CN110687941A - System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass - Google Patents

System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass Download PDF

Info

Publication number
CN110687941A
CN110687941A CN201910754121.8A CN201910754121A CN110687941A CN 110687941 A CN110687941 A CN 110687941A CN 201910754121 A CN201910754121 A CN 201910754121A CN 110687941 A CN110687941 A CN 110687941A
Authority
CN
China
Prior art keywords
temperature
lower die
die
upper die
heating wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910754121.8A
Other languages
Chinese (zh)
Other versions
CN110687941B (en
Inventor
耿涛
张国军
明五一
卢亚
张臻
张红梅
廖敦明
尹玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Hust Industrial Technology Research Institute
Original Assignee
Guangdong Hust Industrial Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Hust Industrial Technology Research Institute filed Critical Guangdong Hust Industrial Technology Research Institute
Priority to CN201910754121.8A priority Critical patent/CN110687941B/en
Publication of CN110687941A publication Critical patent/CN110687941A/en
Application granted granted Critical
Publication of CN110687941B publication Critical patent/CN110687941B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

A system and a method for synchronously controlling the temperature of an upper mold and a lower mold of 3D cover plate glass comprise an upper mold main loop, an upper mold auxiliary loop, a lower mold main loop and a lower mold auxiliary loop, the temperature of an upper mold heating wire and the temperature of a lower mold heating wire are detected, difference is made according to the temperatures, then the obtained temperature deviation signal is used as a power compensation signal of the upper mold heating wire and the lower mold heating wire to adjust the power of the heating wires in real time, and the difference between the output temperature of the upper mold and the lower mold and the target set temperature of the mold is used as an input regulating quantity, so that the effective control and adjustment. The invention solves the problem of large temperature overshoot of the product, thereby improving the temperature control precision of the die. The control precision of the upper die and the lower die is guaranteed, the effect of high-precision synchronous temperature control of the upper die and the lower die is achieved, the dynamic performance of the system in the temperature transferring process is improved, the problem of synchronous control and precision of the upper die and the lower die of the 3D cover plate glass is solved, and the yield and quality of the 3D cover plate glass in forming are improved.

Description

System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass
Technical Field
The invention belongs to the technical field of 3D cover plate glass temperature control, and particularly relates to a method for controlling the temperature synchronization of an upper die and a lower die of a 3D cover plate.
Background
With the wide application of wireless charging technology and flexible OLEDs, cover glass needs to be matched to be made into a curved surface shape, referred to as 3D cover glass in the industry. At present, 3D cover plate models are released by various mobile phone manufacturers, the 3D glass cover plate can be smoothly connected with the middle frame by 180 degrees, and the human engineering principle is better met, so that the hand feeling experience of the sliding screen is greatly improved. The glass material is better than metal and plastic materials in the aspects of electromagnetic shielding, machinability, aesthetic feeling and the like, and a mobile phone manufacturer also adopts 3D glass to replace a metal or plastic rear cover for the needs of product differentiation and wireless charging technology. The hot bending forming process is the mainstream forming process of the 3D glass at present.
The performance of the hot bending die material requires that the material has the characteristics of fine grains, compact and uniform structure, high thermal stability, easy processing, good heat conductivity coefficient, small thermal expansibility and the like. Alloy, ceramic and graphite can be generally selected, but the excellent characteristics of the graphite better meet the requirements of the 3D cover plate glass hot bending die, most of the graphite in the industry is used as a die raw material in order to improve the uniformity of products, and the graphite dies for 3D glass are generally used in pairs, namely matched with a concave-convex die.
The concave-convex mould of the graphite mould is independently controlled, but the problem of poor uniformity of the product is not effectively solved. The reason is that the heat flux density of each area is different, the temperature rise and the temperature fall asynchronously in the process of independently controlling the temperature of the concave-convex die, the temperature control of the concave-convex die is coupled mutually, and the phenomenon that the final temperature of a product generates continuous oscillation or the temperature difference of the concave-convex die is easily caused by the asynchronous temperature in the process.
The 3D glass hot bending forming process comprises the following steps:
a preheating stage: the original glass sheet is loaded into a graphite mould and then enters a preheating area, the mould is heated in the preheating area, the temperature of the glass is gradually raised after heat conduction of the mould, and the temperature is slowly and stably transited to a hot bending forming stage.
And (3) hot bending forming: after the glass enters the area, the temperature reaches the operation temperature, the glass deforms under the action of external force and finally conforms to the curvature of the mold, and the temperature setting is carried out in combination with the deformation point and the softening point of the glass at the stage.
And (3) annealing stage: the glass is relieved of residual stress in this region and temperature settings should be made in conjunction with the glass annealing point, strain point.
And (3) a cooling stage: under the effect of cooling device, glass cools off the design, and the temperature setting is set up according to the condition such as mould heat conduction, avoids glass warpage to exceed standard.
In the hot bending forming process, temperature and pressure are the most important control parameters, and the temperature and the pressure are slightly changed near a hot bending forming critical point, so that the hot bending forming is obviously changed, and if the temperature is set to be too low, glass is easy to be crushed due to the fact that the glass does not reach the deformation point temperature; the temperature of the upper mold and the lower mold of the mold is inconsistent, so that the heating rates of the upper surface and the lower surface of the glass are inconsistent, the glass is bent, and the glass is cracked under the stress state when the glass is serious. The research on the technology for synchronously controlling the temperature of the upper die and the lower die in the hot bending forming process has great significance for improving the forming yield and quality of the 3D cover plate glass.
The traditional upper and lower die temperature control structure is parallel control, namely the temperature target value of each region is the same, the upper and lower die temperatures are independently controlled, the temperature difference value parameter of the upper and lower die temperatures is not included in the algorithm processing, the temperature rise and fall speed rate between the regions is different, and the temperature surface temperature of the upper and lower dies is asynchronous.
Disclosure of Invention
In order to solve the technical problem, the invention provides a system and a method for synchronously controlling the temperature of an upper mold and a lower mold of a 3D cover plate colored glaze.
In order to solve the technical problems, the invention adopts the following technical scheme:
a temperature synchronous control system for upper and lower dies of a 3D cover plate colored glaze comprises an upper die main loop, an upper die auxiliary loop, a lower die main loop and a lower die auxiliary loop;
the upper die main loop is provided with an upper die main controller and an upper die heating wire, the upper die auxiliary loop is provided with an upper die auxiliary controller, the output ends of the upper die main controller and the upper die auxiliary controller are respectively connected with the input end of the upper die heating wire, the lower die main loop is provided with a lower die main controller and a lower die heating wire, the lower die auxiliary loop is provided with a lower die auxiliary controller, and the output ends of the lower die main controller and the lower die auxiliary controller are respectively connected with the input end of the lower die heating wire;
the difference between the output temperature of the upper die heating wire and the target set temperature of the die is used as the input regulating variable of the upper die main controller, the difference between the output temperature of the upper die heating wire and the output temperature of the lower die heating wire is used as the input regulating variable of the upper die sub-controller, and the output quantity of the upper die main controller and the output quantity of the upper die sub-controller are superposed and used as the input regulating variable of the upper die heating wire;
and the difference between the output temperature of the lower die heating wire and the target set temperature of the die is used as the input regulating quantity of the lower die main controller, the difference between the output temperature of the lower die heating wire and the output temperature of the upper die heating wire is used as the input regulating quantity of the lower die sub controller, and the output quantity of the lower die main controller and the output quantity of the lower die sub controller are superposed and used as the input regulating quantity of the lower die heating wire.
The upper die main controller, the upper die auxiliary controller, the lower die main controller and the lower die auxiliary controller are PID controllers.
A method for synchronously controlling the temperature of an upper mold and a lower mold of 3D cover glass comprises the following steps:
setting a target set temperature Sv (t) of the die, and detecting the output temperature of the upper die heating wire as vu(t), the output temperature of the lower die heating wire is recorded as vd(t);
Calculating each temperature difference
eu(t)=Sv(t)-vu(t),ed(t)=Sv(t)-vd(t),eud(t)=vu(t)-vd(t),edu(t)=vd(t)-vu(t),
U is obtained by calculationu(t)、ud(t)、uud(t)、udu(t) control amount, wherein uu(t) is the output of the control quantity of the upper die main loop, ud(t) output of control quantity of main loop of lower die, uud(t) is the output of the upper die auxiliary loop control, udu(t) outputting the control quantity of the lower die secondary loop;
will uu(t)、uud(t) as the input control quantity of the upper die heating wire after superposition, ud(t)、uduAnd (t) after superposition, the control quantity is used as the input control quantity of the lower die heating wire.
Said u isu(t)、ud(t)、uud(t)、udu(t) the control quantity is controlled by a PID controller, and is calculated by adopting a PID control algorithm to obtain: the PID controller is composed of a proportional unit (P), an integral unit (I) and a differential unit (D), and the input e of the PID controller isu(t) and output udThe relationship of (t) is:
Figure BDA0002168191930000031
in the formula (I), the compound is shown in the specification,
Figure RE-GDA0002273472180000032
respectively an error, an error integral and an error differential term;
kp,ki,kdproportional coefficient, integral coefficient, differential coefficient,
ud(t)=PID(ed(t))
uu(t)=PID(eu(t))
uud(t)=PID(eud(t))
udu(t)=PID(edu(t))。
the cross coupling structure is introduced, so that the temperature of the upper die and the lower die heating wires is controlled independently, the temperature difference between the upper die heating wires and the lower die heating wires is used as control input adjustment quantity, the synchronization performance of the temperature of the upper die and the temperature of the lower die are effectively improved, the control precision of the upper die and the lower die is guaranteed, the temperature synchronization of the upper die and the lower die is also considered, the effect of high-precision synchronous temperature control of the upper die and the lower die is achieved, the dynamic performance of a system in a temperature conversion process is improved while the control precision of the system is not influenced, the problem of synchronous control and precision of the upper die and the lower die of the 3D cover plate glass is solved, and the yield.
Drawings
FIG. 1 is a schematic diagram of the system connection of the present invention;
FIG. 2 is a schematic diagram of a cascade PID mold temperature control structure.
Detailed Description
For a better understanding of the features and technical means of the invention, together with the specific objects and functions attained by the invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings.
As shown in the attached figure 1, the invention discloses a temperature synchronous control system for upper and lower molds of a 3D cover plate colored glaze, which comprises an upper mold main loop, an upper mold auxiliary loop, a lower mold main loop and a lower mold auxiliary loop;
the upper die main loop is provided with an upper die main controller and an upper die heating wire, the upper die auxiliary loop is provided with an upper die auxiliary controller, the output ends of the upper die main controller and the upper die auxiliary controller are respectively connected with the input end of the upper die heating wire, the lower die main loop is provided with a lower die main controller and a lower die heating wire, the lower die auxiliary loop is provided with a lower die auxiliary controller, and the output ends of the lower die main controller and the lower die auxiliary controller are respectively connected with the input end of the lower die heating wire.
And the difference between the output temperature of the upper die heating wire and the target set temperature of the die is used as the input regulating quantity of the upper die main controller, the difference between the output temperature of the upper die heating wire and the output temperature of the lower die heating wire is used as the input regulating quantity of the upper die sub-controller, and the output quantity of the upper die main controller and the output quantity of the upper die sub-controller are superposed and jointly used as the input regulating quantity of the upper die heating wire.
And the difference between the output temperature of the lower die heating wire and the target set temperature of the die is used as the input regulating quantity of the lower die main controller, the difference between the output temperature of the lower die heating wire and the output temperature of the upper die heating wire is used as the input regulating quantity of the lower die sub controller, and the output quantity of the lower die main controller and the output quantity of the lower die sub controller are superposed and used as the input regulating quantity of the lower die heating wire.
The upper die main controller, the upper die auxiliary controller, the lower die main controller and the lower die auxiliary controller are PID controllers.
The output temperature of the upper die heating wire and the output temperature of the lower die heating wire are different, and then the obtained temperature deviation signal is used as a power compensation signal of the upper die heating wire and the lower die heating wire to adjust the power of the heating wires in real time, so that the temperature synchronization of the upper die and the lower die can be considered while the control precision of the upper die and the lower die is ensured, the effect of high-precision synchronous temperature control of the upper die and the lower die is realized, and the dynamic performance of the system in the temperature transition process is improved while the control precision of the system is not influenced.
A method for synchronously controlling the temperature of an upper mold and a lower mold of 3D cover glass comprises the following steps:
setting a target set temperature Sv (t) of the die, and detecting the output temperature of the upper die heating wire as vu(t), the output temperature of the lower die heating wire is recorded as vd(t);
Calculating each temperature difference
eu(t)=Sv(t)-vu(t),ed(t)=Sv(t)-vd(t),eud(t)=vu(t)-vd(t),edu(t)=vd(t)-vu(t),
U is obtained by calculationu(t)、ud(t)、uud(t)、udu(t) controlAmount of u whereinu(t) is the output of the control quantity of the upper die main loop, ud(t) output of control quantity of main loop of lower die, uud(t) is the output of the upper die auxiliary loop control, udu(t) outputting the control quantity of the lower die secondary loop;
will uu(t)、uud(t) as the input control quantity of the upper die heating wire after superposition, ud(t)、uduAnd (t) after superposition, the control quantity is used as the input control quantity of the lower die heating wire.
Said u isu(t)、ud(t)、uud(t)、udu(t) the control quantity is controlled by a PID controller, and is calculated by adopting a PID control algorithm to obtain: the PID controller is composed of a proportional unit (P), an integral unit (I) and a differential unit (D), and the input e of the PID controller isu(t) and output udThe relationship of (t) is:
Figure BDA0002168191930000051
in the formula (I), the compound is shown in the specification,
Figure RE-GDA0002273472180000052
respectively an error, an error integral and an error differential term;
kp,ki,kdproportional coefficient, integral coefficient, differential coefficient,
Figure BDA0002168191930000061
through the control quantity, the input quantity is adjusted, and the temperature synchronism of the upper die heating wire and the lower die heating wire is ensured, so that the heating temperatures of the upper die and the lower die are ensured.
As can be seen from the above, the control quantity output u of the upper die main loopu(t) and the lower die main loop control amount output ud(t), while the conventional self error is adjusted, the auxiliary loop is used for adjusting the input quantity by making a difference between the temperatures of the upper die heating wire and the lower die heating wire, so that the problem that the temperature rise of partial areas is too fast due to uneven heat flux density can be effectively solvedResulting in the problem of unsynchronization of the temperatures of the upper and lower dies.
In the invention, the measured output temperature of the upper die heating wire and the measured output temperature of the lower die heating wire are respectively subjected to difference and used as input regulating quantity, and the cross coupling structure is adopted, so that the synchronism of the temperatures of the upper die and the lower die can be effectively improved.
In addition, in order to avoid steady-state oscillation of the system, the system adopts a control strategy of automatic switching of PID parameters in a partition area. A single PID parameter cannot be applied to the full temperature zone. According to debugging experience, the system divides the temperature interval into a low-temperature area, a medium-temperature area and a high-temperature area according to the temperature interval, and carries out debugging respectively according to the set value of the temperature and the actual value at the current moment, thereby selecting a proper PID parameter to achieve the effect of accurate temperature control. As shown in fig. 2, on the loop, through two PIDs, the temperature controlled output of the heating wire of the mold is v' (t), the temperature controlled output of the mold is v (t), the temperature controlled output of the mold is different from the target set temperature of the mold and is used as the input quantity of the first-stage PID, the temperature controlled output of the heating wire is different from the output quantity of the first-stage PID and is used as the input quantity of the second PID, and the output quantity u (t) of the second PID is used as the input quantity of the heating wire.
In addition, when the application is specifically implemented,
(1) sv (t) is set according to a 3D cover plate glass process, and PID parameters of a low-temperature area, a medium-temperature area and a high-temperature area are respectively set;
(2) the thermocouple sensors respectively measure the temperature v of the upper die and the lower die of the 3D cover plate glass formingd(t)、 vu(t);
(3) The following error values are calculated respectively,
eu(t)=Sv(t)-vu(t),ed(t)=Sv(t)-vd(t),eud(t)=vu(t)-vd(t),edu(t)=vd(t) -vu(t),
(4) calculating u by PID algorithm and cascade structureu(t)、ud(t)、uud(t)、udu(t) controlling the amount.
(5) And outputting the output value of the control quantity to the heating wires of the upper die and the lower die to realize the synchronous temperature control of the upper die and the lower die.
Although the present invention has been described in detail with reference to the embodiments, those skilled in the art can still make modifications to the technical solutions described in the foregoing embodiments or make equivalent substitutions for some technical features, but any modifications, equivalent substitutions, improvements, etc. within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (4)

1. A temperature synchronous control system for upper and lower molds of 3D cover plate glass is characterized by comprising an upper mold main loop, an upper mold auxiliary loop, a lower mold main loop and a lower mold auxiliary loop;
the upper die main loop is provided with an upper die main controller and an upper die heating wire, the upper die auxiliary loop is provided with an upper die auxiliary controller, the output ends of the upper die main controller and the upper die auxiliary controller are respectively connected with the input end of the upper die heating wire, the lower die main loop is provided with a lower die main controller and a lower die heating wire, the lower die auxiliary loop is provided with a lower die auxiliary controller, and the output ends of the lower die main controller and the lower die auxiliary controller are respectively connected with the input end of the lower die heating wire;
the difference between the output temperature of the upper die heating wire and the target set temperature of the die is used as the input regulating variable of the upper die main controller, the difference between the output temperature of the upper die heating wire and the output temperature of the lower die heating wire is used as the input regulating variable of the upper die sub-controller, and the output quantity of the upper die main controller and the output quantity of the upper die sub-controller are superposed and used as the input regulating variable of the upper die heating wire;
and the difference between the output temperature of the lower die heating wire and the target set temperature of the die is used as the input regulating quantity of the lower die main controller, the difference between the output temperature of the lower die heating wire and the output temperature of the upper die heating wire is used as the input regulating quantity of the lower die sub controller, and the output quantity of the lower die main controller and the output quantity of the lower die sub controller are superposed and used as the input regulating quantity of the lower die heating wire.
2. The system for synchronously controlling the temperature of the upper die and the lower die of the 3D cover glass according to claim 1, wherein the upper die main controller, the upper die sub-controller, the lower die main controller and the lower die sub-controller are PID controllers.
3. A method for synchronously controlling the temperature of an upper mold and a lower mold of 3D cover glass comprises the following steps:
setting a target set temperature Sv (t) of the die, and detecting the output temperature of the upper die heating wire as vu(t), the output temperature of the lower die heating wire is recorded as vd(t);
Calculating each temperature difference
eu(t)=Sv(t)-vu(t),ed(t)=Sv(t)-vd(t),eud(t)=vu(t)-vd(t),edu(t)=vd(t)-vu(t),
U is obtained by calculationu(t)、ud(t)、uud(t)、udu(t) control amount, wherein uu(t) is the output of the control quantity of the upper die main loop, ud(t) output of control quantity of main loop of lower die, uud(t) is the output of the upper die auxiliary loop control, udu(t) outputting the control quantity of the lower die secondary loop;
will uu(t)、uud(t) as the input control quantity of the upper die heating wire after superposition, ud(t)、uduAnd (t) after superposition, the control quantity is used as the input control quantity of the lower die heating wire.
4. The method for synchronously controlling the temperature of the upper die and the lower die of the 3D cover glass according to claim 3, wherein u is the same as uu(t)、ud(t)、uud(t)、udu(t) the control quantity is controlled by a PID controller, and is calculated by adopting a PID control algorithm to obtain: the PID controller is composed of a proportional unit (P), an integral unit (I) and a differential unit (D), and the input e of the PID controller isu(t) and output udThe relationship of (t) is:
Figure RE-FDA0002219860030000021
in the formula (I), the compound is shown in the specification,
e(t),
Figure RE-FDA0002219860030000022
error, error integral, error differential terms,
kp,ki,kdproportional coefficient, integral coefficient, differential coefficient,
ud(t)=PID(ed(t))
uu(t)=PID(eu(t))
uud(t)=PID(eud(t))
udu(t)=PID(edu(t))。
CN201910754121.8A 2019-08-15 2019-08-15 System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass Active CN110687941B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910754121.8A CN110687941B (en) 2019-08-15 2019-08-15 System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910754121.8A CN110687941B (en) 2019-08-15 2019-08-15 System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass

Publications (2)

Publication Number Publication Date
CN110687941A true CN110687941A (en) 2020-01-14
CN110687941B CN110687941B (en) 2021-07-30

Family

ID=69108263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910754121.8A Active CN110687941B (en) 2019-08-15 2019-08-15 System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass

Country Status (1)

Country Link
CN (1) CN110687941B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161421A (en) * 2020-09-28 2021-01-01 湖南省嘉品嘉味生物科技有限公司 Fresh-keeping freezer of frozen meat
CN114212979A (en) * 2021-12-30 2022-03-22 广东华中科技大学工业技术研究院 Glass hot bending die and glass hot bending method
CN114751633A (en) * 2022-05-06 2022-07-15 广东华中科技大学工业技术研究院 Hot bending forming device and forming method for large-size ultrathin glass component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690204A (en) * 2015-02-13 2015-06-10 朱兴发 All-solid-state variable-frequency induction heating device for isothermal forging upper and lower molds and heating method
CN205528401U (en) * 2016-02-02 2016-08-31 凯茂科技(深圳)有限公司 Curved mould of glass apron heat and curved preparation system of glass apron heat
CN106291763A (en) * 2016-09-30 2017-01-04 南京信息工程大学 A kind of double heating the digital meteorological sounding meter and heating control algorithms thereof
CN107807514A (en) * 2017-10-12 2018-03-16 彩虹集团(邵阳)特种玻璃有限公司咸阳分公司 A kind of cover-plate glass draws amount control method
CN107857466A (en) * 2017-12-07 2018-03-30 苏州赛万玉山智能科技有限公司 Efficient 3D cover-plate glass preheating device, pre-heating mean, hot-bending machine and its processing method
CN108655374A (en) * 2018-04-18 2018-10-16 安徽威克电子配件有限公司 A kind of casting mold and its temperature control system
CN109205999A (en) * 2017-06-30 2019-01-15 苏州赛万玉山智能科技有限公司 The high-efficiency machining method of 3D bending cover-plate glass
CN109437523A (en) * 2018-12-03 2019-03-08 仙游县元生智汇科技有限公司 A kind of processing method of the 3D glass cover-plate of wearable smart machine
CN109437525A (en) * 2018-12-29 2019-03-08 广东华中科技大学工业技术研究院 A kind of mobile phone bend glass hot bending composite die and control method with temperature regulation
CN109970326A (en) * 2019-03-22 2019-07-05 广东华中科技大学工业技术研究院 A kind of intelligent temperature control mold and its control method for 3C component hot bending

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690204A (en) * 2015-02-13 2015-06-10 朱兴发 All-solid-state variable-frequency induction heating device for isothermal forging upper and lower molds and heating method
CN205528401U (en) * 2016-02-02 2016-08-31 凯茂科技(深圳)有限公司 Curved mould of glass apron heat and curved preparation system of glass apron heat
CN106291763A (en) * 2016-09-30 2017-01-04 南京信息工程大学 A kind of double heating the digital meteorological sounding meter and heating control algorithms thereof
CN109205999A (en) * 2017-06-30 2019-01-15 苏州赛万玉山智能科技有限公司 The high-efficiency machining method of 3D bending cover-plate glass
CN107807514A (en) * 2017-10-12 2018-03-16 彩虹集团(邵阳)特种玻璃有限公司咸阳分公司 A kind of cover-plate glass draws amount control method
CN107857466A (en) * 2017-12-07 2018-03-30 苏州赛万玉山智能科技有限公司 Efficient 3D cover-plate glass preheating device, pre-heating mean, hot-bending machine and its processing method
CN108655374A (en) * 2018-04-18 2018-10-16 安徽威克电子配件有限公司 A kind of casting mold and its temperature control system
CN109437523A (en) * 2018-12-03 2019-03-08 仙游县元生智汇科技有限公司 A kind of processing method of the 3D glass cover-plate of wearable smart machine
CN109437525A (en) * 2018-12-29 2019-03-08 广东华中科技大学工业技术研究院 A kind of mobile phone bend glass hot bending composite die and control method with temperature regulation
CN109970326A (en) * 2019-03-22 2019-07-05 广东华中科技大学工业技术研究院 A kind of intelligent temperature control mold and its control method for 3C component hot bending

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161421A (en) * 2020-09-28 2021-01-01 湖南省嘉品嘉味生物科技有限公司 Fresh-keeping freezer of frozen meat
CN114212979A (en) * 2021-12-30 2022-03-22 广东华中科技大学工业技术研究院 Glass hot bending die and glass hot bending method
CN114212979B (en) * 2021-12-30 2023-08-15 广东华中科技大学工业技术研究院 Glass hot bending die and glass hot bending method
CN114751633A (en) * 2022-05-06 2022-07-15 广东华中科技大学工业技术研究院 Hot bending forming device and forming method for large-size ultrathin glass component

Also Published As

Publication number Publication date
CN110687941B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
CN110687941B (en) System and method for synchronously controlling temperatures of upper die and lower die of 3D cover plate glass
CN110027139B (en) Mold preparation method, mold heating system and heating control method
CN101284298B (en) Preparation method of aluminium alloy semi-solid state blank for large size forging
CN104707931A (en) Manufacturing method for large high-temperature alloy disk-type die forging parts
CN108326051B (en) A kind of aluminum alloy plate materials coupling process of preparing
CN114178504B (en) Intelligent temperature control method for low-pressure casting aluminum alloy melt
CN104294020B (en) A kind of for the hot stamping device controlled that quenches
CN105648366A (en) Temperature-controllable near-isothermal plastic processing technology for high-entropy alloys
CN201753314U (en) Heating system for annealing kiln
CN110976841A (en) Control method for casting speed of steel poured by die casting bottom pouring method
CN208100862U (en) Blade cures temperature control system
CN202922954U (en) Adhesive film preparation device capable of improving shrinkage ratio of EVA (Ethylene-Vinyl Acetate) adhesive film
CN1778729B (en) Production method and producing device for aspherical moulded glass
CN114115380B (en) Temperature control method and system for 3D glass hot bending die
CN208019422U (en) Part temperature control device in a kind of laser deposition
CN114160775B (en) Intelligent temperature control system and intelligent temperature control method for low-pressure casting aluminum alloy melt
CN101099999A (en) Cast steel normal temperature casting method
Xu et al. Research of multi-point temperature control method in the heating system of 3D glass hot bending machine
CN214528697U (en) Heating plate and heating device for 3D glass hot bending machine and 3D glass hot bending machine
CN205540337U (en) Nanometer iron powder dore furnace cascades temperature control system
CN101551674A (en) Flow control system for temperature-control steam inlet and control method thereof
CN108213435A (en) Part temperature control device and method in a kind of laser deposition
JP2826085B2 (en) Liquid temperature control method for single crystal pulling furnace
JPS62173219A (en) Temperature adjusting device for plastic mold
CN110126142B (en) Process for adjusting double-cavity die flow by adjusting temperature of die core

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant