CN110672410A - 一种复合材料中纤维断裂位置模拟方法 - Google Patents

一种复合材料中纤维断裂位置模拟方法 Download PDF

Info

Publication number
CN110672410A
CN110672410A CN201910811679.5A CN201910811679A CN110672410A CN 110672410 A CN110672410 A CN 110672410A CN 201910811679 A CN201910811679 A CN 201910811679A CN 110672410 A CN110672410 A CN 110672410A
Authority
CN
China
Prior art keywords
fiber
length
strength
simulating
critical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910811679.5A
Other languages
English (en)
Other versions
CN110672410B (zh
Inventor
牛序铭
孙志刚
陈壮壮
宋迎东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910811679.5A priority Critical patent/CN110672410B/zh
Publication of CN110672410A publication Critical patent/CN110672410A/zh
Application granted granted Critical
Publication of CN110672410B publication Critical patent/CN110672410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种复合材料中纤维断裂位置模拟方法,包括以下步骤:步骤1,测定碳纤维临界应力强度因子;步骤2,计算碳纤维的临界裂纹尺寸;步骤3,计算每单根纤维最大主裂纹长度;步骤4,求出次级主裂纹长度;步骤5,构建纤维微裂纹随机分布模型;步骤6,纤维断裂判据及失效位置模拟。本发明基于韦布尔分布,提出了一种复合材料中纤维断裂位置模拟方法,能够计算主次级裂纹长度,构建纤维微裂纹模型,清晰描绘纤维缺陷,对研究纤维失效行为具有重要意义。

Description

一种复合材料中纤维断裂位置模拟方法
技术领域
本发明属于复合材料技术领域,特别涉及一种复合材料中纤维断裂位置模拟方法。
背景技术
碳纤维是一种含碳量在95%以上的高强度、高模量的新型纤维材料,它具有高强度、高模量、低密度、低线性膨胀系数、耐腐蚀性、不溶不胀等特点,因而成为非常具有潜力的新型增强纤维。碳纤维作为碳纤维增强复合材料的重要组分,极大程度的影响到复合材料的工作寿命,所以研究碳纤维失效机理对深入了解复合材料性能具有重要意义。
碳纤维属于脆性材料,其断后伸长率通常在1%~2%之间。碳纤维制备过程中由于制备工艺不完善会引入各种缺陷。研究发现,碳纤维的各类缺陷中,表面缺陷占主导地位,约占90%左右,对碳纤维的强度造成显著的影响。因此,可以假设碳纤维的缺陷均以表面缺陷,即表面微裂纹的形式存在。
对脆性材料来说,其拉伸强度受控于缺陷的大小及位置,并且由于缺陷为随机分布,导致其拉伸强度的分散性较大。碳纤维的拉伸断裂发生在最大缺陷处,而最大缺陷的出现又与碳纤维的尺寸相关,尺寸越大,出现最大缺陷的概率也就越大,拉伸强度也就越低。
现有技术中,脆性材料的失效通常采用基于最弱环理论的weibull概率失效模型来描述,该理论前提是所研究的脆性材料处于均匀应力场中。但在实际应用中,纤维束内部在制备过程中由于纤维和基体热膨胀系数适配引入的纤维横向压缩应力,在复合材料中纤维会受到基体开裂引起的应力集中以及纤维束之间的相互挤压的影响,其应力场并不均匀,基于最弱环理论的Weibull概率失效模型的应用受到一定的限制。所以,纤维的weibull概率失效模型不能准确描述纤维存在缺陷及损伤时在单向陶瓷基复合材料中的纤维失效行为。
因此,有必要提供一种能够准确描述不均匀应力场下纤维断裂位置的方法。
发明内容
本发明的目的是提供一种复合材料中纤维断裂位置模拟方法,以能够准确描述不均匀应力场下纤维断裂位置。
为实现上述目的,本发明采用的技术方案为:
一种复合材料中纤维断裂位置模拟方法,包括以下步骤:
步骤1,测定碳纤维临界应力强度因子;
步骤2,计算碳纤维的临界裂纹尺寸;
步骤3,计算每单根纤维最大主裂纹长度;
步骤4,求出次级主裂纹长度;
步骤5,构建纤维微裂纹随机分布模型;
步骤6,纤维断裂判据及失效位置模拟。
进一步的,所述步骤1中,在碳纤维上通过聚能离子束预制表面裂纹,并进行拉伸试验,测得碳纤维临界应力强度因子。
进一步的,所述步骤2中,在给定纤维失效强度σf条件下,求解以下式(1)算出纤维在给定强度下碳纤维的临界裂纹尺寸:
KI=KIC (1)
其中,KIC为碳纤维的临界应力强度因子;KI为裂纹尖端的应力强度因子,由以下式(2)计算得到
其中,σ为纤维周向拉伸应力,lf为裂纹深度;df为纤维直径;F(lf/df)为无量纲应力强度因子参数;
对于圆柱结构表面垂直裂纹,F(lf/df)用以下式(3)来描述为:
Figure BDA0002185227400000022
进一步的,所述步骤3中,根据以下式(4)给出的纤维失效概率累积分布函数,设定L=L0,生成一组总数为N服从weibull分布的随机数,其中,N为纤维束内部纤维丝总数,该组随机数能够描述在测试长度内各单根纤维的强度数据,并将各单根纤维强度带入式(1)中求解相应临界裂纹长度,该长度即为各单根纤维中的最大主裂纹长度;
Figure BDA0002185227400000023
其中,σfltc为纤维轴向拉伸特征强度;σflt为纤维轴向拉伸应力;L0为碳纤维的参考长度;L为碳纤维的实际长度;mflt *为纤维轴向拉伸Weibull模量;
纤维轴向拉伸特征强度公式如下:
Figure BDA0002185227400000031
纤维轴向拉伸weibull模量公式如下:
Figure BDA0002185227400000032
其中,L0为纤维特征长度,α为纤维轴向拉伸Weibull模量的长度因子,α取决于纤维的强度、弹性模量以及结构。
进一步的,所述步骤4中,将每单根纤维m等分,设定L=L0/m,其中,L0为碳纤维的参考长度;L为碳纤维的实际长度;生成一组总数为N×m的服从weibull分布的随机数,该组随机数中的每一行可描述为单根纤维等分后不同区域的强度,将单根纤维不同部位的强度带入式(1)中求解相应的微裂纹长度,该长度为单根纤维不同区域内的次级主裂纹长度。
进一步的,所述步骤5中,设最大主裂纹在单根纤维上的位置随机分布,次级主裂纹在单根纤维等分后不同区域内的位置随机分布,并忽略更小的微裂纹,构建出纤维微裂纹随分布模型。
进一步的,所述步骤6中,通过以下式(7)得到纤维微裂纹所在平面临界强度:
Figure BDA0002185227400000033
裂纹长度决定临界强度的大小,当纤维轴向拉伸应力大于临界强度时,纤维断裂失效。
有益效果:本发明假设缺陷及损伤在纤维上以微裂纹形式存在,根据纤维微裂纹随机分布模型,结合碳纤维的临界应力强度因子和断裂力学理论,进而反推出微裂纹处的轴向拉伸强度,不存在微裂纹的部位的认为是理想材料,其强度统一取较大值。
本发明基于韦布尔分布,提出了一种复合材料中纤维断裂位置模拟方法,能够计算主次级裂纹长度,构建纤维微裂纹模型,清晰描绘纤维缺陷,对研究纤维失效行为具有重要意义。
附图说明
图1是纤维损伤微裂纹形式;
图2是二维CMC模型纤维轴向拉伸强度分布示意图;
图3是纤维裂纹随机分布示意图;
图4是理想复合材料纤维基体承载示意图;
图5是存在缺陷复合材料纤维基体承载示意图;
图6是纤维断裂图。
具体实施方式
下面对本发明作进一步的解释
(1)在碳纤维上通过聚能离子束预制表面裂纹,如图1所示,并进行拉伸试验,测得碳纤维临界应力强度因子。根据其试验结果,T300纤维的临界应力强度因子为KIC=1.67MPa·m1/2
(2)圆柱结构表面垂直裂纹的应力强度因子计算方法为Astiz提出的计算二维和三维裂纹的不相容奇异单元法,在给定纤维失效强度σf条件下,由公式(1)求得的临界应力强度因子,求解公式(1)计算出纤维在给定强度下的临界裂纹尺寸:
KI=KIC (1)
其中,KIC为碳纤维的临界应力强度因子;KI为裂纹尖端的应力强度因子,由公式(2)计算得到
Figure BDA0002185227400000041
其中,σ为纤维周向拉伸应力,lf为裂纹深度;df为纤维直径;F(lf/df)为无量纲应力强度因子参数;
对于圆柱结构表面垂直裂纹,F(lf/df)用公式(3)来描述:
(3)根据公式(4)给出的纤维失效概率累积分布函数,设定L=L0,生成一组总数为N服从weibull分布的随机数,其中N为纤维束内部纤维丝总数,该组随机数可描述在测试长度内各单根纤维的强度数据,并将各纤维单丝强度带入公式(1)中求解相应临界裂纹长度,该长度即为各纤维中的最大主裂纹长度;
Figure BDA0002185227400000043
其中,σflt为纤维轴向拉伸特征强度;σflt为纤维轴向拉伸应力;L0为碳纤维的参考长度;L为碳纤维的实际长度;mflt *为纤维轴向拉伸Weibull模量。
纤维轴向拉伸特征强度公式如下:
Figure BDA0002185227400000051
在双对数坐标系下,纤维特征强度与标距长度之间的线性关系的斜率与Weibull模量mflt *的倒数有关,对于T300纤维mflt *=7.63
Figure BDA0002185227400000052
其中,L0为纤维特征长度,α为纤维Weibull模量的长度因子,α取决于纤维的强度、弹性模量以及结构,对于T300纤维来说,α=-0.117。
(4)将每单根纤维m等分,如图2所示,设定L=L0/m,其中,L0为碳纤维的参考长度;L为碳纤维的实际长度;生成一组总数为N×m的服从weibull分布的随机数,该组随机数中的每一行可描述为单根纤维等分后不同区域的强度,将单根纤维不同部位的强度带入公式(1)中求解相应的微裂纹长度,该长度为单根纤维不同区域内的次级主裂纹长度。
(5)假设最大主裂纹在单根纤维上的位置随机分布,次级主裂纹在单根纤维等分后不同区域内的位置随机分布,并忽略更小的微裂纹,构建出纤维微裂纹随分布模型。在图2中,黄色条块代表纤维,红色横线代表纤维最大主裂纹,蓝色短横线代表单根纤维内部不同区域内的次级主裂纹(裂纹长度为相对值)。
(6)纤维微裂纹所在平面临界强度公式:
如图3所示,纤维各部位的裂纹长度决定临界强度的大小,不存在裂纹的部位为理想材料,强度统一取较大值,存在微裂纹处强度明显降低。
复合材料轴向拉伸过程伴随着基体裂纹的萌生,导致局部应力重新分配,如图5,离基体裂纹越近,纤维所受拉伸应力越大。当纤维所受轴向拉伸应力大于纤维临界强度(即σ>σcr),纤维即有可能发生断裂。故纤维断裂位置由基体裂纹和纤维微裂纹共同决定,由此造成纤维断裂位置的不确定性,如图6。例如,从图5所示情况,纤维可能在微裂纹1位置处发生断裂,而不会在微裂纹2位置处发生断裂。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种复合材料中纤维断裂位置模拟方法,其特征在于:包括以下步骤:
步骤1,测定碳纤维临界应力强度因子;
步骤2,计算碳纤维的临界裂纹尺寸;
步骤3,计算每单根纤维最大主裂纹长度;
步骤4,求出次级主裂纹长度;
步骤5,构建纤维微裂纹随机分布模型;
步骤6,纤维断裂判据及失效位置模拟。
2.根据权利要求1所述的复合材料中纤维断裂位置模拟方法,其特征在于:所述步骤1中,在碳纤维上通过聚能离子束预制表面裂纹,并进行拉伸试验,测得碳纤维临界应力强度因子。
3.根据权利要求1所述的复合材料中纤维断裂位置模拟方法,其特征在于:所述步骤2中,在给定纤维失效强度σf条件下,求解以下式(1)算出纤维在给定强度下碳纤维的临界裂纹尺寸:
KI=KIC (1)
其中,KIC为碳纤维的临界应力强度因子;KI为裂纹尖端的应力强度因子,由以下式(2)计算得到
Figure FDA0002185227390000011
其中,σ为纤维周向拉伸应力,lf为裂纹深度;df为纤维直径;F(lf/df)为无量纲应力强度因子参数;
对于圆柱结构表面垂直裂纹,F(lf/df)用以下式(3)来描述为:
Figure FDA0002185227390000012
4.根据权利要求1所述的复合材料中纤维断裂位置模拟方法,其特征在于:所述步骤3中,根据以下式(4)给出的纤维失效概率累积分布函数,设定L=L0,生成一组总数为N服从weibull分布的随机数,其中,N为纤维束内部纤维丝总数,该组随机数能够描述在测试长度内各单根纤维的强度数据,并将各单根纤维强度带入式(1)中求解相应临界裂纹长度,该长度即为各单根纤维中的最大主裂纹长度;
其中,σfltc为纤维轴向拉伸特征强度;σflt为纤维轴向拉伸应力;L0为碳纤维的参考长度;L为碳纤维的实际长度;mflt *为纤维轴向拉伸Weibull模量;
纤维轴向拉伸特征强度公式如下:
Figure FDA0002185227390000022
纤维轴向拉伸weibull模量公式如下:
其中,L0为纤维特征长度,α为纤维轴向拉伸Weibull模量的长度因子,α取决于纤维的强度、弹性模量以及结构。
5.根据权利要求1所述的复合材料中纤维断裂位置模拟方法,其特征在于:所述步骤4中,将每单根纤维m等分,设定L=L0/m,其中,L0为碳纤维的参考长度;L为碳纤维的实际长度;生成一组总数为N×m的服从weibull分布的随机数,该组随机数中的每一行可描述为单根纤维等分后不同区域的强度,将单根纤维不同部位的强度带入式(1)中求解相应的微裂纹长度,该长度为单根纤维不同区域内的次级主裂纹长度。
6.根据权利要求1所述的复合材料中纤维断裂位置模拟方法,其特征在于:所述步骤5中,设最大主裂纹在单根纤维上的位置随机分布,次级主裂纹在单根纤维等分后不同区域内的位置随机分布,并忽略更小的微裂纹,构建出纤维微裂纹随分布模型。
7.根据权利要求1所述的复合材料中纤维断裂位置模拟方法,其特征在于:所述步骤6中,通过以下式(7)得到纤维微裂纹所在平面临界强度:
裂纹长度决定临界强度的大小,当纤维轴向拉伸应力大于临界强度时,纤维断裂失效。
CN201910811679.5A 2019-08-30 2019-08-30 一种复合材料中纤维断裂位置模拟方法 Active CN110672410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910811679.5A CN110672410B (zh) 2019-08-30 2019-08-30 一种复合材料中纤维断裂位置模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910811679.5A CN110672410B (zh) 2019-08-30 2019-08-30 一种复合材料中纤维断裂位置模拟方法

Publications (2)

Publication Number Publication Date
CN110672410A true CN110672410A (zh) 2020-01-10
CN110672410B CN110672410B (zh) 2021-06-15

Family

ID=69075878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910811679.5A Active CN110672410B (zh) 2019-08-30 2019-08-30 一种复合材料中纤维断裂位置模拟方法

Country Status (1)

Country Link
CN (1) CN110672410B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029786A (zh) * 2021-03-16 2021-06-25 南京航空航天大学 一种陶瓷纤维强度分布快速测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942441A (zh) * 2014-04-25 2014-07-23 上海交通大学 基于应力比影响的碳纤维复合材料疲劳寿命评估方法
CN105912827A (zh) * 2016-07-06 2016-08-31 北京航空航天大学 一种预报复合材料纤维拉伸失效的能量判据
CN106777769A (zh) * 2017-01-08 2017-05-31 浙江大学 预测低速冲击下复合材料多层厚板渐进失效的有限元方法
CN108470109A (zh) * 2018-04-02 2018-08-31 上海交通大学 三维机织复合材料力学性能评测方法
CN108549743A (zh) * 2018-03-13 2018-09-18 东南大学 一种纤维增强复合材料动态拉伸失效评估方法
CN109214024A (zh) * 2017-07-05 2019-01-15 上海汽车集团股份有限公司 一种纤维增强复合材料分层失效准则参数反演方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942441A (zh) * 2014-04-25 2014-07-23 上海交通大学 基于应力比影响的碳纤维复合材料疲劳寿命评估方法
CN105912827A (zh) * 2016-07-06 2016-08-31 北京航空航天大学 一种预报复合材料纤维拉伸失效的能量判据
CN106777769A (zh) * 2017-01-08 2017-05-31 浙江大学 预测低速冲击下复合材料多层厚板渐进失效的有限元方法
CN109214024A (zh) * 2017-07-05 2019-01-15 上海汽车集团股份有限公司 一种纤维增强复合材料分层失效准则参数反演方法及装置
CN108549743A (zh) * 2018-03-13 2018-09-18 东南大学 一种纤维增强复合材料动态拉伸失效评估方法
CN108470109A (zh) * 2018-04-02 2018-08-31 上海交通大学 三维机织复合材料力学性能评测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIMIYOSHI NAITO 等: "The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)- and pitch-based carbon fibers", 《JOURNAL OF MATERIALS SCIENCE》 *
武玉芬: "碳纤维综合力学性能与复合材料拉伸强度的离散性研究", 《万方》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029786A (zh) * 2021-03-16 2021-06-25 南京航空航天大学 一种陶瓷纤维强度分布快速测量方法

Also Published As

Publication number Publication date
CN110672410B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Biswas et al. Physical and mechanical properties of jute, bamboo and coir natural fiber
Zhang et al. Fatigue behavior of corroded prestressed concrete beams
Berger et al. Statistical analysis of the failure stresses of ceramic fibres: Dependence of the weibull parameters on the gauge length, diameter variation and fluctuation of defect density
CN109858171B (zh) 编织陶瓷基复合材料应力-应变响应和强度的预测方法
Pluvinage et al. Damage characterization of two-dimensional woven and three-dimensional braided SiC-SiC composites
CN110991104B (zh) 焊接空间网架节点焊缝风致多轴高周疲劳损伤评定方法
Xue et al. Flexural fatigue behavior of 2D cross-ply carbon/carbon composites at room temperature
CN110672410B (zh) 一种复合材料中纤维断裂位置模拟方法
Xue et al. Modeling of bond of sand-coated deformed glass fibre-reinforced polymer rebars in concrete
Nakada et al. Time–temperature dependence of tensile strength of unidirectional CFRP
Shioya et al. Estimation of fibre and interfacial shear strength by using a single-fibre composite
CN109840392B (zh) 一种陶瓷基复合材料疲劳极限的快速预测方法
Zhu et al. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete
Remitz et al. Ultra-High Performance Spun Concrete Poles–Part I: Load-bearing behavior
Jingming et al. Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams
Chen et al. Statistical damage model for quasi-brittle materials under uniaxial tension
KR100947176B1 (ko) 섬유 가교 해석방법 및 섬유 가교 해석에 의한 섬유복합재료의 인장성능을 예측하는 방법
Qiao et al. Tensile-mechanical degradation-properties and JC constitutive model of studs after strong-acid corrosion
CN106777563B (zh) 一种无机非金属纤维随机强度与缺陷概率的测定方法
CN108732029B (zh) 弹性条件下含残余应力的蠕变孕育期预测方法
Chen et al. Breaking progress simulation and strength prediction of woven fabric under uni-axial tensile loading
Hibbert et al. Flexural fatigue of glass-fibre-reinforced cement
Zhou et al. Numerical simulation for high strain rate failure process of unidirectional Sicf-Al composites
Yang et al. Mechanical properties of SiCf/SiC mini-composites reinforcements for SiCf/SiC composites
Giese et al. Effect of Load Eccentricity on CRC Structures with Different Slenderness Ratios Subjected to Axial Compression. Buildings 2023, 13, 2489

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant