CN110684883A - 一种降低真空脱碳钢种转炉出钢温度的炼钢方法 - Google Patents

一种降低真空脱碳钢种转炉出钢温度的炼钢方法 Download PDF

Info

Publication number
CN110684883A
CN110684883A CN201911126918.XA CN201911126918A CN110684883A CN 110684883 A CN110684883 A CN 110684883A CN 201911126918 A CN201911126918 A CN 201911126918A CN 110684883 A CN110684883 A CN 110684883A
Authority
CN
China
Prior art keywords
steel
decarburization
temperature
converter
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911126918.XA
Other languages
English (en)
Inventor
乌力平
李应江
徐小伟
邓勇
李宝庆
胡晓光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Iron and Steel Co Ltd
Original Assignee
Maanshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Iron and Steel Co Ltd filed Critical Maanshan Iron and Steel Co Ltd
Priority to CN201911126918.XA priority Critical patent/CN110684883A/zh
Publication of CN110684883A publication Critical patent/CN110684883A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/005Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using exothermic reaction compositions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明公开了一种降低真空脱碳钢种转炉出钢温度的炼钢方法,将转炉出钢温度控制在1630℃以下;出钢结束向钢包中加入2‑10kg/t钢铝型、硅型或铝硅型金属升温剂;钢水在真空处理初期通过顶枪向真空室内吹入氧气以完成升温操作,吹氧量(Nm3)=A+B+C+D;真空精炼过程调整温度需补充的升温剂或冷却废钢在明显开始脱碳前加入;真空脱碳钢种的重量百分比组成为:碳:≤0.035%;RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。针对真空脱碳钢种,能够显著的降低转炉出钢温度,解决转炉冶炼真空脱碳钢种高温出钢带来的一系列的负面影响问题。

Description

一种降低真空脱碳钢种转炉出钢温度的炼钢方法
技术领域
本发明涉及炼钢及炉外精炼技术领域,具体为一种降低真空脱碳钢种转炉出钢温度的炼钢方法。
背景技术
转炉出钢温度与炼钢工序钢铁料消耗、合金材料和耐火材料消耗关联度很大,对钢水质量及炼钢生产效率也有重要影响。对于需要进行精炼真空脱碳的低碳、超低碳钢,由于脱碳过程时间长、真空处理带走的热量多,且一般没有较大的温度补偿手段,往往采用转炉高温出钢的方法去弥补精炼过程的温度损失。一般地转炉出钢温度越高,钢中的氧含量会越多。一方面,转炉高温出钢,合金脱氧剂的用量就会增加,过剩的氧会造成脱氧产物增加,钢中夹杂物增加;同时,过高的出钢温度不利于转炉脱磷,使得炼钢熔剂消耗增加;另一方面,高的出钢温度会导致转炉铁的损耗增加。另外,高温出钢还导致炉衬耐火材消耗上升、转炉炉龄减少,炉衬维护时间增加,严重影响生产效率。
针对真空脱碳钢种转炉出钢温度高所导致的一系列不利后果,长期以来业界人员进行了大量探索,除了开发了大量通过蓄热保温和快速周转等减少过程温度损失的方法在一定程度上去降低出钢温度技术以外,还采用通过在真空精炼过程中通过添加硅或铝等发热元素并向钢水中吹氧的方式来使钢水升温,也就是所谓的化学法升温,在一定程度上去降低转炉的出钢温度。不过一般地由于加入升温剂普遍较晚,即便是升温幅度仍不尽人意,现行的升温过程方法均会对钢的质量造成较大的负面影响。
但由于种种原因,历史上开发的各种方法都没有能够有效地使真空脱碳钢种的转炉出钢温度大幅度降低。例如,最新科技论文《降低转炉出钢温度生产实践》(炼钢:2018年第10期):通过采取钢包加盖、提高铸机拉速缩短浇铸周期来降低出钢温度,出钢温度由2015年的1688℃降低至2018年的1655℃;科技论文《降低转炉出钢温度的实践》(山东冶金:2010年第6期):通过1)优化钢包保温层的方式来降低包衬的导热系数、减轻包衬的热损失;2)对合金进行烘烤的措施,提高了合金加入钢水前的温度;3)到连铸工序后对大包加盖保温,全程保护浇注,采用碱性中包覆盖剂等措施的执行,转炉平均出钢温度降低20℃以上。
中国专利(申请公布号:CN 109487034 A)公布了“一种复合脱氧生产IF钢的方法”,该发明提及:转炉炼钢时,出钢温度1695~1720℃;出钢时底吹搅拌,但未提及降低转炉出钢温度的具体措施。中国专利(申请公布号:CN 106319132 A)公布了“一种控制钢中硫含量的方法”,该发明提及:转炉出钢温度为1650~1680℃,但未提及降低转炉出钢温度的具体措施。中国专利(申请公布号:CN 106811685 A)公布了“一种低碳高锰钢的冶炼方法”,该发明提及:转炉出钢温度控制在1660~1680℃,但未提及降低转炉出钢温度的具体措施。
上述已经公开的转炉及科技论文说明,当前降低出钢温度主要通过钢包加盖、对钢包保温层进行改进、缩短浇铸周期、对合金进行烘烤等措施实现,其措施大多需要进行装备改造;与此同时,目前钢厂转炉出钢温度仍然偏高,控制范围在1650~1720℃之间。鉴于上述理由,开发一种降低真空脱碳钢种转炉出钢温度的控制方法具有重要的意义。
发明内容
本发明的目的在于提供一种降低真空脱碳钢种转炉出钢温度的炼钢方法,针对真空脱碳钢种,提出了转炉出钢温度上限不超过1630℃,在出钢结束加入升温剂,使炉外化学升温反应最大可能提前的降低转炉出钢温度的炼钢方法,显著的降低转炉出钢温度,解决转炉冶炼真空脱碳钢种高温出钢带来的一系列的负面影响问题。
为实现上述目的,本发明提供如下技术方案:
一种降低真空脱碳钢种转炉出钢温度的炼钢方法,包括以下步骤:
S1:将转炉出钢温度控制在1630℃以下;
S2:出钢结束向钢包中加入2-10kg/t钢铝型、硅型或铝硅型金属升温剂;
S3:钢水在真空处理初期通过顶枪向真空室内吹入氧气以完成升温操作,吹氧量(Nm3)=A+B+C+D,其中,A:氧化钢水残余升温剂的吹氧量;B:钢水温度补偿的吹氧量;C:满足钢水脱碳的吹氧量;D:满足钢水脱碳结束时与目标碳含量相匹配的过剩氧量的吹氧量;
S4:真空精炼过程调整温度需补充的升温剂或冷却废钢在明显开始脱碳前加入;
S5:真空脱碳钢种的重量百分比组成为:碳:≤0.035%;
S6:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
进一步地,S1中将转炉出钢温度分别控制为1621℃、1618℃、1624℃、1617℃。
进一步地,S2中出钢结束向钢包中分别加入铝型发热剂4.5kg/t钢、5.2kg/t钢、3.9kg/t钢、6.4kg/t钢。
进一步地,S3中RH吹氧量分别为455Nm3、434Nm3、579Nm3、580Nm3
与现有技术相比,本发明的有益效果是:
本发明提供的一种降低真空脱碳钢种转炉出钢温度的炼钢方法,针对真空脱碳钢种,提出了转炉出钢温度上限不超过1630℃,在出钢结束加入升温剂,使炉外化学升温反应最大可能提前的降低转炉出钢温度,解决转炉冶炼真空脱碳钢种高温出钢带来的一系列的负面影响问题。
附图说明
图1为本发明的控制方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例中:提供一种降低真空脱碳钢种转炉出钢温度的炼钢方法,包括以下步骤:
第一步:将转炉出钢温度控制在1630℃以下;
第二步:出钢结束向钢包中加入2-10kg/t钢铝型、硅型或铝硅型金属升温剂;
第三步:钢水在真空处理初期通过顶枪向真空室内吹入氧气以完成升温操作,吹氧量(Nm3)=A+B+C+D,其中,A:氧化钢水残余升温剂的吹氧量;B:钢水温度补偿的吹氧量;C:满足钢水脱碳的吹氧量;D:满足钢水脱碳结束时与目标碳含量相匹配的过剩氧量的吹氧量;
第四步:真空精炼过程调整温度需补充的升温剂或冷却废钢在明显开始脱碳前加入;
第五步:真空脱碳钢种的重量百分比组成为:碳:≤0.035%;
第六步:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
为了进一步更好的解释说明本发明,以300吨转炉及300吨RH炉冶炼真空脱碳钢种为例对本发明的技术方案和效果进行详细介绍:
实施例1:炉号:Ⅰ;钢种:低碳钢DC03;实际钢水量:313吨;
低碳钢DC03化学成分要求如下表:
步骤1:转炉出钢温度控制在1621℃;
步骤2:出钢后期向盛有钢水的钢包中加入铝型发热剂4.5kg/t钢,加到钢包中心区域;
步骤3:钢水吊运至RH处理,钢水在真空槽内循环后测温,钢水温度1580℃;
步骤4:通过RH顶枪向真空槽内吹氧,吹氧量=A+B+C+D=126+216+61+52=455(Nm3),计算过程如下:
A:氧化钢水残余酸溶铝的吹氧量:A=钢水量(吨)×0.01004×[Als%]进站÷0.001%=313×0.01004×0.040%÷0.001%=126(Nm3);式中,钢水量(吨)为钢水重量,[Als%]进站为钢水进站酸溶铝含量;0.01004、0.001%为系数;
B=钢水量(吨)×0.0373×(T进站目标温度-T进站-T铝氧化升温)=313×0.0373×(1600-1580-0.040%÷0.001%×0.37)=216(Nm3);式中,钢水量(吨)为钢水重量,T进站目标温度为RH工序不需进行温度补偿的钢水进站温度,与钢厂装备及工艺水平相关,取1600℃;T进站为钢水进RH测定的钢水温度;T铝氧化升温为氧化钢水中残余酸溶铝升温值,T铝氧化升温=[Als%]进站÷0.001%×0.37;0.0373、0.001%、0.37为系数;
C:满足钢水脱碳的吹氧量:C=钢水量(吨)×0.1506×([C%]进站-[C%]脱碳结束目标)÷0.010%=313×0.1506×(0.028%-0.015%)÷0.010%=61(Nm3);式中,钢水量(吨)为钢水重量,[C%]进站为钢水进站碳含量;[C%]脱碳结束目标为脱碳结束目标碳含量,与冶炼钢种相关,低碳钢取0.015%;0.1506、0.010%为系数;
D:满足钢水脱碳结束剩氧量的吹氧量:D=钢水量(吨)×0.0011×[O]脱碳结束目标=313×0.0011×150=52(Nm3);式中,钢水量(吨)为钢水重量,[O]脱碳结束目标为脱碳结束目标氧含量,与冶炼钢种相关,低碳钢取150ppm;0.0011%为系数;
步骤5:RH未加入调整温度的升温剂及冷却废钢;
步骤6:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
实施例2:炉号:Ⅱ;钢种:低碳钢DC03;实际钢水量:312吨;
步骤1:转炉出钢温度控制在1618℃;
步骤2:出钢后期向盛有钢水的钢包中加入铝型发热剂5.2kg/t钢,加到钢包中心区域;
步骤3:钢水吊运至RH处理。钢水在真空槽内循环后测温,钢水温度1584℃;
步骤4:通过RH顶枪向真空槽内吹氧,吹氧量=A+B+C+D=141+167+75+51=434(Nm3),计算过程如下:
A:氧化钢水残余酸溶铝的吹氧量:A=钢水量(吨)×0.01004×[Als%]进站÷0.001%=312×0.01004×0.045%÷0.001%=140(Nm3);式中,钢水量(吨)为钢水重量,[Als%]进站为钢水进站酸溶铝含量;0.01004、0.001%为系数;
B:钢水温度补偿的吹氧量:B=钢水量(吨)×0.0373×(T进站目标温度-T进站-T铝氧化升温)=312×0.0373×(1600-1584-0.045%÷0.001%×0.37)=166(Nm3);式中,钢水量(吨)为钢水重量,T进站目标温度为RH工序不需进行温度补偿的钢水进站温度,与钢厂装备及工艺水平相关,取1600℃;T进站为钢水进RH测定的钢水温度;T铝氧化升温为氧化钢水中残余酸溶铝升温值,T铝氧化升温=[Als%]进站÷0.001%×0.37;0.0373、0.001%、0.37为系数;
C:满足钢水脱碳的吹氧量:C=钢水量(吨)×0.1506×([C%]进站-[C%]脱碳结束目标)÷0.010%=312×0.1506×(0.031%-0.015%)÷0.010%=75(Nm3);式中,钢水量(吨)为钢水重量,[C%]进站为钢水进站碳含量;[C%]脱碳结束目标为脱碳结束目标碳含量,与冶炼钢种相关,低碳钢取0.015%;0.1506、0.010%为系数;
D:满足钢水脱碳结束剩氧量的吹氧量:D=钢水量(吨)×0.0011×[O]脱碳结束目标=312×0.0011×150=51(Nm3);式中,钢水量(吨)为钢水重量,[O]脱碳结束目标为脱碳结束目标氧含量,与冶炼钢种相关,低碳钢取150ppm;0.0011%为系数;
步骤5:RH未加入调整温度的升温剂及冷却废钢;
步骤6:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
实施例3:炉号:Ⅲ;钢种:超低碳钢DC06;实际钢水量:304吨;
超低碳钢DC06化学成分要求如下表:
Figure BDA0002277141540000071
步骤1:转炉出钢温度控制在1624℃;
步骤2:出钢后期向盛有钢水的钢包中加入铝型发热剂3.9kg/t钢,加到钢包中心区域;
步骤3:钢水吊运至RH处理。钢水在真空槽内循环后测温,钢水温度1580℃;
步骤4:通过RH顶枪向真空槽内吹氧,吹氧量=A+B+C+D=89+271+119+100=579(Nm3),计算过程如下:
A:氧化钢水残余酸溶铝的吹氧量:A=钢水量(吨)×0.01004×[Als%]进站÷0.001%=304×0.01004×0.029%÷0.001%=89(Nm3);式中,钢水量(吨)为钢水重量,[Als%]进站为钢水进站酸溶铝含量;0.01004、0.001%为系数;
B:钢水温度补偿的吹氧量:B=钢水量(吨)×0.0373×(T进站目标温度-T进站-T铝氧化升温)=304×0.0373×(1605-1580-0.029%÷0.001%×0.37)=271(Nm3);式中,钢水量(吨)为钢水重量,T进站目标温度为RH工序不需进行温度补偿的钢水进站温度,与钢厂装备及工艺水平相关,取1605℃;T进站为钢水进RH测定的钢水温度;T铝氧化升温为氧化钢水中残余酸溶铝升温值,T铝氧化升温=[Als%]进站÷0.001%×0.37;0.0373、0.001%、0.37为系数;
C:满足钢水脱碳的吹氧量:C=钢水量(吨)×0.1506×([C%]进站-[C%]脱碳结束目标)÷0.010%=304×0.1506×(0.027%-0.0010%)÷0.010%=119(Nm3);式中,钢水量(吨)为钢水重量,[C%]进站为钢水进站碳含量;[C%]脱碳结束目标为脱碳结束目标碳含量,与冶炼钢种相关,超低碳钢取0.0010%;0.1506、0.010%为系数;
D:满足钢水脱碳结束剩氧量的吹氧量:D=钢水量(吨)×0.0011×[O]脱碳结束目标=304×0.0011×300=100(Nm3);式中,钢水量(吨)为钢水重量,[O]脱碳结束目标为脱碳结束目标氧含量,与冶炼钢种相关,超低碳钢取300ppm;0.0011%为系数;
步骤5:RH未加入调整温度的升温剂及冷却废钢;
步骤6:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
实施例4:炉号:Ⅳ;钢种:超低碳钢DC06;实际钢水量:308吨;
步骤1:转炉出钢温度控制在1617℃;
步骤2:出钢后期向盛有钢水的钢包中加入铝型发热剂6.4kg/t钢,加到钢包中心区域;
步骤3:钢水吊运至RH处理。钢水在真空槽内循环后测温,钢水温度1587℃;
步骤4:通过RH顶枪向真空槽内吹氧,吹氧量=A+B+C+D=148+186+144+102=580(Nm3),计算过程如下:
A:氧化钢水残余酸溶铝的吹氧量:A=钢水量(吨)×0.01004×[Als%]进站÷0.001%=308×0.01004×0.048%÷0.001%=148(Nm3);式中,钢水量(吨)为钢水重量,[Als%]进站为钢水进站酸溶铝含量;0.01004、0.001%为系数;
B:钢水温度补偿的吹氧量:B=钢水量(吨)×0.0373×(T进站目标温度-T进站-T铝氧化升温)=308×0.0373×(1605-1587-0.048%÷0.001%×0.37)=186(Nm3);式中,钢水量(吨)为钢水重量,T进站目标温度为RH工序不需进行温度补偿的钢水进站温度,与钢厂装备及工艺水平相关,取1605℃;T进站为钢水进RH测定的钢水温度;T铝氧化升温为氧化钢水中残余酸溶铝升温值,T铝氧化升温=[Als%]进站÷0.001%×0.37;0.0373、0.001%、0.37为系数;
C:满足钢水脱碳的吹氧量:C=钢水量(吨)×0.1506×([C%]进站-[C%]脱碳结束目标)÷0.010%=308×0.1506×(0.032%-0.0010%)÷0.010%=144(Nm3);式中,钢水量(吨)为钢水重量,[C%]进站为钢水进站碳含量;[C%]脱碳结束目标为脱碳结束目标碳含量,与冶炼钢种相关,超低碳钢取0.0010%;0.1506、0.010%为系数;
D:满足钢水脱碳结束剩氧量的吹氧量:D=钢水量(吨)×0.0011×[O]脱碳结束目标=308×0.0011×300=102(Nm3);式中,钢水量(吨)为钢水重量,[O]脱碳结束目标为脱碳结束目标氧含量,与冶炼钢种相关,超低碳钢取300ppm;0.0011%为系数;
步骤5:RH未加入调整温度的升温剂及冷却废钢;
步骤6:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
实施例与对比例主要工艺效果对比表:
Figure BDA0002277141540000091
由上表可知:本具体实施方式具有如下积极效果:
1、出钢温度显著降低:
(1)DC03钢种,本发明技术方案实施例1、实施例2转炉出钢温度分别为1621℃、1618℃,较对比例1出钢温度1665℃分别降低44℃、47℃;
(2)DC06钢种,本发明技术方案实施例3、实施例4转炉出钢温度分别为1624℃、1617℃,较对比例2出钢温度1672℃分别降低48℃、55℃。
2、碳元素控制水平基本相当,磷含量控制水平有所提升:
(1)DC03钢种,本发明技术方案实施例1、实施例2中包碳含量分别为0.0194%、0.0204%,中包磷含量分别为0.007%、0.009%,较对比例1中包碳含量0.0205%基本相当;较对比例1中包磷含量0.011%有较大降低;
(2)DC06钢种,本发明技术方案实施例3、实施例4中包碳含量分别为0.0014%、0.0013%,中包磷含量分别为0.008%、0.009%,较对比例2中包碳含量0.0015%基本相当;较对比例2中包磷含量0.012%有较大降低。
3、质量指标基本相当:
(1)DC03钢种,本发明技术方案实施例1、实施例2中包全氧分别为18ppm、19ppm,中包夹杂铝(全铝-酸溶铝)分别为1ppm、2ppm,较对比例1中包全氧19ppm基本相当;较对比例1中包夹杂铝2ppm基本相当;
(2)DC06钢种,本发明技术方案实施例3、实施例4中包全氧分别为22ppm、21ppm,中包夹杂铝(全铝-酸溶铝)分别为2ppm、1ppm,较对比例2中包全氧23ppm基本相当;较对比例2中包夹杂铝2ppm基本相当。
综上,本发明能显著降低真空脱碳钢种转炉出钢温度,同时磷含量控制水平有所提升,并且不影响钢水碳含量的控制,钢水洁净度基本不发生恶化。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种降低真空脱碳钢种转炉出钢温度的炼钢方法,其特征在于,包括以下步骤:
S1:将转炉出钢温度控制在1630℃以下;
S2:出钢结束向钢包中加入2-10kg/t钢铝型、硅型或铝硅型金属升温剂;
S3:钢水在真空处理初期通过顶枪向真空室内吹入氧气以完成升温操作,吹氧量(Nm3)=A+B+C+D,其中,A:氧化钢水残余升温剂的吹氧量;B:钢水温度补偿的吹氧量;C:满足钢水脱碳的吹氧量;D:满足钢水脱碳结束时与目标碳含量相匹配的过剩氧量的吹氧量;
S4:真空精炼过程调整温度需补充的升温剂或冷却废钢在明显开始脱碳前加入;
S5:真空脱碳钢种的重量百分比组成为:碳:≤0.035%;
S6:RH吹氧结束后的脱碳、脱氧及合金化的操作方法同钢厂现行方法相同。
2.如权利要求1所述的一种降低真空脱碳钢种转炉出钢温度的炼钢方法,其特征在于,S1中将转炉出钢温度分别控制为1621℃、1618℃、1624℃、1617℃。
3.如权利要求1所述的一种降低真空脱碳钢种转炉出钢温度的炼钢方法,其特征在于,S2中出钢结束向钢包中分别加入铝型发热剂4.5kg/t钢、5.2kg/t钢、3.9kg/t钢、6.4kg/t钢。
4.如权利要求1所述的一种降低真空脱碳钢种转炉出钢温度的炼钢方法,其特征在于,S3中RH吹氧量分别为455Nm3、434Nm3、579Nm3、580Nm3
CN201911126918.XA 2019-11-18 2019-11-18 一种降低真空脱碳钢种转炉出钢温度的炼钢方法 Pending CN110684883A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911126918.XA CN110684883A (zh) 2019-11-18 2019-11-18 一种降低真空脱碳钢种转炉出钢温度的炼钢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911126918.XA CN110684883A (zh) 2019-11-18 2019-11-18 一种降低真空脱碳钢种转炉出钢温度的炼钢方法

Publications (1)

Publication Number Publication Date
CN110684883A true CN110684883A (zh) 2020-01-14

Family

ID=69117373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911126918.XA Pending CN110684883A (zh) 2019-11-18 2019-11-18 一种降低真空脱碳钢种转炉出钢温度的炼钢方法

Country Status (1)

Country Link
CN (1) CN110684883A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455136A (zh) * 2020-04-07 2020-07-28 马鞍山钢铁股份有限公司 提高钢水真空脱碳过程逸出一氧化碳及氢气能源利用率方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215618A (zh) * 2007-12-27 2008-07-09 本钢板材股份有限公司 一种冶炼超低碳钢的方法
JP2011208170A (ja) * 2010-03-29 2011-10-20 Jfe Steel Corp マンガン含有低炭素鋼の溶製方法
CN103305656A (zh) * 2013-03-27 2013-09-18 马钢(集团)控股有限公司 一种if钢rh真空脱碳过程控制方法
CN106929633A (zh) * 2017-04-06 2017-07-07 攀钢集团西昌钢钒有限公司 一种超低碳钢的冶炼方法
CN108060289A (zh) * 2017-12-12 2018-05-22 马鞍山钢铁股份有限公司 一种rh精炼炉生产if钢的温度补偿精炼工艺
CN109666775A (zh) * 2018-11-16 2019-04-23 九江萍钢钢铁有限公司 一种高炉役转炉快速冶炼方法
CN110205436A (zh) * 2019-07-03 2019-09-06 马鞍山钢铁股份有限公司 一种全流程低氧位生产if钢的冶炼方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215618A (zh) * 2007-12-27 2008-07-09 本钢板材股份有限公司 一种冶炼超低碳钢的方法
JP2011208170A (ja) * 2010-03-29 2011-10-20 Jfe Steel Corp マンガン含有低炭素鋼の溶製方法
CN103305656A (zh) * 2013-03-27 2013-09-18 马钢(集团)控股有限公司 一种if钢rh真空脱碳过程控制方法
CN106929633A (zh) * 2017-04-06 2017-07-07 攀钢集团西昌钢钒有限公司 一种超低碳钢的冶炼方法
CN108060289A (zh) * 2017-12-12 2018-05-22 马鞍山钢铁股份有限公司 一种rh精炼炉生产if钢的温度补偿精炼工艺
CN109666775A (zh) * 2018-11-16 2019-04-23 九江萍钢钢铁有限公司 一种高炉役转炉快速冶炼方法
CN110205436A (zh) * 2019-07-03 2019-09-06 马鞍山钢铁股份有限公司 一种全流程低氧位生产if钢的冶炼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱荣等: "《炼钢过程典型案例分析》", 31 July 2017, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455136A (zh) * 2020-04-07 2020-07-28 马鞍山钢铁股份有限公司 提高钢水真空脱碳过程逸出一氧化碳及氢气能源利用率方法

Similar Documents

Publication Publication Date Title
CN106636953A (zh) 一种锅炉管用马氏体不锈钢p91冶炼方法
CN101633038B (zh) 一种降低不锈钢连铸坯表面缺陷的方法
CN112342333A (zh) 一种高效、低氧位超低碳钢生产方法
CN110284049B (zh) 一种提高超深冲冷轧搪瓷钢连浇炉数的炉外精炼方法
CN104878297A (zh) 一种低钛轴承钢GCr15的生产方法
CN110408834B (zh) 提高钢锭成材低Si临氢Cr-Mo钢探伤合格率的方法
CN102978505A (zh) 高强if钢的冶炼方法
CN109252010B (zh) 控制if钢顶渣氧化性的冶炼方法
CN110438297B (zh) 一种生产低碳钢和超低碳钢钢液温度与洁净度控制的方法
CN105154623A (zh) 一种熔炼38CrMoAl钢的高效合金化方法
CN109777918A (zh) 一种细化高碳铬轴承钢夹杂物颗粒的炉外精炼生产方法
CN109023023B (zh) 一种稀土耐热钢板材的制造方法
CN111299533A (zh) 一种提高方坯连铸机生产超低碳钢可浇性的方法
CN112795720A (zh) 一种双联转炉法生产工业纯铁的方法
CN113564308B (zh) 一种低铝无取向硅钢结晶器液面波动的控制方法
CN114855057A (zh) 一种薄规格高韧性12Cr1MoVR压力容器钢板的生产方法
CN108060344B (zh) 一种铁路集装箱用高铬低碳钢冶炼工艺
CN116875912B (zh) 一种高纯净度高碳钢线材及其生产方法
CN111455136B (zh) 提高钢水真空脱碳过程逸出一氧化碳及氢气能源利用率方法
CN110684883A (zh) 一种降低真空脱碳钢种转炉出钢温度的炼钢方法
CN107058867A (zh) 一种节能型变压器铁芯用高Si纯铁及其生产方法
CN115141904B (zh) 一种用于制备低碳冷轧基板的连铸坯及其冶炼工艺
CN114182062B (zh) 一种精确控制高磁感取向硅钢板坯Als含量的方法
CN115305411A (zh) 一种超深冲冷轧搪瓷钢高效生产的方法
CN114427016A (zh) 一种无铝轴承钢的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200114

RJ01 Rejection of invention patent application after publication