CN110686617A - 结合像散法定位的非球面参数误差干涉测量方法及系统 - Google Patents

结合像散法定位的非球面参数误差干涉测量方法及系统 Download PDF

Info

Publication number
CN110686617A
CN110686617A CN201911158883.8A CN201911158883A CN110686617A CN 110686617 A CN110686617 A CN 110686617A CN 201911158883 A CN201911158883 A CN 201911158883A CN 110686617 A CN110686617 A CN 110686617A
Authority
CN
China
Prior art keywords
aspheric
lens
aspheric surface
partial
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911158883.8A
Other languages
English (en)
Other versions
CN110686617B (zh
Inventor
郝群
胡摇
陶鑫
宁悦文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Beijing Institute of Technology BIT
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201911158883.8A priority Critical patent/CN110686617B/zh
Publication of CN110686617A publication Critical patent/CN110686617A/zh
Application granted granted Critical
Publication of CN110686617B publication Critical patent/CN110686617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

结合像散法定位的非球面参数误差干涉测量方法及系统,通过结合像散定位系统建立非球面参数误差干涉测量系统,不需要搭建复杂的激光差动共焦系统,避免了激光差动共焦系统装调误差对测量精度的影响,进而提高测量非球面的面型参数误差的测量精度,且能够实现非接触、全口径、精度高的测量,具有结构简单、装调方便的优点。

Description

结合像散法定位的非球面参数误差干涉测量方法及系统
技术领域
本发明涉及光学非球面测量的技术领域,尤其涉及一种结合像散法定位的非球面参数误差干涉测量方法,以及结合像散法定位的非球面参数误差干涉测量系统。
背景技术
非球面的面型参数包括顶点曲率半径和二次曲面常数。这两个参数共同决定了非球面的形状特征,其中,顶点曲率半径不仅影响非球面的轮廓,还决定了非球面的基本性质,进而影响光学系统的像差和成像质量;而二次曲面常数是非球面的分类依据。精确测量面型参数误差,对于光学非球面的加工和装调非常重要。通常情况下,利用接触法或非接触法可以获得被测面的面形轮廓,然后对面形轮廓直接进行曲率拟合,可以得到被测面的面型参数。面型参数的测量值与标称值的差值,即为该非球面的面型参数误差。
干涉法是一种通用的光学非球面面形测量方法,而部分补偿干涉法具有结构简单、设计加工难度低的优点。在部分补偿干涉系统中,准直光经过补偿透镜后,其波前与非球面并不是完全吻合的,因此,反射光再次经过补偿透镜后,不再是准直光。当非准直反射光与参考准直光干涉时就会得到理想干涉条纹,实际条纹与理想干涉条纹的差异就反映了被测非球面的面形误差。
部分补偿干涉法是一种相对测量方法,可以直接测得被测非球面的面形误差。但是,由于被测面和部分补偿透镜的相对位置无法确定,通过部分补偿干涉法无法直接获得被测非球面的面型参数误差,这是目前需要解决的一大难题。
申请人拥有的已授权专利(申请号:201810933104.6,发明名称:结合激光差动共焦定位的非球面参数误差干涉测量方法)公开了一种解决这一难题的方法,其利用激光差动共焦定位系统求取补偿镜和被测镜之间距离。
但是,这种方法所采用的激光差动共焦定位系统(该专利中未包括)一般包含:共焦镜头、分光镜和两套参数完全相同的针孔、显微物镜和探测器,对两路针孔和显微物镜的装调精度要求非常高,并且系统较为庞大。
发明内容
为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种结合像散法定位的非球面参数误差干涉测量方法,其避免了在非球面参数误差干涉测量方法中需要使用差动共焦法进行被测非球面和补偿镜之间距离测量,从而简化了系统结构和装调过程,且能够实现非接触、全口径、速度快、精度高的测量,具有结构简单的优点。
本发明的技术方案是:这种结合像散法定位的非球面参数误差干涉测量方法,其包括以下步骤:
(1)获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,建立非球面参数误差干涉测量系统的干涉测量光路,得到名义最佳补偿距离d0,作为部分补偿镜P第二面到理想非球面顶点的距离;
(2)根据步骤(1)得到的设计后部分补偿透镜P的设计参数,加工出部分补偿透镜P的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;根据干涉条纹最稀疏准则找到最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1
(3)在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;
(4)调节像散定位系统的轴向位置,从参考平面镜端移动到部分补偿透镜端,过程中出现3次像散定位系统的四象限探测器探测到圆形光斑的位置,记录下四象限探测器第2次,第3次探测到圆形光斑的轴向位置,根据聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1,进而获得最佳补偿位置变化Δd=d1-d0
(5)测量被测非球面与理想非球面之间的面形变化,并计算面形变化S4分量的系数ΔD4
(6)根据联立的方程组(1)、(2),计算非球面的面型参数误差,实现对非球面的面型参数误差的测量,联立的方程组(1)、(2)的具体形式为:
Figure BDA0002285531290000031
Figure BDA0002285531290000032
其中,R0是非球面的顶点曲率半径,ΔR是顶点曲率半径误差;K0是二次曲面常数,ΔK是二次曲面常数误差;SA是非球面的特征点到旋转对称轴的径向距离;±的符号选择原则为:凹非球面的符号选择为+,凸非球面的符号选择为–。
本发明通过结合像散定位系统建立非球面参数误差干涉测量系统,不需要搭建复杂的激光差动共焦系统,避免了激光差动共焦系统装调误差对测量精度的影响,进而提高测量非球面的面型参数误差的测量精度,且能够实现非接触、全口径、精度高的测量,具有结构简单、装调方便的优点。
还提供了一种结合像散法定位的非球面参数误差干涉测量系统,其包括:参考平面镜(1)、像散定位系统、部分补偿透镜P(2)、实际被测非球面(5)、实际干涉仪IR,像散定位系统包括:偏振分光镜(7)、四分之一波片(8)、聚焦物镜(9)、会聚透镜(10)、柱面镜(11)和四象限探测器(12);
其中,实际干涉仪IR、参考平面镜(1)、部分补偿透镜P(2)和实际被测非球面(5)构成非球面参数误差干涉测量系统的干涉测量光路,根据实际干涉仪IR的干涉图对实际被测非球面(5)进行定位,当干涉条纹最稀疏的时候,确定实际被测非球面(5)和部分补偿透镜P(2)之间的距离为被测非球面(5)的最佳补偿位置d1(6);
在参考平面镜(1)和部分补偿透镜P(2)之间插入像散定位系统后,平行线偏振激光经过参考平面镜(1)、偏振分光镜(7)、四分之一波片(8)后被聚焦物镜(9)会聚到部分补偿透镜P(2)的第二面,从部分补偿透镜P(2)的第二面反射的光透过聚焦物镜(9)、四分之一波片(8)后被偏振分光镜(7)反射,入射会聚透镜(10)、柱面镜(11)后,聚焦在四象限探测器(12)上,此时四象限探测器(12)探测到圆形光斑,记录此时像散定位系统的轴向位置L1;向部分补偿透镜P(2)端轴向移动像散定位系统,直到四象限探测器(12)再次探测到圆形光斑,记录此时像散定位系统的轴向位置L2;根据轴向位置L1、轴向位置L2、聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1
附图说明
图1是根据本发明的结合像散法定位的非球面参数误差干涉测量方法的流程图。
图2是设计的非球面参数误差干涉测量系统的干涉测量光路。
图3是通过非球面参数误差干涉测量系统的干涉测量光路确定实际被测非球面最佳补偿位置的光路图。
图4是通过像散定位系统确定部分补偿透镜第二面位置的光路图。
图5是通过像散定位系统确定实际被测非球面位置的光路图。
其中,1-参考平面镜、2-部分补偿透镜P、3-理想非球面、4-名义最佳补偿距离d0、5-实际被测非球面、6-实际最佳补偿距离d1、7-偏振分光棱镜、8-四分之一波片、9-聚焦物镜、10-会聚透镜、11-柱面镜、12-四象限探测器。
具体实施方式
申请人经过长时间思考和反复试验,通过像散定位系统取代已有专利的激光差动共焦定位系统。像散定位系统包括:偏振分光镜、四分之一波片、聚焦物镜、会聚透镜、柱面镜和四象限探测器,具有结构简单、装调方便的优点,而且能够避免了激光差动共焦系统装调误差对测量精度的影响。但是,这并不是简单的替代,而是要对整个非球面误差干涉测量方法和系统进行全新的改变。
如图1所示,这种结合像散法定位的非球面参数误差干涉测量方法,其包括以下步骤:
(1)获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,建立非球面参数误差干涉测量系统的干涉测量光路,得到名义最佳补偿距离d0,作为部分补偿镜P第二面到理想非球面顶点的距离;
(2)根据步骤(1)得到的设计后部分补偿透镜P的设计参数,加工出部分补偿透镜P的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;根据干涉条纹最稀疏准则找到最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1
(3)在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;
(4)调节像散定位系统的轴向位置,从参考平面镜端移动到部分补偿透镜端,过程中出现3次像散定位系统的四象限探测器探测到圆形光斑的位置,记录下四象限探测器第2次,第3次探测到圆形光斑的轴向位置,根据聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1,进而获得最佳补偿位置变化Δd=d1-d0
(5)测量被测非球面与理想非球面之间的面形变化,并计算面形变化S4分量的系数ΔD4
(6)根据联立的方程组(1)、(2),计算非球面的面型参数误差,实现对非球面的面型参数误差的测量,联立的方程组(1)、(2)的具体形式为:
Figure BDA0002285531290000061
Figure BDA0002285531290000062
其中,R0是非球面的顶点曲率半径,ΔR是顶点曲率半径误差;K0是二次曲面常数,ΔK是二次曲面常数误差;SA是非球面的特征点到旋转对称轴的径向距离;±的符号选择原则为:凹非球面的符号选择为+,凸非球面的符号选择为–。
本发明通过结合像散定位系统建立非球面参数误差干涉测量系统,不需要搭建复杂的激光差动共焦系统,避免了激光差动共焦系统装调误差对测量精度的影响,进而提高测量非球面的面型参数误差的测量精度,且能够实现非接触、全口径、精度高的测量,具有结构简单、装调方便的优点。
优选地,所述步骤(1)包括以下分步骤:
(1.1)获取被测非球面名义参数,其包括:被测非球面的口径、顶点曲率半径、二次曲面常数和高次非球面系数;
(1.2)利用获取被测非球面名义参数,结合光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,部分补偿透镜P的设计参数包括:部分补偿透镜P的第一面曲率半径、厚度、材料、第二面曲率半径和口径;
(1.3)结合光学设计软件构建非球面参数误差干涉测量系统模型:
光学设计软件中构建包含部分补偿透镜P的虚拟干涉仪IR,并确定理想非球面的最佳补偿位置,作为部分补偿透镜第二面到理想非球面顶点的轴向距离d0
Figure BDA0002285531290000071
其中,d0是部分补偿透镜第二面到理想非球面顶点的轴向距离;LP是部分补偿透镜第二面到部分补偿透镜近轴焦点的距离,通过近轴光学公式进行确定;R0是非球面的顶点曲率半径,K0是二次曲面常数;A4是四次非球面系数;SA是非球面的特征点到旋转对称轴的径向距离,通过斜率非球面度定义进行确定。
优选地,所述步骤(2)中,根据步骤(1)得到的设计后部分补偿透镜的设计参数,加工出部分补偿透镜的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;利用参考平面镜形成参考光,部分补偿透镜和被测非球面形成测量光,根据参考光与测量光干涉形成的干涉图进行定位,当干涉图的条纹最稀疏的时候,实际被测非球面处于最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1
优选地,所述步骤(3)中,在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;像散定位系统包括:偏振分光棱镜7,四分之一波片8,聚焦物镜9,会聚透镜10,柱面镜11,四象限探测器12。
优选地,所述光学设计软件包括ZEMAX、CODE V。
如图2-5所示,还提供了一种结合像散法定位的非球面参数误差干涉测量系统,其包括:参考平面镜1、像散定位系统、部分补偿透镜P 2、实际被测非球面5、实际干涉仪IR,像散定位系统包括:偏振分光镜7、四分之一波片8、聚焦物镜9、会聚透镜10、柱面镜11和四象限探测器12;
其中,实际干涉仪IR、参考平面镜1、部分补偿透镜P 2和实际被测非球面5构成非球面参数误差干涉测量系统的干涉测量光路,根据实际干涉仪IR的干涉图对实际被测非球面5进行定位,当干涉条纹最稀疏的时候,确定实际被测非球面5和部分补偿透镜P 2之间的距离为被测非球面5的最佳补偿位置d1 6;
在参考平面镜和部分补偿透镜P之间插入像散定位系统后,平行线偏振激光经过参考平面镜1、偏振分光镜7、四分之一波片8后被聚焦物镜9会聚到部分补偿透镜P 2的第二面,从部分补偿透镜P的第二面反射的光透过聚焦物镜、四分之一波片8后被偏振分光镜7反射,入射会聚透镜10、柱面镜11后,聚焦在四象限探测器12上,此时四象限探测器12探测到圆形光斑,记录此时像散定位系统的轴向位置L1;向部分补偿透镜P端轴向移动像散定位系统,直到四象限探测器12再次探测到圆形光斑,记录此时像散定位系统的轴向位置L2;根据轴向位置L1、轴向位置L2、聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1
以下详细说明本发明的一个具体实施例。
结合像散法定位的非球面参数误差干涉测量方法,按以下方式实现:
建立结合像散法定位的非球面参数误差干涉测量方法流程如附图1所示,具体实施步骤为:
步骤1:获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜2,得到设计后的部分补偿透镜2的设计参数,并构建设计的非球面参数误差干涉测量系统的干涉测量光路模型,如附图2所示。
步骤1.1:获取被测非球面名义参数。
获取被测非球面名义参数包括被测非球面的口径、顶点曲率半径、二次曲面常数和高次非球面系数。
在本实施例中,被测面为凸非球面:口径2D=80mm;顶点曲率半径R0=850mm;二次曲面常数K0=–1.2;高次非球面系数A2i=0,i=2,3,4,……。
步骤1.2:利用获取被测非球面名义参数,结合光学设计软件设计部分补偿透镜2。
相关参数包括部分补偿透镜2的第一面曲率半径,厚度,材料,第二面曲率半径和口径。
在本实施例中,采用的光学设计软件为ZEMAX,部分补偿透镜2为双凸单透镜,参数为第一面曲率半径578.4mm,厚度22.0mm,材料K9玻璃,折射率n=1.51630,第二面曲率半径3350.0,口径100mm。
步骤1.3:利用获取被测非球面名义参数,结合光学设计软件构建非球面参数误差干涉测量系统的干涉测量光路模型。
在光学仿真软件中建立包含部分补偿透镜2的虚拟干涉仪IR,并确定理想非球面的最佳补偿位置,即部分补偿透镜2第二面到理想非球面顶点的轴向距离3,
通过近轴光学公式,确定部分补偿透镜第二面到部分补偿透镜近轴焦点的距离LP=944.76mm。
通过斜率非球面度定义,确定非球面的特征点到旋转对称轴的径向距离SA=34.4mm,计算
Figure BDA0002285531290000101
根据被测凸非球面名义参数和部分补偿透镜P的相关参数,确定理想非球面的最佳补偿位置d0=944.76–850.84=93.92mm。
步骤2:根据步骤1得到的设计后部分补偿透镜2的设计参数,加工出部分补偿透镜2的实物,与参考平面镜1、实际被测非球面5共同搭建非球面参数误差干涉测量系统的干涉测量光路,如附图3所示。
利用参考平面镜1形成参考光,部分补偿透镜2和被测非球面5形成测量光,根据参考光与测量光干涉形成的干涉图进行定位,当干涉图的条纹最稀疏的时候,实际被测非球面5处于最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d16。
步骤3:在参考平面镜1和部分补偿透镜2之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统。像散定位系统包括偏振分光棱镜7,四分之一波片8,聚焦物镜9,会聚透镜10,柱面镜11,四象限探测器12。
步骤4:调节像散定位系统的轴向位置,从参考平面镜端移动到部分补偿透镜端,过程中会出现3次四象限探测器12探测到圆形光斑。其中第2次探测到圆形光斑位置如附图4所示,第3次探测到圆形光斑位置如附图5所示。记录下像散定位系统四象限探测器12第2次,第3次探测到圆形光斑的轴向位置,根据聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1=91.87mm,进而获得最佳补偿位置变化Δd=d1-d0
步骤5:测量被测非球面5与理想非球面之间的面形变化,并计算面形变化S4分量的系数ΔD4=–2.17×10–11mm–3
步骤6:根据方程组的联立,计算被测非球面5的面型参数误差,方程组的具体形式为:
Figure BDA0002285531290000111
Figure BDA0002285531290000112
其中,ΔR是顶点曲率半径误差;ΔK是二次曲面常数误差。
计算被测非球面5的面型参数误差,顶点曲率半径误差ΔR=1.9981mm,二次曲面常数误差ΔK=–0.1497。
综上,相对测量精度为
Figure BDA0002285531290000113
Figure BDA0002285531290000114
其中,ΔR0=2mm是被测非球面5的实际顶点曲率半径误差,ΔK0=–0.15是被测非球面5的实际二次曲面常数误差。
本实施例中,被测非球面5使用的是凸非球面,但本方法并不限于这一种类型的非球面,也可以使用凹非球面。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的保护范围。

Claims (6)

1.结合像散法定位的非球面参数误差干涉测量方法,其特征在于:其包括以下步骤:
(1)获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,建立非球面参数误差干涉测量系统的干涉测量光路,得到名义最佳补偿距离d0,作为部分补偿镜P第二面到理想非球面顶点的距离;
(2)根据步骤(1)得到的设计后部分补偿透镜P的设计参数,加工出部分补偿透镜P的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;根据干涉条纹最稀疏准则找到最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1
(3)在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;
(4)调节像散定位系统的轴向位置,从参考平面镜端移动到部分补偿透镜端,过程中出现3次像散定位系统的四象限探测器探测到圆形光斑的位置,记录下四象限探测器第2次,第3次探测到圆形光斑的轴向位置,根据聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1,进而获得最佳补偿位置变化Δd=d1-d0
(5)测量被测非球面与理想非球面之间的面形变化,并计算面形变化S4分量的系数ΔD4
(6)根据联立的方程组(1)、(2),计算非球面的面型参数误差,实现对非球面的面型参数误差的测量,联立的方程组(1)、(2)的具体形式为:
Figure FDA0002285531280000021
Figure FDA0002285531280000022
其中,R0是非球面的顶点曲率半径,ΔR是顶点曲率半径误差;K0是二次曲面常数,ΔK是二次曲面常数误差;SA是非球面的特征点到旋转对称轴的径向距离;±的符号选择原则为:凹非球面的符号选择为+,凸非球面的符号选择为–。
2.根据权利要求1所述的结合像散法定位的非球面参数误差干涉测量方法,其特征在于:所述步骤(1)包括以下分步骤:
(1.1)获取被测非球面名义参数,其包括:被测非球面的口径、顶点曲率半径、二次曲面常数和高次非球面系数;
(1.2)利用获取被测非球面名义参数,结合光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,部分补偿透镜P的设计参数包括:部分补偿透镜P的第一面曲率半径、厚度、材料、第二面曲率半径和口径;
(1.3)结合光学设计软件构建非球面参数误差干涉测量系统模型:
光学设计软件中构建包含部分补偿透镜P的虚拟干涉仪IR,并确定理想非球面的最佳补偿位置,作为部分补偿透镜第二面到理想非球面顶点的轴向距离d0
其中,d0是部分补偿透镜第二面到理想非球面顶点的轴向距离;LP是部分补偿透镜第二面到部分补偿透镜近轴焦点的距离,通过近轴光学公式进行确定;R0是非球面的顶点曲率半径,K0是二次曲面常数;A4是四次非球面系数;SA是非球面的特征点到旋转对称轴的径向距离,通过斜率非球面度定义进行确定。
3.根据权利要求2所述的结合像散法定位的非球面参数误差干涉测量方法,其特征在于:所述步骤(2)中,根据步骤(1)得到的设计后部分补偿透镜的设计参数,加工出部分补偿透镜的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;利用参考平面镜形成参考光,部分补偿透镜和被测非球面形成测量光,根据参考光与测量光干涉形成的干涉图进行定位,当干涉图的条纹最稀疏的时候,实际被测非球面处于最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1
4.根据权利要求3所述的结合像散法定位的非球面参数误差干涉测量方法,其特征在于:所述步骤(3)中,在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;像散定位系统包括:偏振分光棱镜(7),四分之一波片(8),聚焦物镜(9),会聚透镜(10),柱面镜(11),四象限探测器(12)。
5.根据权利要求1所述的结合像散法定位的非球面参数误差干涉测量方法,其特征在于:所述光学设计软件包括ZEMAX、CODE V。
6.根据权利要求1所述的结合像散法定位的非球面参数误差干涉测量方法的系统,其特征在于:其包括:参考平面镜(1)、像散定位系统、部分补偿透镜P(2)、实际被测非球面(5)、实际干涉仪IR,像散定位系统包括:偏振分光镜(7)、四分之一波片(8)、聚焦物镜(9)、会聚透镜(10)、柱面镜(11)和四象限探测器(12);
其中,实际干涉仪IR、参考平面镜(1)、部分补偿透镜P(2)和实际被测非球面(5)构成非球面参数误差干涉测量系统的干涉测量光路,根据实际干涉仪IR的干涉图对实际被测非球面(5)进行定位,当干涉条纹最稀疏的时候,确定实际被测非球面(5)和部分补偿透镜P(2)之间的距离为被测非球面(5)的最佳补偿位置d1(6);
在参考平面镜(1)和部分补偿透镜P(2)之间插入像散定位系统后,平行线偏振激光经过参考平面镜(1)、偏振分光镜(7)、四分之一波片(8)后被聚焦物镜(9)会聚到部分补偿透镜P(2)的第二面,从部分补偿透镜P(2)的第二面反射的光透过聚焦物镜(9)、四分之一波片(8)后被偏振分光镜(7)反射,入射会聚透镜(10)、柱面镜(11)后,聚焦在四象限探测器(12)上,此时四象限探测器(12)探测到圆形光斑,记录此时像散定位系统的轴向位置L1;向部分补偿透镜P(2)端轴向移动像散定位系统,直到四象限探测器(12)再次探测到圆形光斑,记录此时像散定位系统的轴向位置L2;根据轴向位置L1、轴向位置L2、聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1
CN201911158883.8A 2019-11-22 2019-11-22 结合像散法定位的非球面参数误差干涉测量方法及系统 Active CN110686617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911158883.8A CN110686617B (zh) 2019-11-22 2019-11-22 结合像散法定位的非球面参数误差干涉测量方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911158883.8A CN110686617B (zh) 2019-11-22 2019-11-22 结合像散法定位的非球面参数误差干涉测量方法及系统

Publications (2)

Publication Number Publication Date
CN110686617A true CN110686617A (zh) 2020-01-14
CN110686617B CN110686617B (zh) 2021-03-30

Family

ID=69117383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911158883.8A Active CN110686617B (zh) 2019-11-22 2019-11-22 结合像散法定位的非球面参数误差干涉测量方法及系统

Country Status (1)

Country Link
CN (1) CN110686617B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111256618A (zh) * 2020-02-18 2020-06-09 中国科学院光电技术研究所 一种用于微纳结构表面三维形貌快速测量的双差动型结构光照明显微测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853302A1 (de) * 1998-11-19 2000-05-25 Waelde Juergen Optischer Abstandsmesser
CN101111890A (zh) * 2005-03-08 2008-01-23 三菱电机株式会社 光学装置和使用该光学装置的光盘装置
CN101345061A (zh) * 2007-07-12 2009-01-14 夏普株式会社 光拾取装置
CN206832199U (zh) * 2017-04-07 2018-01-02 安徽电气工程职业技术学院 三维微纳米非接触触发探头以及mems器件测量装置
CN109029291A (zh) * 2018-08-16 2018-12-18 北京理工大学 结合激光差动共焦定位的非球面参数误差干涉测量方法
CN110108227A (zh) * 2019-04-03 2019-08-09 天津大学 一种大量程聚焦式激光点位移测量系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853302A1 (de) * 1998-11-19 2000-05-25 Waelde Juergen Optischer Abstandsmesser
CN101111890A (zh) * 2005-03-08 2008-01-23 三菱电机株式会社 光学装置和使用该光学装置的光盘装置
CN101345061A (zh) * 2007-07-12 2009-01-14 夏普株式会社 光拾取装置
CN206832199U (zh) * 2017-04-07 2018-01-02 安徽电气工程职业技术学院 三维微纳米非接触触发探头以及mems器件测量装置
CN109029291A (zh) * 2018-08-16 2018-12-18 北京理工大学 结合激光差动共焦定位的非球面参数误差干涉测量方法
CN110108227A (zh) * 2019-04-03 2019-08-09 天津大学 一种大量程聚焦式激光点位移测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈力等: "像散法离焦检测系统的分析与校准", 《中国激光》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111256618A (zh) * 2020-02-18 2020-06-09 中国科学院光电技术研究所 一种用于微纳结构表面三维形貌快速测量的双差动型结构光照明显微测量方法
CN111256618B (zh) * 2020-02-18 2021-09-21 中国科学院光电技术研究所 一种用于微纳结构表面三维形貌快速测量的双差动型结构光照明显微测量方法

Also Published As

Publication number Publication date
CN110686617B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN110487205B (zh) 结合色散共焦定位的非球面参数误差干涉测量方法
CN107843213B (zh) 共焦自准直中心偏和曲率半径测量方法与装置
CN108801178B (zh) 差动共焦自准直中心偏和曲率半径测量方法与装置
CN101813458B (zh) 差动共焦内调焦法镜组光轴及间隙测量方法与装置
JP5896792B2 (ja) 非球面計測方法、非球面計測装置および光学素子加工装置
CN101545760A (zh) 光学透射球面检测装置
CN108895972A (zh) 一种基于计算全息的光学元件顶点半径测量的方法和装置
CN109186477B (zh) 后置分光瞳激光差动共焦透镜中心厚度测量方法与装置
CN101762240B (zh) 差动共焦镜组轴向间隙测量方法
CN111929037A (zh) 光楔补偿器标定系统及其标定方法
CN112556991A (zh) 一种镜片折射率测量装置及其测量方法
CN104154868A (zh) 一种基于双焦镜的非接触透镜中心厚度测量装置
CN110686617B (zh) 结合像散法定位的非球面参数误差干涉测量方法及系统
CN112902875B (zh) 一种非球面反射镜曲率半径检测装置及方法
TWI638133B (zh) 非接觸式鏡片曲率半徑與厚度檢測裝置及其檢測方法
JPH1163946A (ja) 形状測定方法及び高精度レンズ製造方法
CN106767471B (zh) 一种非球面检测光路中光学间隔测量系统及方法
CN109974603B (zh) 双边错位差动共焦透镜中心厚度测量方法
CN110686618B (zh) 结合全反射角定位的非球面参数误差干涉测量方法及系统
CN110966958B (zh) 结合液体透镜共焦定位的非球面误差干涉测量方法及系统
CN109458939A (zh) 与快速定心结合的透镜中心厚度测量方法
CN109883342B (zh) 横向相减差动共焦镜组间隙测量方法
CN110763139B (zh) 结合可变形镜共焦定位的非球面误差干涉测量方法及系统
CN109883343B (zh) 双边错位差动共焦镜组轴向间隙测量方法
CN110646172A (zh) 在线泰曼-格林成盘检测干涉仪测量装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant