CN110686610A - 基于自适应网格的光学变形测量方法及电子设备 - Google Patents

基于自适应网格的光学变形测量方法及电子设备 Download PDF

Info

Publication number
CN110686610A
CN110686610A CN201910861268.7A CN201910861268A CN110686610A CN 110686610 A CN110686610 A CN 110686610A CN 201910861268 A CN201910861268 A CN 201910861268A CN 110686610 A CN110686610 A CN 110686610A
Authority
CN
China
Prior art keywords
grid
size
strain gradient
determining
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910861268.7A
Other languages
English (en)
Other versions
CN110686610B (zh
Inventor
黄建永
段晓岑
林峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201910861268.7A priority Critical patent/CN110686610B/zh
Publication of CN110686610A publication Critical patent/CN110686610A/zh
Application granted granted Critical
Publication of CN110686610B publication Critical patent/CN110686610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Abstract

本发明涉及一种基于自适应网格的光学变形测量方法和电子设备。其中测量方法包括:获取包含感兴趣区域的散斑图像,在感兴趣区域划分均匀网格,确定对应的系数矩阵的条件数随网格单元尺寸变化的L型曲线;以L型曲线拐点对应的尺寸作为单元尺寸下限,并以同等尺寸作为初始上限,在图像的第二区域范围划分均匀网格,该第二区域包含该感兴趣区域;以第二区域划分的均匀网格计算并更新位移场;根据更新的位移场确定感兴趣区域的应变梯度场,及根据应变梯度场确定单元尺寸上下限,通过应变梯度和单元尺寸的映射关系确定单元尺寸的分布。本发明测量方法通过自适应选定网格尺寸,减少大应变梯度位置由于形函数不匹配造成的误差及小应变梯度位置的随机误差。

Description

基于自适应网格的光学变形测量方法及电子设备
技术领域
本发明涉及光学测量领域,尤其涉及一种基于自适应网格的光学变形测量方法及电子设备。
背景技术
变形测量在工程监测和科学研究等领域均起到至关重要的作用,其中光学变形测量方法由于其无需与被测对象接触,使用灵活简单,而被广泛应用。通过划分一系列由节点连接的单元,对比变形前后散斑图像单元内所包含的灰度信息,可以求解得到亚像素精度的位移场分布。虽然在一般情况下,现有技术方法已经可以得到较为精确的计算结果,但是在对复杂变形进行计算时,如果采用较大尺寸的单元,则会由于形函数无法准确描述当前变形而导致插值结果与实际结果存在明显的偏差。此时可以通过加密网格对其进行改善,加密网格的方法主要分为h型加密方法和p型加密方法两种。前者通过逐步减小单元尺寸实现,后者则通过提高单元阶次提高精度。
实际上,只有变形梯度大的位置需要进行加密处理,而变形梯度小的位置会因为单元加密而引入新的误差:减小单元尺寸会造成单元内所包含信息量的减少,使得随机误差增大;提高单元阶次会使得噪声的影响被放大,同时这两种方法均会造成计算成本的增加。而现有技术方法多是采用全局加密的处理方法,并且单元尺寸等参数的选择很大程度地依赖于使用者的经验,限制了光学变形测量方法的进一步推广。
发明内容
鉴于现有方法的不足,本发明提供一种基于自适应网格的光学变形测量方法。
根据本发明的一方面,提供一种基于自适应网格的光学变形测量方法,包括以下步骤:
获取包含感兴趣区域的散斑图像,在感兴趣区域划分均匀网格,确定与当前均匀网格对应的系数矩阵的条件数随网格单元尺寸变化的L型曲线;
确定L型曲线拐角对应的尺寸作为单元尺寸下限,并以同等尺寸作为初始上限,在图像的第二区域范围划分均匀网格,该第二区域包含该感兴趣区域;
以第二区域划分的均匀网格计算并更新位移场;
根据更新的位移场确定感兴趣区域的应变梯度场,及根据应变梯度场确定单元尺寸上下限;
根据所述的单元尺寸上下限以及应变梯度场,通过应变梯度和单元尺寸的映射关系确定单元尺寸的分布。
在进一步的实施方案中,基于自适应网格的光学变形测量方法还包括:
按照所述单元尺寸的分布划分网格,并以最大扭曲角αt=max(2α0i)作为评价指标计算此时的网格质量,其中α0是临界值,αi是相邻两边的夹角;
如果αt>α0,逐步减小尺寸上限d1直至网格质量满足设定要求。
在进一步的实施方案中,基于自适应网格的光学变形测量方法还包括:
重复以上各步骤,直到单元尺寸上限的变化小于1像素或迭代次数大于指定值t。
在进一步的实施方案中,基于自适应网格的光学变形测量方法还包括在获取包含感兴趣区域的散斑图像前,
根据变形前后对应点灰度值之差构造误差函数并令其取得最小值:
Figure BDA0002198348990000021
上式写作矩阵形式:
Figure BDA0002198348990000022
在进一步的实施方案中,单元形状为多边形,阶次为1至∞。
在进一步的实施方案中,应变梯度和单元尺寸的映射关系采用阶跃函数、线性函数或高阶多项式表示。
根据本发明的另一方面,提供一种电子设备,包括:处理器和计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述程序被处理器执行时实现如上所述的基于自适应网格的光学变形测量方法。
上述方法可以采用各种单元形状和阶次,应变梯度和单元尺寸的映射关系可以采用阶跃函数、线性函数或高阶多项式。
与现有技术相比,本发明的有益效果在于:可以有效提高复杂变形场的计算精度,参数确定不具有主观依赖性,鲁棒性高,使用简单。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明实施例1的流程示意图。
图2A是实施例1中的变形前散斑图像。
图2B是实施例1中的变形后散斑图像。
图3A是实施例1中100(像素)≤x≤300(像素),100(像素)≤y≤300(像素)范围内的应变梯度场。
图3B是实施例1中自适应网格划分结果。
图4是实施例1中三种不同网格条件下误差随应变梯度绝对值的变化规律。
图5是本发明实施例的计算机可读存储介质示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
根据本发明的基本构思,提供一种基于自适应网格的光学变形测量方法,包括:获取包含感兴趣区域的散斑图像,在感兴趣区域划分均匀网格,确定与当前均匀网格对应的系数矩阵的条件数随网格单元尺寸变化的L型曲线;确定L型曲线拐角对应的尺寸作为单元尺寸下限,并以同等尺寸作为初始上限,在图像的第二区域范围划分均匀网格,该第二区域包含该感兴趣区域;以第二区域划分的均匀网格计算并更新位移场;根据更新的位移场确定感兴趣区域的应变梯度场,及根据应变梯度场确定单元尺寸上下限;根据所述单元尺寸上下限以及应变梯度场,通过应变梯度和单元尺寸的映射关系确定单元尺寸的分布。通过自适应选定网格尺寸,减少大应变梯度位置由于形函数不匹配造成的误差及小应变梯度位置的随机误差,可以有效提高复杂变形场的计算精度。
在本发明中,感兴趣区域是指想要获得位移场信息的区域。
根据本发明实施例,提供一种基于自适应网格的光学变形测量方法,包括以下步骤:
获取包含感兴趣区域的散斑图像,在感兴趣区域划分均匀网格,确定对应的系数矩阵条件数随单元尺寸的变化曲线;
确定拐角对应的尺寸作为单元尺寸下限,并以同等尺寸作为初始上限,在图像的第二区域范围划分均匀网格,该第二区域包含该感兴趣区域;
以第二区域划分的均匀网格计算并更新位移场;
根据当前的位移场确定感兴趣区域的应变梯度场,及根据应变梯度场确定单元尺寸上下限;
根据所述的单元尺寸上下限以及应变梯度场,通过应变梯度和单元尺寸的映射关系确定单元尺寸的分布。
一些实施例中,上述方法还包括:按照所述单元尺寸的分布划分网格,并以最大扭曲角αt=max(2α0i)作为评价指标计算此时的网格质量,其中α0是临界值(该临界值可以是多边形为正多边形时对应内角的一半,但不限于此,也可以取做1/3、3/4等等),αi是相邻两边的夹角;
如果αt>α0,逐步减小尺寸上限d1直至网格质量满足设定要求。重复以上各步骤,直到单元尺寸上限的变化小于1像素或迭代次数大于指定值t。
一些实施例中,这里的单元形状为多边形,阶次可以为1~∞;且应变梯度和单元尺寸的映射关系采用阶跃函数、线性函数或高阶多项式表示。
其中,误差函数为:变形前后对应点灰度值之差的函数。该函数可以根据不同的相关准则进行构造,包括但不限于SSD相关准则(归一化处理后的灰度值之差的绝对值总和)、SSD相关准则(灰度值之差的平方和)、SATD相关准则(灰度值之差hadamard变换后的绝对值总和)、或者MSD相关准则(灰度值之差的平均平方总和)、MAD相关准则(灰度值之差的平均绝对值总和)。
为更好的理解本发明,以下特例举具体实施例1并结合附图进行具体阐述,但应理解的是,以下实施例1的具体细节仅用于描述本发明的技术方案,不应理解为对本发明的限定。
实施例1
图1为本发明实施例1的流程示意图。本实施例采用模拟正弦位移场进行计算,以说明本发明所提出的自适应网格的有益效果。其中位移场为单正弦位移场:u=4Sin(2πx/100)、v=0,最大应变为25.12%,最大应变梯度为1.85%(像素-1),模拟图像尺寸为400像素×400像素,包含400×400×0.06个散斑颗粒,颗粒直径为1.2像素,信噪比SNR=+∞,感兴趣的区域范围为100(像素)≤x≤300(像素),100(像素)≤y≤300(像素)。其具体步骤如下:
第一步:以SSD相关准则(灰度值之差的平方和)为例构造误差函数如下:
其中F(x,y)为变形前图像某一点处的灰度值,G(x′,y′)为变形后图像在该点处的灰度值。变形前后各点位置具有如下关系:
x′=x+u,y′=y+v (2)
其中,u和v分别是该点在x和y方向上的位移分量,可以通过形函数和该点所在单元节点位移按下式得到:
Figure BDA0002198348990000052
umn和vmn分别为该点所在第m个单元中第n个节点的位移分量,ηn为对应的第n个节点的形函数。此处采用三节点三角形单元作为示例,则形函数可写为:
ηn=μn n=1,2,3 (4)
其中μn为该单元第n个节点的面积坐标。
对于式(1)给出的误差函数而言,为了使其达到最小,应令其导数为0,即:
Figure BDA0002198348990000061
上式可以写作矩阵形式:
Figure BDA0002198348990000062
第二步:读取变形前、后散斑图像(如图2A和图2B所示),以4~200像素作为单元尺寸在100(像素)≤x≤300(像素),100(像素)≤y≤300(像素)的范围划分一系列均匀网格,并计算对应系数矩阵A的条件数。此时由L曲线拐角确定的尺寸下限d0=9像素。
第三步:令d1=d0=9像素,在80(像素)≤x≤320(像素),80(像素)≤y≤320(像素)的范围划分均匀网格。此处采用Newton-Raphson迭代计算位移向量l={u1,v1,u2,v2,...,uk,vk}T,迭代的收敛条件定为:|lq+1-lq|≤10-6(像素)。
第四步:计算100(像素)≤x≤300(像素),100(像素)≤y≤300(像素)范围内的应变梯度场,可得对应的自适应网格的尺寸上限d1=16.34像素。
第五步:建立应变梯度与单元尺寸的映射关系,此处通过应变梯度与单元尺寸的线性映射确定单元尺寸的分布:
其中系数
Figure BDA0002198348990000064
为应变梯度的最小值,
Figure BDA0002198348990000066
为应变梯度的最大值。划分自适应网格,此处将临界值α0取做多边形为正多边形时对应内角的一半,则此时的最大单元扭曲角αt=31.35°>α0=30°。减小网格上限d1并重新划分网格,当d1减小至15像素时,单元扭曲角满足要求。
第六步:按照当前所划分的自适应网格计算并更新100(像素)≤x≤300(像素),100(像素)≤y≤300(像素)范围内的位移场和应变梯度场,进入下一次循环。此处指定最大循环次数为t=10次,在循环2次后尺寸上限变化小于1像素,终止循环。此时d1=15像素,自适应网格的划分结果如图3B所示。图3A给出了应变梯度的分布,可以看出自适应方法在应变梯度大的位置划分了更加密集的网格。
图4给出了三种不同网格(单元尺寸为8像素的均匀网格、单元尺寸为20像素的均匀网格以及本发明提出的自适应网格)条件下的节点处误差随应变梯度绝对值变化的线性拟合结果。可以看出,小尺寸均匀网格的计算误差随着应变梯度的减小而增大,这是由于在应变梯度小的位置小尺寸网格造成了更大的随机误差。大尺寸均匀网格由于形函数在应变梯度大的位置无法准确描述变形,使得这种网格的计算误差随着应变梯度的增大而增大。而自适应网格减弱了这两种问题,误差基本不随应变梯度改变,因此其计算结果明显优于均匀网格。表1展示了本发明方法与均匀网格计算误差和标准差的对比,该结果证实了本发明的可行性和有益效果。
表1自适应网格与均匀网格计算误差和标准差对比
Figure BDA0002198348990000071
本公开的实施例示出了一种电子设备,如图5所示,电子设备500包括处理器510、计算机可读存储介质520。该电子设备500可以执行上面参考图1的方法,以进行光学变形测量数据处理。
具体地,处理器510例如可以包括通用微处理器、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器510还可以包括用于缓存用途的板载存储器。处理器510可以是用于执行参考图1描述的根据本公开实施例的方法流程的不同步骤的单一处理单元或者是多个处理单元。
计算机可读存储介质520,例如可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,可读存储介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介质。可读存储介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
计算机可读存储介质520可以包括计算机程序521,该计算机程序521可以包括代码/计算机可执行指令,其在由处理器510执行时使得处理器510执行例如上面结合图1所描述的方法流程及其任何变形。
计算机程序521可被配置为具有例如包括计算机程序模块的计算机程序代码。例如,在示例实施例中,计算机程序521中的代码可以包括一个或多个程序模块,例如包括521A、模块521B、……。应当注意,模块的划分方式和个数并不是固定的,本领域技术人员可以根据实际情况使用合适的程序模块或程序模块组合,当这些程序模块组合被处理器510执行时,使得处理器510可以执行例如上面结合图1所描述的方法流程及其任何变形。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于自适应网格的光学变形测量方法,其特征在于,包括以下步骤:
获取包含感兴趣区域的散斑图像,在感兴趣区域划分均匀网格,确定与当前均匀网格对应的系数矩阵的条件数随网格单元尺寸变化的L型曲线;
确定L型曲线拐角对应的尺寸作为单元尺寸下限,并以同等尺寸作为初始上限,在图像的第二区域范围划分均匀网格,该第二区域包含感兴趣区域;
以第二区域划分的均匀网格计算并更新位移场;
根据更新的位移场确定感兴趣区域的应变梯度场,及根据应变梯度场确定单元尺寸上下限;
根据所述单元尺寸上下限以及应变梯度场,通过应变梯度和单元尺寸的映射关系确定单元尺寸的分布。
2.根据权利要求1所述的方法,其特征在于,还包括:
按照所述单元尺寸的分布划分网格,并以最大扭曲角αt=max(2α0i)作为评价指标计算此时的网格质量,其中α0是临界值,αi是相邻两边的夹角;
如果αt>α0,逐步减小尺寸上限d1直至网格质量满足设定要求。
3.根据权利要求1所述的方法,其特征在于,还包括:
重复权利要求2所述的各步骤,直到单元尺寸上限的变化小于1像素或迭代次数大于指定值t。
4.根据权利要求1所述的方法,其中,还包括在获取包含感兴趣区域的散斑图像前,根据变形前后对应点灰度值之差构造误差函数并令其取得最小值:
Figure FDA0002198348980000011
上式写作矩阵形式:
Figure FDA0002198348980000012
5.根据权利要求1所述的方法,其特征在于:所述单元形状为多边形,阶次为1至∞。
6.根据权利要求1所述的方法,其特征在于,应变梯度和单元尺寸的映射关系采用阶跃函数、线性函数或高阶多项式表示。
7.一种电子设备,包括:处理器和计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-6中任一项所述的基于自适应网格的光学变形测量方法。
CN201910861268.7A 2019-09-11 2019-09-11 基于自适应网格的光学变形测量方法及电子设备 Active CN110686610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910861268.7A CN110686610B (zh) 2019-09-11 2019-09-11 基于自适应网格的光学变形测量方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910861268.7A CN110686610B (zh) 2019-09-11 2019-09-11 基于自适应网格的光学变形测量方法及电子设备

Publications (2)

Publication Number Publication Date
CN110686610A true CN110686610A (zh) 2020-01-14
CN110686610B CN110686610B (zh) 2020-12-22

Family

ID=69109157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910861268.7A Active CN110686610B (zh) 2019-09-11 2019-09-11 基于自适应网格的光学变形测量方法及电子设备

Country Status (1)

Country Link
CN (1) CN110686610B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369549A (zh) * 2020-03-10 2020-07-03 北京大学 数字图像变形表征方法、装置、电子设备及介质
CN112465755A (zh) * 2020-11-18 2021-03-09 熵智科技(深圳)有限公司 一种初始子区细分方法、装置、计算机设备及存储介质
CN113012078A (zh) * 2021-05-06 2021-06-22 清华大学 高温测试图像热流扰动校正装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044170A (en) * 1996-03-21 2000-03-28 Real-Time Geometry Corporation System and method for rapid shape digitizing and adaptive mesh generation
JP2001034762A (ja) * 1999-07-26 2001-02-09 Nok Corp 画像処理検査方法および画像処理検査装置
CN104778313A (zh) * 2015-03-27 2015-07-15 江苏大学 一种轮胎疲劳寿命评价及预测方法
CN106844994A (zh) * 2017-02-09 2017-06-13 苏州大学 本构模型与有限元结合的脉络膜新生血管生长预测方法
CN108228925A (zh) * 2016-12-14 2018-06-29 北京有色金属研究总院 一种复杂型材挤压过程的数值模拟方法
CN109493329A (zh) * 2018-11-02 2019-03-19 河北工业大学 基于局部网格加密的数字图像相关方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044170A (en) * 1996-03-21 2000-03-28 Real-Time Geometry Corporation System and method for rapid shape digitizing and adaptive mesh generation
JP2001034762A (ja) * 1999-07-26 2001-02-09 Nok Corp 画像処理検査方法および画像処理検査装置
CN104778313A (zh) * 2015-03-27 2015-07-15 江苏大学 一种轮胎疲劳寿命评价及预测方法
CN108228925A (zh) * 2016-12-14 2018-06-29 北京有色金属研究总院 一种复杂型材挤压过程的数值模拟方法
CN106844994A (zh) * 2017-02-09 2017-06-13 苏州大学 本构模型与有限元结合的脉络膜新生血管生长预测方法
CN109493329A (zh) * 2018-11-02 2019-03-19 河北工业大学 基于局部网格加密的数字图像相关方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
凌道盛等: "平面强化有限单元法的h型网格自适应", 《浙江大学学报(工学版)》 *
金勇等: "基于自适应网格变形的图像编辑算法", 《软件学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369549A (zh) * 2020-03-10 2020-07-03 北京大学 数字图像变形表征方法、装置、电子设备及介质
CN112465755A (zh) * 2020-11-18 2021-03-09 熵智科技(深圳)有限公司 一种初始子区细分方法、装置、计算机设备及存储介质
CN112465755B (zh) * 2020-11-18 2021-09-10 熵智科技(深圳)有限公司 一种初始子区细分方法、装置、计算机设备及存储介质
CN113012078A (zh) * 2021-05-06 2021-06-22 清华大学 高温测试图像热流扰动校正装置及方法
CN113012078B (zh) * 2021-05-06 2021-09-21 清华大学 高温测试图像热流扰动校正装置及方法

Also Published As

Publication number Publication date
CN110686610B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN110686610B (zh) 基于自适应网格的光学变形测量方法及电子设备
Gálvez et al. Firefly algorithm for explicit B-spline curve fitting to data points
Chen et al. Recovering the missing components in a large noisy low-rank matrix: Application to SFM
US8300920B2 (en) System and method for measuring form and position tolerances of an object
CN113436238B (zh) 点云配准精度的评估方法、装置和电子设备
US20180137633A1 (en) Method, device, and non-transitory computer readable storage medium for image processing
CN112673383A (zh) 神经网络核中动态精度的数据表示
WO2016042779A1 (ja) 三角測量装置、三角測量方法およびそのプログラムを記録した記録媒体
US20140257700A1 (en) System and method for estimating uncertainty for geophysical gridding routines lacking inherent uncertainty estimation
US11935266B2 (en) Camera parameter estimation apparatus, camera parameter estimation method, and computer-readable recording medium
US20220215567A1 (en) Depth estimation device, depth estimation model learning device, depth estimation method, depth estimation model learning method, and depth estimation program
US10037622B2 (en) Virtual terrain alteration systems and related methods
US7251356B2 (en) Method for estimation of fundamental matrix in implementing a stereo vision
CN110596688A (zh) 一种分布式mimo雷达系统中的高精度定位方法及装置
CN112435193A (zh) 一种点云数据去噪的方法、装置、存储介质和电子设备
CN115457364A (zh) 一种目标检测知识蒸馏方法、装置、终端设备和存储介质
CN110631499B (zh) 基于无网格方法的数字图像变形测量方法及电子设备
Ye et al. Adaptive rotated gaussian weighted digital image correlation (RGW-DIC) for heterogeneous deformation measurement
CN108566256B (zh) 一种频谱地图的构建方法
CN114049401A (zh) 双目相机标定方法、装置、设备及介质
US20120237113A1 (en) Electronic device and method for outputting measurement data
CN111932466B (zh) 一种图像去雾方法、电子设备及存储介质
CN113487685A (zh) 线激光扫描相机的标定方法、装置、设备和存储介质
CN113552533A (zh) 一种空间谱估计方法、装置、电子设备及存储介质
CN111177290A (zh) 一种三维地图准确度的评价方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant