CN110694613A - 一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法和应用 - Google Patents

一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110694613A
CN110694613A CN201910922199.6A CN201910922199A CN110694613A CN 110694613 A CN110694613 A CN 110694613A CN 201910922199 A CN201910922199 A CN 201910922199A CN 110694613 A CN110694613 A CN 110694613A
Authority
CN
China
Prior art keywords
znal
moo
solution
molybdate
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910922199.6A
Other languages
English (en)
Inventor
田庆文
房桂干
丁来保
邓拥军
沈葵忠
施英乔
盘爱享
韩善明
焦健
李红斌
梁芳敏
张华兰
林艳
梁龙
朱北平
吴珽
冉淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Industry of Forest Products of CAF
Original Assignee
Institute of Chemical Industry of Forest Products of CAF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Industry of Forest Products of CAF filed Critical Institute of Chemical Industry of Forest Products of CAF
Priority to CN201910922199.6A priority Critical patent/CN110694613A/zh
Publication of CN110694613A publication Critical patent/CN110694613A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • C02F2103/322Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效铝酸锌/钼酸铋异质结紫外光催化剂,所述的催化剂是所述的光催化剂是由ZnAl2O4和Bi2MoO6组合形成的异质结催化剂,其中ZnAl2O4与Bi2MoO6质量比为1:3~500。本发明制备方法简便,价格低廉,催化性能高。在紫外光的照射下,该异质结光催化剂对于亚甲蓝印染废水的去除率高达86.36%和桉木化机浆生化废水的COD去除率为50.88%,在印染、造纸和林化等工业废水等领域具有广阔的前景。

Description

一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法 和应用
技术领域
本发明涉及到光催化材料及工业废水处理领域,特别是难生物降解的印染、造纸和林化等工业废水,具体涉及到ZnAl2O4/Bi2MoO6光催化剂的制备方法及其应用。
背景技术
随着印染、制浆造纸和林产化工行业的快速发展,工业废水污染问题日益引起了全世界的高度关注。考虑到废水处理成本,工业废水通常采用好氧厌氧等生物处理。然而,生化处理后的废水水质颜色较重,含有部分残余难降解COD、有毒害的酚类等大环难降解有机物以及微量污染物,因此必须对其进行进一步处理,以达到安全排放的标准。因此,工业废水的深度处理技术,目前已经成为废水处理研究的热点和重点之一。主要的技术有:混凝技术、吸附技术、膜分离技术、高级氧化技术、生物处理技术以及各种技术的组合处理等。目前以上大多数技术对工业废水的处理研究主要停留在探索阶段,仍然存在运行成本高,运行条件苛刻等问题。已经实现工程应用的深度处理技术仅有FENTON氧化法,尽管可以满足新的排放要求,但存在着运行成本高,使用化学品量大,操作复杂生的污泥量大,无法有效处置。企业环保压力普遍加大,严重削弱企业的市场竞争能力。研究开发全新的低成本高效深度处理技术已经成为废水深度处理工程的迫切需求。紫外光催化氧化技术近年来成为非常关注的热点。
Bi2MoO6由于其价格低廉、高效无毒和化学性质稳定等优势,已被广泛应用于光催化领域。中国发明专利(CN108311135A)公开了一种钼酸铋光催化剂的制备方法,其对含汞的重金属废水不仅具有良好的吸附性能,还对重金属汞具有较强的催化还原降解能力。中国发明专利(CN105498751A)提供了一种中空球状纳米γ-钼酸铋的制备方法,具有良好的光催化性能,在30min可见光的照射下能将甲基橙溶液浓度从1g/L降解到0.01g/L。然而,其存在光生电子和空穴的结合率高和量子效率低等缺陷,严重影响了其光催化性能。因此,构建Bi2MoO6基异质结光催化剂可以明显提高光催化性能。Wang等人采用水热法制备了Bi3.64Mo0.36O6.55/Bi2MoO6异质结催化剂,其对于罗丹明B溶液的降解率是纯 Bi2MoO6的1.98倍和Bi3.64Mo0.36O6.55的4.88倍(Journal of Alloys and Compounds,766(2018)1037-1045)。ZnAl2O4具有光响应强、结构稳定、组成多样、带隙窄等优点,也被广泛应用于环境保护领域。Chaudhary等人采用溶胶凝胶法制备了 ZnAl2O4纳米粉末,系统研究了其对曙红B(EB)、刚果红(CR)、芝加哥天蓝 (CSB)、甲基橙(MO)和亚甲基蓝(MB)等印染废水,发现降解率均高于90% (Materials Science&Engineering B 227(2018)136-144)。据文献查阅,暂未见到ZnAl2O4/Bi2MoO6异质结光催化剂的制备及应用报道。
发明内容
发明目的:本发明的目的是为了解决光催化剂中光生空穴和电子复合性高、量子效率低及催化性能差等问题,以及工业废水处理成本高、污泥量大和污染大等难题,提供了一种高效的ZnAl2O4/Bi2MoO6异质结紫外光催化剂的制备方法及应用。
技术方案:为实现上述技术目的,本发明提供了一种高效ZnAl2O4/Bi2MoO6异质结紫外光催化剂,所述的光催化剂是由ZnAl2O4和Bi2MoO6组合形成的异质结催化剂,其中ZnAl2O4与Bi2MoO6质量比1:3~500,即ZnAl2O4按照0.2wt%至 30wt%加入到反应中。
本发明进一步提出了上述高效紫外ZnAl2O4/Bi2MoO6光催化剂的制备方法,包括如下步骤:
(1)制备ZnAl2O4粉末;
(2)制备ZnAl2O4/Bi2MoO6光催化剂:将ZnAl2O4和钼酸盐溶于蒸馏水中,并以一定速度加入到铋盐的水溶液中,加入NaOH调节溶液pH,超声搅拌均匀置于水热釜中,反应后产物经过水洗和醇洗,真空干燥,即可得到 ZnAl2O4/Bi2MoO6异质结光催化剂。
其中,铋盐和钼酸盐的摩尔比为3:1~2:3,用NaOH溶液调节溶液pH至4~8,在水热釜中的反应条件为140~200℃下反应12~36h。
具体地,步骤(2)中,所述的铋盐为硝酸铋、硫酸铋、氯化铋或醋酸铋中的任意一种或两种;所述的含钼酸盐为钼酸钠、钼酸铵、钼酸钾或钼酸铈的任意一种。
优选地,步骤(2)中,滴加速度为1~10ml/min。
本发明进一步提供了ZnAl2O4/Bi2MoO6异质结紫外光催化剂的应用,该异质结催化剂在紫外光下处理印染、造纸和林产化工废水。
有益效果:本发明与现有技术相比,具有以下优点:
(1)本发明方法制备的ZnAl2O4/Bi2MoO6材料催化性能优良、化学结构稳定、可重复使用,对印染、造纸和林产化工等工业废水的处理具有良好的效果;
(2)本发明制备的ZnAl2O4/Bi2MoO6光催化剂属于异质结领域,可抑制光生电子和空穴的结合,提高光催化反应性能。
附图说明
图1为Bi2MoO6,ZnAl2O4和ZnAl2O4/Bi2MoO6异质结的XRD图,其中, ZB1-ZB6分别对应0.2wt%ZnAl2O4/Bi2MoO6、0.5wt%ZnAl2O4/Bi2MoO6、 1wt%ZnAl2O4/Bi2MoO6、3wt%ZnAl2O4/Bi2MoO6、5wt%ZnAl2O4/Bi2MoO6和 30wt%ZnAl2O4/Bi2MoO6
图2为Bi2MoO6和0.5wt%ZnAl2O4/Bi2MoO6(ZB2)的XPS图谱,其中,(a)为 Bi2MoO6和0.5wt%ZnAl2O4/Bi2MoO6(ZB2)的XPS图谱,(b)~(f)分别为Bi、 Mo、O、Zn和Al元素的高分辨XPS图谱;
图3为制备的催化剂的SEM、HRTEM和EDS图,其中,(a)为Bi2MoO6的 SEM图;(b)为5wt%ZnAl2O4/Bi2MoO6的SEM图;(c)为5wt%ZnAl2O4/Bi2MoO6的TEM图;(d)为5wt%ZnAl2O4/Bi2MoO6的选取电子衍射图;(e)为 5wt%ZnAl2O4/Bi2MoO6的EDS能谱;
图4位制备的催化剂5wt%ZnAl2O4/Bi2MoO6的TEM-EDX扫描谱图,其中,图 (b)~图(f)分别为对应的Bi、Mo、O、Zn和Al元素的Mapping图。
具体实施方式
本发明提供了一种高效ZnAl2O4/Bi2MoO6异质结光催化剂,通过如下方法制备得到:
(1)制备ZnAl2O4粉末:利用现有技术制备ZnAl2O粉末,如参照文献 (Microporousand Mesoporous Materials 163(2012)29-33)
(2)制备ZnAl2O4/Bi2MoO6光催化剂:将ZnAl2O4和铋盐溶于蒸馏水中,并以一定速度加入到钼酸盐的水溶液中,加入NaOH调节溶液pH,超声搅拌均匀置于水热釜中,反应后产物经过水洗和醇洗,真空干燥,即可得到 ZnAl2O4/Bi2MoO6异质结光催化剂。
下面通过实施例对本发明技术方案作进一步详细说明。
实施例1:
将5.75g ZnSO4·7H2O和15g Al(NO3)3·9H2O分别溶于10mL的蒸馏水中,然后ZnSO4·7H2O溶液逐滴滴加到Al(NO3)3·9H2O的水溶液中,用28wt%氨水调节上述混合液至9。制备的样品经过滤洗涤干燥,并在700℃马弗炉中煅烧4h,即可得到白色的ZnAl2O4粉末。将0.0061g ZnAl2O4、5mmol Na2MoO4·2H2O溶于 30mL的蒸馏水中,形成A溶液,5mmol Bi(NO3)3·6H2O加入到30ml的蒸馏水中,形成B溶液。超声磁力搅拌30min。在磁力搅拌下,将A溶液以5mL/min 的速度滴加到B溶液中,然后加入10wt%NaOH调节pH为6。上述溶液室温搅拌30min后,放到反应釜中180℃反应12h,冷却后用离子水和乙醇洗涤多次,真空干燥,即可得到0.2wt%-ZnAl2O4/Bi2MoO6光催化剂(0.2wt%表示ZnAl2O4占整个催化剂的百分比含量)。将0.2g的ZnAl2O4、Bi2MoO6和0.2wt% ZnAl2O4/Bi2MoO6催化剂分别加入到250mL的30mg/L的亚甲基蓝溶液中,100 w的Hg灯照射,3h后亚甲基蓝的降解率分别为14.33、51.16%和65.91%。
实施例2:
ZnAl2O4粉末的制备方法同实施例1。将0.0174g、0.0298g、0.0930g、0.1572g 和0.9164g ZnAl2O4、5mmol Na2MoO4·2H2O溶于30mL的蒸馏水中,形成A 溶液,5mmol Bi(NO3)3·6H2O加入到30ml的蒸馏水中,形成B溶液。超声磁力搅拌30min。在磁力搅拌下,将A溶液以4mL/min的速度滴加到B溶液中,然后加入10wt%NaOH调节pH为8。上述溶液室温搅拌30min后,放到反应釜中180℃反应12h,冷却后用离子水和乙醇洗涤多次,真空干燥,即可得到 0.5wt%ZnAl2O4/Bi2MoO6、1wt%ZnAl2O4/Bi2MoO6、3wt%ZnAl2O4/Bi2MoO6、 5wt%ZnAl2O4/Bi2MoO6和30wt%ZnAl2O4/Bi2MoO6光催化剂。将0.2g 0.5wt% ZnAl2O4/Bi2MoO6催化剂分别加入到250mL的30mg/L的亚甲基蓝溶液中, 100w的Hg灯照射,3h后亚甲基蓝的降解率如下所示:
Figure BDA0002217919000000041
Figure BDA0002217919000000051
使用后的0.5wt%ZnAl2O4/Bi2MoO6经过离心洗涤干燥后,重复四次用于亚处理250mL的30mg/L的亚甲基蓝溶液,100w的Hg灯照射,3h后亚甲基蓝的降解率如下所示:
Figure BDA0002217919000000052
实施例3:
ZnAl2O4粉末的制备方法同实施例1。将0.0174g ZnAl2O4、5mmol (NH4)6Mo7O24·4H2O溶于30mL的蒸馏水中,形成A溶液,6mmol Bi(NO3)3·6H2O加入到30ml的蒸馏水中,形成B溶液。超声磁力搅拌30min。在磁力搅拌下,将A溶液以10mL/min的速度滴加到B溶液中,然后加入 10wt%NaOH调节pH为4。上述溶液室温搅拌30min后,放到反应釜中200℃反应36h,冷却后用离子水和乙醇洗涤多次,真空干燥,即可得到5wt%- ZnAl2O4/Bi2MoO6光催化剂。将0.2g 5wt%ZnAl2O4/Bi2MoO6催化剂分别加入到250mL的30mg/L的亚甲基蓝溶液中,100w的Hg灯照射,3h后亚甲基蓝的降解率分别为80.27%。
实施例4:
ZnAl2O4粉末的制备方法同实施例1。将0.1572g ZnAl2O4、5mmol K2MoO4溶于30mL的蒸馏水中,形成A溶液,5mmol BiCl3加入到30ml的蒸馏水中,形成B溶液。超声磁力搅拌30min。在磁力搅拌下,将A溶液以5mL/min的速度滴加到B溶液中,然后加入10wt%NaOH调节pH为6。上述溶液室温搅拌30min后,放到反应釜中180℃反应24h,冷却后用离子水和乙醇洗涤多次,真空干燥,即可得到5wt%ZnAl2O4/Bi2MoO6光催化剂。将0.2g 5wt% ZnAl2O4/Bi2MoO6催化剂分别加入到250mL的30mg/L的亚甲基蓝溶液中, 100w的Hg灯照射,3h后亚甲基蓝的降解率分别为68.42%。
实施例5:
ZnAl2O4粉末的制备方法同实施例1。将0.0174g ZnAl2O4、5mmol Na2MoO4·2H2O溶于30mL的蒸馏水中,形成A溶液,7mmol Bi(NO3)3·6H2O 加入到30ml的蒸馏水中,形成B溶液。超声磁力搅拌30min。在磁力搅拌下,将A溶液以1mL/min的速度滴加到B溶液中,然后加入10wt%NaOH调节 pH为7。上述溶液室温搅拌30min后,放到反应釜中160℃反应24h,冷却后用离子水和乙醇洗涤多次,真空干燥,即可得到0.5wt%ZnAl2O4/Bi2MoO6光催化剂。将0.2g 0.5wt%ZnAl2O4/Bi2MoO6催化剂分别加入到250mL的COD 分别为226mg/L和281mg/L的桉木化机浆生化出水和橄榄油废水中,100w 的Hg灯照射,3h后COD的去除率分别为50.88%和65.22%。
实施例6光催化剂表征
本发明同时对制备的催化剂进行表征。
图1为Bi2MoO6,ZnAl2O4和ZnAl2O4/Bi2MoO6异质结的XRD图,其中, ZB1-ZB6分别对应0.2wt%ZnAl2O4/Bi2MoO6、0.5wt%ZnAl2O4/Bi2MoO6、 1wt%ZnAl2O4/Bi2MoO6、3wt%ZnAl2O4/Bi2MoO6、5wt%ZnAl2O4/Bi2MoO6和 30wt%ZnAl2O4/Bi2MoO6。结果表明,ZnAl2O4加入量少时,复合物中没有出现 ZnAl2O4峰,当加入量为30wt%(即ZB6)时,可以观察到ZnAl2O4峰并以◇标注在图中。
为了进一步研究催化剂表面化学组成和元素价态,我们对其进行了XPS光谱表征,结果如图2所示。可以明确检测到Bi 4f、Mo3d、O 1s、Zn2p和Al 2p峰,而且ZnAl2O4掺杂后,Bi4f、Mo 3d和O1s峰没有变化。由于ZnAl2O4含量比较低,所以Zn 2p和Al 2p峰不光滑。
图3为制备的催化剂的SEM、HRTEM和EDS图。图4a可知Bi2MoO6为不规则的纳米棒,由图4(b,c)可以看出ZnAl2O4覆盖在Bi2MoO6纳米棒上,且 ZnAl2O4和Bi2MoO6均未改变其各自的形貌。同时本研究对ZnAl2O4/Bi2MoO6做了EDS能谱分析,由图4e可以看出,ZnAl2O4/Bi2MoO6催化剂中含有Zn、Al、 Bi、Mo和O元素,进一步证明了ZnAl2O4成功的掺杂在Bi2MoO6纳米棒中。且 4d中可以看出ZnAl2O4(311)和Bi2MoO6(131)晶面。
为了证明ZnAl2O4/Bi2MoO6异质结催化剂的形成,除了采用SEM和TEM对其表征外,我们还采用TEM-EDX扫描谱图,确定Bi、Mo、O、Zn和Al元素分布情况,并如图4所示。其中图4a为5wt%ZnAl2O4/Bi2MoO6的选区电镜图,从图4(b-f)中可以观察到Bi、Mo和O元素均匀分布在每个Bi2MoO6晶体。此外,Zn和Al元素也是均匀分布在SrZrO3晶体的表面,不过其相对密度较低。
综上所述,本发明方法制备的ZnAl2O4/Bi2MoO6材料催化性能优良、化学结构稳定、可重复使用,对印染、造纸和林产化工等工业废水的处理具有良好的效果。

Claims (9)

1.一种高效铝酸锌/钼酸铋异质结紫外光催化剂,其特征在于,所述的光催化剂是由ZnAl2O4和Bi2MoO6组合形成的异质结催化剂,其中ZnAl2O4与Bi2MoO6质量比为1:3~500。
2.权利要求1所述的高效铝酸锌/钼酸铋异质结紫外光催化剂的制备方法,其特征在于,包括如下步骤:
(1)制备ZnAl2O4粉末;
(2)制备ZnAl2O4/Bi2MoO6光催化剂:将ZnAl2O4和钼酸盐溶于蒸馏水中,并以一定速度加入到铋盐溶液中,加入NaOH调节溶液pH,超声搅拌均匀置于水热釜中,反应后产物经过水洗和醇洗,真空干燥,即可得到ZnAl2O4/Bi2MoO6异质结光催化剂。
3.根据权利要求2所述的制备方法,其特征在于,铋盐和钼酸盐的摩尔比为3:1~2:3。
4.根据权利要求2所述的制备方法,其特征在于,用NaOH溶液调节溶液pH至4~8。
5.根据权利要求2所述的制备方法,其特征在于,在水热釜中的反应条件为140~200℃下反应12~36 h。
6.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述的铋盐为硝酸铋、硫酸铋、氯化铋或醋酸铋中的任意一种或两种;所述的含钼酸盐为钼酸钠、钼酸铵、钼酸钾或钼酸铈的任意一种。
7.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,滴加速度为1~10ml/min。
8.权利要求1所述的高效铝酸锌/钼酸铋异质结紫外光催化剂在紫外光下处理废水中的应用。
9.根据权利要求8所述的应用,其中,所述废水为印染、造纸和林产化工废水中的任意一种。
CN201910922199.6A 2019-09-27 2019-09-27 一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法和应用 Pending CN110694613A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910922199.6A CN110694613A (zh) 2019-09-27 2019-09-27 一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910922199.6A CN110694613A (zh) 2019-09-27 2019-09-27 一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110694613A true CN110694613A (zh) 2020-01-17

Family

ID=69197769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910922199.6A Pending CN110694613A (zh) 2019-09-27 2019-09-27 一种高效铝酸锌/钼酸铋异质结紫外光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110694613A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244440A (ja) * 2012-05-24 2013-12-09 Sharp Corp 水浄化装置
CN104096558A (zh) * 2014-07-11 2014-10-15 中国人民解放军空军工程大学 一种钼酸铋-氧化锌复合光催化剂及其制备方法
CN105536772A (zh) * 2015-12-23 2016-05-04 东南大学 一种异质结纳米光催化材料的制备方法及该材料的应用
CN106076389A (zh) * 2016-06-15 2016-11-09 常州大学 钼酸铋/石墨相氮化碳复合催化剂的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244440A (ja) * 2012-05-24 2013-12-09 Sharp Corp 水浄化装置
CN104096558A (zh) * 2014-07-11 2014-10-15 中国人民解放军空军工程大学 一种钼酸铋-氧化锌复合光催化剂及其制备方法
CN105536772A (zh) * 2015-12-23 2016-05-04 东南大学 一种异质结纳米光催化材料的制备方法及该材料的应用
CN106076389A (zh) * 2016-06-15 2016-11-09 常州大学 钼酸铋/石墨相氮化碳复合催化剂的制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
姚仲鹏 著: "《空气净化原理、设计与应用》", 30 September 2014, 中国科学技术出版社 *
曹丽云著: "《钨酸盐纳米材料的湿化学合成及光催化性能》", 31 December 2017, 西北工业大学出版社 *
杜肖: ""Bi2MoO6基复合光催化材料的制备及性能研究"", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》 *
田庆文 等: ""ZnAl2O4/Bi2MoO6异质结光催化剂的制备及其在印染和桉木化机浆废水中的应用研究"", 《中国化学会·第十六届全国应用化学年会论文摘要集》 *
罗春华: "《材料制备与性能测试实验》", 31 July 2019 *

Similar Documents

Publication Publication Date Title
Kakavandi et al. Photocatalytic activation of peroxydisulfate by magnetic Fe3O4@ SiO2@ TiO2/rGO core–shell towards degradation and mineralization of metronidazole
Wang et al. Preparation and optical and photocatalytic properties of Ce-doped ZnO microstructures by simple solution method
CN108273492B (zh) 一种氧化铋/四氧化二铋异质结光催化剂及其制法和用途
Xu et al. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis
Chankhanittha et al. Solar light-driven photocatalyst based on bismuth molybdate (Bi 4 MoO 9) for detoxification of anionic azo dyes in wastewater
Feng et al. Coupling Bi 2 MoO 6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light
Taddesse et al. Polyaniline supported CdS/CeO2/Ag3PO4 nanocomposite: An “AB” type tandem nn heterojunctions with enhanced photocatalytic activity
Padilla Villavicencio et al. Ibuprofen photodegradation by Ag 2 O and Ag/Ag 2 O composites under simulated visible light irradiation
Mehrabadi et al. Clinoptilolite modified with TiO2 for simultaneous elimination of two herbicides; 2, 4-D and MCPA by UV and sunlight-assisted photocatalytic degradation
Yang et al. Degradation of orange II by Fe@ Fe2O3 core shell nanomaterials assisted by NaHSO3
Wang et al. Sonocatalytic removal of tetracycline in the presence of S-scheme Cu2O/BiFeO3 heterojunction: Operating parameters, mechanisms, degradation pathways and toxicological evaluation
Sabri et al. Activation of persulfate ions by TiO 2/carbon dots nanocomposite under visible light for photocatalytic degradations of organic contaminants
Yang et al. A {110} facet predominated Bi 6 O 6 (OH) 3 (NO 3) 3· 1.5 H 2 O photocatalyst: selective hydrothermal synthesis and its superior photocatalytic activity for degradation of phenol
Anku et al. MWCNTs attached neodymium doped-ZnO photocatalysts for efficient removal of dyes from wastewater
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Deng et al. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants
Bai et al. One-pot synthesis of Ag nanoparticles/ZnO nanorods heterostructures for organic dyes decoloring
Zhu et al. Heterogeneous activation of persulfate by Bi2MoO6–CuS composite for efficient degradation of orange II under visible light
Wang et al. One-step synthesis of novel Ni-doped Cu2 (OH) 3F Fenton-like catalyst driven by visible light: Single activity and synergistic effect enhanced by bimetallic cooperation
Liu et al. Hybrid persulfate/sonocatalysis for degradation of acid orange 7 in the presence of Ag2O/CuWO4 composite: operating parameters and sonocatalytic mechanism
Mansha et al. Facile hydrothermal synthesis of BiVO4 nanomaterials for degradation of industrial waste
Gogoi et al. Heterostructured BiOCl–LaOCl S-scheme composites with improved visible-light photocatalytic activity on Rhodamine B dye
Zhang Excellent photocatalytic rhodamine B degradation for water remediation over Pr3+ doped Bi2WO6 microspheres
Tu et al. A novel hierarchical 0D/3D NH2-MIL-101 (Fe)/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient Cr (VI) reduction and photo-Fenton-like removal of 2-nitrophenol
Motlagh et al. Ultrasonic-assisted photocatalytic degradation of various organic contaminants using ZnO supported on a natural polymer of sporopollenin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200117

RJ01 Rejection of invention patent application after publication