、铅、铂、锌、铝、镁或钛的单一材料或其复合材料。大面积金属地2、谐振器本体4和微带线5的厚度为50nm~1mm之间。The dielectric substrate 3 can be FR4, F4B, RO4003, 3003, 4350, RT5880, 5870, 6002, 6006, 6010, 6035, 6202 produced by Rogers, printed circuits or microwaves of N4000-13 and N4000-13 EPSI produced by Nelco The dielectric substrate of the circuit is either a semiconductor or dielectric material of Si, SiO 2 , Al 2 O 3 , GaAs, GaN, or a flexible organic dielectric material. The thickness of the dielectric substrate 3 is between 1 μm and 10 mm. The large-
实施例一:Example 1:
本实施例杂化等离激元谐振器的结构如图1-3所示。其中几何参数为:R=12mm,r=2.5mm,d=2.09mm,a=0.6*d=1.26mm,R1=9mm,θ=86°。该结构由50Ω微带线激励,介质基片3为0.5mm厚的F4B板材,其介电常数为2.65,损耗角正切0.001,微带线宽度w=1.34mm,微带线到谐振器缝隙s=0.2mm。The structure of the hybrid plasmon resonator in this embodiment is shown in Figures 1-3. The geometric parameters are: R=12mm, r=2.5mm, d=2.09mm, a=0.6*d=1.26mm, R1 = 9mm, θ=86°. The structure is excited by a 50Ω microstrip line, the dielectric substrate 3 is a 0.5mm thick F4B plate, its dielectric constant is 2.65, the loss tangent is 0.001, the microstrip line width w=1.34mm, and the microstrip line to the resonator gap s =0.2mm.
人工局域表面等离激元谐振器(SLSP)、扇形谐振器(PR)和本发明公开的杂化等离激元谐振器(Hybrid)(谐振器本体)的仿真S11曲线如图4所示。杂化等离激元谐振器的谐振峰在9.16GHz,S11=0.04(-22.8dB),品质因数Q=142。而人工局域表面等离激元谐振器(SLSP)在8.96GHz为磁等离激元模式,Q=44.8。由于两个谐振器叠加,人工局域表面等离激元谐振器(SLSP)在8.96GHz的谐振峰,扇形谐振器(PR)在8.9GHz和9.29GHz的谐振峰,三个模式同时存在于杂化等离激元谐振器Hybrid(谐振器本体),三个模式相互叠加,实现了Q值3.4倍的增强。The simulated S11 curves of artificial localized surface plasmon resonator (SLSP), sector resonator (PR) and hybrid plasmon resonator (Hybrid) (resonator body) disclosed in the present invention are shown in Fig. 4 Show. The resonance peak of the hybrid plasmon resonator is at 9.16 GHz, S 11 =0.04 (-22.8 dB), and the quality factor Q=142. The artificial localized surface plasmon resonator (SLSP) is a magnetic plasmon mode at 8.96 GHz with Q=44.8. Due to the superposition of the two resonators, the artificial localized surface plasmon resonator (SLSP) has a resonance peak at 8.96GHz, and the sector resonator (PR) has resonance peaks at 8.9GHz and 9.29GHz, and the three modes exist simultaneously in the stray The plasmonic resonator Hybrid (resonator body), the three modes are superimposed on each other, achieving a 3.4-fold enhancement of the Q value.
为了衡量Q值和谐振强度,我们定义Figure of MeritFoM=Q×δI,其中δI为S11谐振峰的振幅。杂化等离激元谐振器FoM=143.8,人工局域表面等离激元谐振器FoM=1.8,对比可见谐振峰实现了79.8倍的FoM增强。To measure the Q value and resonance strength, we define Figure of MeritFoM=Q×δI, where δI is the amplitude of the S 11 resonance peak. The hybrid plasmon resonator has FoM=143.8, and the artificial localized surface plasmon resonator has FoM=1.8. Compared with the visible resonance peak, the FoM enhancement is 79.8 times.
人工局域表面等离激元谐振器(SLSP)、扇形谐振器(PR)和杂化等离激元谐振器(Hybrid,谐振器本体)在谐振峰处的场分布和辐射方向图如图5所示。从场分布,可以看出杂化等离激元谐振器的谐振模式,是由SLSP的谐振和PR的谐振叠加而成。而从辐射效率(Radiative Efficiency,RE)来看,虽然杂化等离激元谐振器的Q值很高,其辐射效率仍高达0.47。可见,杂化等离激元的高Q不是由于低辐射导致,而是由于多个模式之间的叠加干涉。高辐射效率,也使得这里的杂化等离激元谐振器易于由空间波激发,既可用于有线探测也可用于无线探测。The field distribution and radiation pattern of artificial localized surface plasmon resonator (SLSP), sector resonator (PR) and hybrid plasmon resonator (Hybrid, resonator body) at the resonance peak are shown in Fig. 5 shown. From the field distribution, it can be seen that the resonance mode of the hybrid plasmon resonator is formed by the superposition of the resonance of the SLSP and the resonance of the PR. From the perspective of radiation efficiency (RE), although the Q value of the hybrid plasmon resonator is very high, its radiation efficiency is still as high as 0.47. It can be seen that the high Q of the hybrid plasmon is not due to the low radiation, but is due to the superposition interference between multiple modes. The high radiation efficiency also makes the hybrid plasmon resonator here easy to be excited by space waves, which can be used for both wired and wireless detection.
针对实施例一中具体的结构参数,应用耦合模理论,SLSP和PR谐振器三个模式的参数如表1所示。由于微带激励在这里是弱激励,因为三个模式的本征谐振频率即取为S11频谱的谐振频率,其他参数为拟合S11频谱得到。耦合模理论和仿真对比的结构如图6,其中三种形状的离散点为耦合模理论结果,黑色实线为仿真数据。可见,由SLSP的单个谐振和PR的两个谐振叠加,由耦合模理论得到的杂化等离激元谐振器(Hybrid,谐振器本体)的谐振曲线和仿真数据非常好的符合,从而证实了我们理论的可行性。For the specific structural parameters in the first embodiment, the coupled mode theory is applied, and the parameters of the three modes of the SLSP and the PR resonator are shown in Table 1. Since the microstrip excitation is weak here, the intrinsic resonance frequencies of the three modes are taken as the resonance frequencies of the S 11 spectrum, and other parameters are obtained by fitting the S 11 spectrum. The structure of the coupled mode theory and simulation comparison is shown in Figure 6, where the discrete points of the three shapes are the results of the coupled mode theory, and the black solid line is the simulation data. It can be seen that from the superposition of the single resonance of SLSP and the two resonances of PR, the resonance curve of the hybrid plasmon resonator (Hybrid, resonator body) obtained from the coupled mode theory is in good agreement with the simulation data, thus confirming that feasibility of our theory.
表1.耦合模理论中三个谐振的参数。Table 1. Parameters of the three resonances in coupled mode theory.
实施例二
传感区域1为由外壁罩起来的封闭区域或开放空间,其材料可以为气体、液体、固体或三者的混合;传感区域材料的折射率在(1,3)范围内。The
本实施例采用和实施例一相同的几何结构,为该谐振器在不同介电环境(折射率范围1-1.8)传感中的应用,其电磁仿真结果如图7。图7为传感区域的折射率不同取值情况下,谐振器本体的反射率(S11)频谱;其中黑色实线为传感区域折射率等于1(空气)情况下的反射率S11。当传感区域1的折射率逐渐增大,我们可以看到S11频谱谐振频率的红移,频率随折射率变化的灵敏度为1.1GHz.RIU-1。而人工表面等离激元谐振器的灵敏度为0.27GHz.RIU-1。因此该杂化等离激元谐振器实现了介电环境传感灵敏度4.1倍的增强。This embodiment adopts the same geometric structure as that of the first embodiment, which is the application of the resonator in the sensing of different dielectric environments (refractive index range 1-1.8). The electromagnetic simulation results are shown in Fig. 7 . Figure 7 shows the reflectance (S 11 ) spectrum of the resonator body when the refractive index of the sensing area is different; the solid black line is the reflectance S 11 when the refractive index of the sensing area is equal to 1 (air). When the refractive index of the
实施例三Embodiment 3
本实施例采用和实施例一相同的几何结构,为其对于F4B介质板材厚度的探测,其实验测试结果如图8,图中空心圆、实心圆、空心三角形和实心三角形分别为F4B介质基片厚度在0.5mm、1mm、1.5mm和2mm时的S11曲线,黑色实线为没有覆盖介质基片时谐振器本体的S11频谱。可见随着表面介质材料厚度的增加,其谐振峰呈现明显的红移。This embodiment adopts the same geometric structure as the first embodiment, which is used to detect the thickness of the F4B dielectric plate. The experimental test results are shown in Figure 8. In the figure, the hollow circle, solid circle, hollow triangle and solid triangle are the F4B dielectric substrate respectively. The S 11 curves of the thickness of 0.5mm, 1mm, 1.5mm and 2mm, the black solid line is the S 11 spectrum of the resonator body when the dielectric substrate is not covered. It can be seen that with the increase of the thickness of the surface dielectric material, the resonance peak exhibits an obvious red shift.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910931989.0A CN110707409B (en) | 2019-09-29 | 2019-09-29 | A High Quality Factor Hybrid Plasmon Resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910931989.0A CN110707409B (en) | 2019-09-29 | 2019-09-29 | A High Quality Factor Hybrid Plasmon Resonator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110707409A true CN110707409A (en) | 2020-01-17 |
CN110707409B CN110707409B (en) | 2021-01-05 |
Family
ID=69197887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910931989.0A Active CN110707409B (en) | 2019-09-29 | 2019-09-29 | A High Quality Factor Hybrid Plasmon Resonator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110707409B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697307A (en) * | 2020-05-28 | 2020-09-22 | 北京大学 | Artificial local surface plasmon resonator applied to gyrotron and method |
CN113964540A (en) * | 2021-10-27 | 2022-01-21 | 南京航空航天大学 | Device and method for regulating and controlling moire effect artificial surface plasmon dispersion |
CN114417766A (en) * | 2022-01-11 | 2022-04-29 | 东南大学 | Mode mixed resonance Q value enhancement method |
CN116259947A (en) * | 2023-02-10 | 2023-06-13 | 东南大学 | An artificial localized surface plasmon active oscillation sensor |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999049353A1 (en) * | 1998-03-26 | 1999-09-30 | Verifiber Technologies, Inc. | Optical plasmon-wave structures |
CN103280622A (en) * | 2013-04-15 | 2013-09-04 | 东南大学 | Artificial surface plasmon-based annular resonator |
US20140133283A1 (en) * | 2012-11-14 | 2014-05-15 | Headway Technologies, Inc. | Plasmon Resonator with Dual Waveguide Excitation for TAMR |
US9394166B1 (en) * | 2012-02-24 | 2016-07-19 | The United States Of America As Represented By The Secretary Of The Navy | Increased plasmon resonance frequency stability drawn from a refractive index gradient spanning negative and positive values |
CN105870615A (en) * | 2016-04-11 | 2016-08-17 | 上海大学 | Imitated localized surface plasmon-based subwavelength antenna and array thereof |
CN106486729A (en) * | 2016-09-29 | 2017-03-08 | 东南大学 | Compact closed-loop resonator based on artificial surface phasmon |
CN107478249A (en) * | 2017-08-01 | 2017-12-15 | 深圳大学 | The fan-shaped nano-sensor of Fano resonance can be achieved |
CN109244827A (en) * | 2018-09-12 | 2019-01-18 | 南京理工大学 | A kind of Gaussian metal semiconductor resonant cavity for nano laser |
CN110165346A (en) * | 2019-04-29 | 2019-08-23 | 东南大学 | A kind of reconfigurable filter based on the artificial local surface phasmon of open loop |
CN110174450A (en) * | 2019-06-21 | 2019-08-27 | 贵州麦可威科技有限公司 | A kind of highly sensitive manually phasmon sensor and application method |
CN110658240A (en) * | 2019-10-29 | 2020-01-07 | 贵州民族大学 | Toxic and harmful gas detection sensor and detection method |
-
2019
- 2019-09-29 CN CN201910931989.0A patent/CN110707409B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999049353A1 (en) * | 1998-03-26 | 1999-09-30 | Verifiber Technologies, Inc. | Optical plasmon-wave structures |
US9394166B1 (en) * | 2012-02-24 | 2016-07-19 | The United States Of America As Represented By The Secretary Of The Navy | Increased plasmon resonance frequency stability drawn from a refractive index gradient spanning negative and positive values |
US20140133283A1 (en) * | 2012-11-14 | 2014-05-15 | Headway Technologies, Inc. | Plasmon Resonator with Dual Waveguide Excitation for TAMR |
CN103280622A (en) * | 2013-04-15 | 2013-09-04 | 东南大学 | Artificial surface plasmon-based annular resonator |
CN105870615A (en) * | 2016-04-11 | 2016-08-17 | 上海大学 | Imitated localized surface plasmon-based subwavelength antenna and array thereof |
CN106486729A (en) * | 2016-09-29 | 2017-03-08 | 东南大学 | Compact closed-loop resonator based on artificial surface phasmon |
CN107478249A (en) * | 2017-08-01 | 2017-12-15 | 深圳大学 | The fan-shaped nano-sensor of Fano resonance can be achieved |
CN109244827A (en) * | 2018-09-12 | 2019-01-18 | 南京理工大学 | A kind of Gaussian metal semiconductor resonant cavity for nano laser |
CN110165346A (en) * | 2019-04-29 | 2019-08-23 | 东南大学 | A kind of reconfigurable filter based on the artificial local surface phasmon of open loop |
CN110174450A (en) * | 2019-06-21 | 2019-08-27 | 贵州麦可威科技有限公司 | A kind of highly sensitive manually phasmon sensor and application method |
CN110658240A (en) * | 2019-10-29 | 2020-01-07 | 贵州民族大学 | Toxic and harmful gas detection sensor and detection method |
Non-Patent Citations (3)
Title |
---|
ANDERS PORS等: "Localized Spoof Plasmons Arise while Texturing Closed Surfaces", 《PHYSICAL REVIEW LETTERS》 * |
BAO JIA YANG: "Spoof localized surface plasmons in corrugated ring structures excited by microstrip line", 《OPTICS EXPRESS》 * |
ZHEN LIAO等: "Multiple Fano resonances in spoof localized surface plasmons", 《OPTICS EXPRESS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697307A (en) * | 2020-05-28 | 2020-09-22 | 北京大学 | Artificial local surface plasmon resonator applied to gyrotron and method |
CN111697307B (en) * | 2020-05-28 | 2021-10-01 | 北京大学 | Artificial localized surface plasmon resonator applied to gyrotron and its control method |
CN113964540A (en) * | 2021-10-27 | 2022-01-21 | 南京航空航天大学 | Device and method for regulating and controlling moire effect artificial surface plasmon dispersion |
CN114417766A (en) * | 2022-01-11 | 2022-04-29 | 东南大学 | Mode mixed resonance Q value enhancement method |
CN114417766B (en) * | 2022-01-11 | 2024-08-13 | 东南大学 | Mode mixed resonance Q value enhancement method |
CN116259947A (en) * | 2023-02-10 | 2023-06-13 | 东南大学 | An artificial localized surface plasmon active oscillation sensor |
Also Published As
Publication number | Publication date |
---|---|
CN110707409B (en) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110707409A (en) | A High Quality Factor Hybrid Plasmon Resonator | |
Khan et al. | Altering the multimodal resonance in ultrathin silicon ring for tunable THz biosensing | |
Singh et al. | Broadband millimeterwave metamaterial absorber based on embedding of dual resonators | |
CN102427150B (en) | Terahertz-band metamaterial with three resonance absorption peaks | |
Lobet et al. | Robust electromagnetic absorption by graphene/polymer heterostructures | |
CN108336504A (en) | A kind of microwave broadband Meta Materials wave absorbing device of infrared transmission | |
CN106486729A (en) | Compact closed-loop resonator based on artificial surface phasmon | |
CN111817022B (en) | Broadband ultrathin wave-absorbing metamaterial for visual window of aircraft | |
CN112525852B (en) | A Terahertz Biosensor Based on Split Resonant Ring Structure | |
CN107645064A (en) | Low-frequency ultra-wideband wave absorbing device based on loading cycle metal level inside magnetic material | |
CN111129685A (en) | An artificial plasmonic resonator with deep subwavelength and high quality factor | |
CN107394414B (en) | Wave absorber based on double-layer magnetic medium to realize low-frequency bandwidth broadening | |
CN104852254A (en) | Broadband surface Plasmon radiator | |
CN108767380A (en) | A kind of broadband filter based on artificial local surface phasmon | |
CN105576335B (en) | A kind of adjustable Meta Materials resonance device of guided mode resonance quality factor | |
CN110350285A (en) | A kind of artificial local surface phasmon electromagnetism is the same as frequency resonator | |
CN114778481B (en) | Micrometer sensor based on terahertz metamaterial and detection method | |
CN110187338A (en) | A Broadband Transmission Matching Layer Structure | |
CN115693165A (en) | A multilayer broadband tunable anti-reflection impedance matching method and metasurface structure | |
Si et al. | Characterization and application of planar terahertz narrow bandpass filter with metamaterial resonators | |
CN116207516A (en) | A high-performance metamaterial absorber based on a three-layer metasurface | |
Huang et al. | Smart coating based on frequency-selective spoof surface plasmon polaritons for crack monitoring | |
CN104716440A (en) | Electromagnetic wave absorber structure based on magnetic film and design method thereof | |
Babych et al. | Film coatings that are transparent in the visible spectral region with shielding properties in the microwave range | |
CN115425428A (en) | An ultra-broadband optically transparent microwave absorbing device based on metasurface structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |