CN110668503A - 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法 - Google Patents

一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法 Download PDF

Info

Publication number
CN110668503A
CN110668503A CN201910920569.2A CN201910920569A CN110668503A CN 110668503 A CN110668503 A CN 110668503A CN 201910920569 A CN201910920569 A CN 201910920569A CN 110668503 A CN110668503 A CN 110668503A
Authority
CN
China
Prior art keywords
substrate
layer
double
nano
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910920569.2A
Other languages
English (en)
Other versions
CN110668503B (zh
Inventor
张科军
刘剑敏
戴建明
朱雪斌
孙玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingchu University of Technology
Original Assignee
Jingchu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingchu University of Technology filed Critical Jingchu University of Technology
Priority to CN201910920569.2A priority Critical patent/CN110668503B/zh
Publication of CN110668503A publication Critical patent/CN110668503A/zh
Application granted granted Critical
Publication of CN110668503B publication Critical patent/CN110668503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料,其生长在衬底上,所述双层钙钛矿锰氧化物单相薄膜材料的化学式为La1‑xCaxMnO3,0.35<x≤1,其双层结构由一层沿着衬底外延生长的0‑40 nm厚的连续层和垂直于连续层的纳米柱层构成,所述纳米柱层沿着连续层外延生长。本发明还公开了一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料的制备方法及其应用。本发明的材料具有显著的垂直磁异向性和可调的、具有宽的工作温度范围的低场磁阻效应。

Description

一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜 材料及其制备方法
技术领域
本发明涉及锰氧化物薄膜材料领域,特别涉及一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法。
背景技术
具有垂直排列纳米结构的复杂氧化物薄膜材料相对于传统的平面结构的薄膜材料,因为其有比衬底面积大得多的垂直界面面积,以及额外生成的晶界,界面耦合和界面应变调节,使得其特性和功能性显著不同于传统的平面膜结构。
目前,具有垂直排列纳米结构的薄膜主要为两相的复合薄膜。这种垂直排列的纳米结构典型地可以在自组装的两相纳米复合膜中,由于两相之间以及每个相与衬底之间存在较大的晶格失配,诱导而形成。两相复合薄膜的第二相通常为二元或三元金属氧化物,如ZnO、MgO、V2O3、Sm2O3、CeO2、NiO、CoFe2O4、NiFe2O4、BiFeO3、BaZrO3等。通过两相之间的强的耦合和界面以及晶界效应,可以获得增强的物理性能和多样的功能性,包括界面诱导的高温超导性、显著增强的低场磁阻、应变增强的铁电性、磁电性和多铁性,以及新型的介电耦合和磁光耦合效应等。然而,到目前为止,具有垂直排列的纳米结构的复杂氧化物单相薄膜,却鲜有报道。
垂直排列的纳米结构的合成是很复杂的一个技术。对于单相薄膜,仅仅通过控制衬底与薄膜之间的晶格失配,很难获得一个期望的垂直排列的纳米结构的生长。为了实现所期望的垂直排列的纳米结构,除了晶格应变外,还需要仔细地调整热力学和动力学参数,如衬底温度、氧气压力、组分、距离尺度、生长速率等,这被认为是一项非常尖端复杂的技术。钙钛矿锰氧化物具有巨磁电阻、相分离、大的自旋极化和磁各向异性等令人着迷的物理现象,从而提升了人们对自旋电子学的发展的期望。钙钛矿锰氧化物的本征的巨磁阻效应通常需要几个特斯拉的高磁场来触发,并且被限制在一个狭窄的温度范围内,这阻碍了实际应用,例如高密度磁存储设备或磁头传感器,它们往往需要在低磁场和宽的温度范围下运行。因此,钙钛矿锰氧化物中的外诱的低场磁阻效应更受到关注。这种外诱的低场磁阻效应可以在低的磁场下(小于1 T)和宽温度范围内实现高的磁阻。而要实现这种低场磁阻效应取决于对微观结构的控制,如界面、晶界和相界以及自旋极化隧穿结等微观结构控制。
本发明是采用脉冲激光沉积法沉积薄膜,同时在沉积的过程中,通过施加不同强度的强磁场来调节薄膜的微结构,制备出具备垂直磁异向性和可调的、可在宽的工作温度范围内工作的具有低场磁阻效应的双层钙钛矿锰氧化物单相薄膜材料。
发明内容
本发明设计了一种同时具有显著的垂直磁异向性和可调的、具有宽的工作温度范围的低场磁阻效应的垂直排列的双层钙钛矿锰氧化物单相薄膜材料。
本发明提供了实现可调的垂直排列纳米结构双层钙钛矿镧钙锰氧单相薄膜材料的制备方法。
本发明所设计的技术方案为:
钙钛矿镧钙锰氧单相薄膜材料,由镧、钙、锰和氧元素等组成的薄膜。
所述薄膜是化学式为La1-xCaxMnO3的钙钛矿单相薄膜,所述化学式中的La为镧、Ca为钙、Mn为锰、O为氧。x为元素组分,0.35<x≤1。
所述的双层钙钛矿结构由两层结构构成:第一层沿着衬底连续生长的薄的平面薄膜结构,其厚度为0-40 nm;第二层沿着连续的平面薄膜继续外延生长。此时,第二层具有垂直排列的纳米结构。该结构一直往上生长,直到薄膜的顶部。总体薄膜厚度与薄膜的沉积时间相关,厚度可达微米量级。
制备方法,其完成步骤如下:
步骤1、按照镧、钙、锰和氧的摩尔比,称量氧化镧、氧化钙、氧化锰,通过玛瑙钵研磨均匀,再通过多次高温(1100-1400℃)烧结,形成镧钙锰氧粉末,最后通过模具压片高温(1100-1400℃)烧结,形成镧钙锰氧靶材;
步骤2、首先将衬底和S1中制备的镧钙锰氧靶材安装在脉冲激光沉积系统中,然后通过分子泵对脉冲激光沉积系统的腔体抽真空;在制备薄膜之前,先将衬底加热到680℃,然后用超导磁体垂直于衬底平面施加大于等于5 T的强磁场,并将脉冲激光沉积系统的真空腔体保持在0.35 mbar的氧气压力;当磁场强度达到要求后,通过脉冲激光沉积系统中的KrF准分子激光器发射脉冲激光沉积薄膜,脉冲激光的波长为248 nm,能量为200 mJ,重复频率为5 Hz,沉积时间为30分钟;沉积完成后,在与沉积过程相同的磁场、衬底温度和氧气压力条件下,对薄膜进行原位热处理20分钟。
作为双层钙钛矿镧钙锰氧单相薄膜材料的制备方法的进一步优化,所述的强磁场为稳态强磁场(H≥5T);所述的衬底为陶瓷衬底,或半导体衬底。其中陶瓷衬底为铝酸镧系衬底,拉萨特(LSAT)或钛酸锶衬底;半导体衬底为硅衬底。
一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料在垂直磁记录材料、磁存储器或磁头传感器等材料上的应用。
对制得的目标产物分别使用扫描电镜和X射线衍射仪进行表征。由其结果可知,目标产物为外延薄膜。其中,薄膜的厚度500 nm以上。其中,从衬底外延生长一层连续的薄的平面膜,厚度为0-40 nm,在平面膜上面为垂直排列、外延生长的纳米柱薄膜。纳米柱的直径为10-60 nm左右。薄膜中各元素的含量和组分与靶材相同。其二,对制得的目标产物再分别使用磁性(SQUID)和输运特性(PPMS)测量,由其结果可知,具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜,其具有垂直磁异向性的明显特征,同时其输运结果显示,其在温度为150 K温度下,测量磁场为1 T的条件下,其低场磁阻高达 45 %。同时,在127-200 K的温度范围内,其低场磁阻值大于25 %。其三,本制备方法还有着目标产物中的化学计量比可精确地控制,工艺简单、易掌握,所需的设备少、制备的成本低、利于大规模的工业化生产的特点。
附图说明
图1是实施例1制得的目标产物扫描电镜图表征结果图。
图2是双层钙钛矿锰氧化物单相薄膜在制备过程中随施加磁场的增大,其微结构的演化示意图。
图3是实施例1制得的目标产物的X射线衍射(XRD)表征结果图。
图4是实施例1制得的目标产物磁性测试的表征结果图。
图5是实施例1制得的目标产物使用输运测量系统进行表征的结果图。
具体实施方式
下面结合附图对本发明进行进一步说明。
首先从市场购得或用常规方法制得:
氧化镧,氧化钙;氧化锰或四氧化三锰;作为衬底的陶瓷基衬底或半导体衬底。其中,陶瓷衬底为拉萨特(LSAT)衬底、铝酸镧衬底或钛酸锶衬底,半导体衬底为硅片。
<实施例1>
制备的具体步骤如下:
S1、按照化学式La1-xCaxMnO3选取x=0.5,即材料的化学式为La0.5Ca0.5MnO3,按照镧、钙、和锰的摩尔比例,分别称量氧化镧、氧化钙、氧化锰后,使用玛瑙钵研磨均匀,再通过多次高温烧结,形成镧钙锰氧粉末。最后通过模具压片高温烧结,形成La0.5Ca0.5MnO3靶材。
S2、选取(LaAlO3)0.3(Sr2AlTaO6)0.7 (001)[LSAT(001)]单晶衬底。首先将衬底和S1中制备的La0.5Ca0.5MnO3靶材安装在脉冲激光沉积系统中,然后腔体抽真空。在制备薄膜之前,首先将衬底加热到680℃。然后用超导磁体垂直于衬底平面施加大于等于5 T的强磁场。此外,在脉冲激光沉积系统的真空腔体中保持0.35 mbar的氧气压力。当磁场强度达到要求后,通过准分子激光器发射激光能量为200 mJ,重复频率为5 Hz的脉冲激光沉积薄膜30分钟。沉积完成后,在与沉积过程相同的磁场、衬底温度和氧气压力条件下,对薄膜进行原位热处理20分钟。
最后,利用扫描电镜、TEM电镜和X射线衍射对目标产物进行微结构表征,分别如图1和图3所示。利用磁性测试平台(SQUID)和输运测试系统(PPMS)分别对目标产物进行磁性能和输运性能的测量,分别如图4和图5所示。
由图1可知,制得的目标产物是具有垂直排列纳米结构的双层薄膜,双层薄膜结构为:一层紧挨衬底,厚度为0-40 nm的薄的连续平面膜;第二层是在连续层上面外延生长的垂直排列的纳米柱层。
图2为钙钛矿锰氧化物单相薄膜在制备过程中随施加磁场增大,其微结构由平面膜结构到柱状结构,最后到双层膜结构的演化示意图。
由图3可知,制得的目标产物具有高的外延性。
由图4可知,强磁场条件下制得的目标产物具有显著的磁垂直异向性。
由图5可知,具有垂直排列纳米结构的双层La0.5Ca0.5MnO3单相薄膜具有增强的、可调的低场磁阻效应,而且该效应适用于一个宽的工作温度范围。
选取不同组分的钙钛矿锰氧化物、不同的陶瓷衬底,以及不同的强磁场,重复上述实施例1,同样可制得近似于图1所示的具有垂直排列纳米结构的双层单相薄膜,该薄膜材料也如图4、图5中的曲线所示具有显著的垂直磁异向性以及具有宽的工作温度范围和显著增强的低场磁阻效应。
显然,本领域的技术人员可以对本发明的双层钙钛矿结构的锰氧化物单相薄膜材料以及制备条件进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

1.一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料,其生长在衬底上,其特征在于所述双层钙钛矿锰氧化物单相薄膜材料的化学式为La1-xCaxMnO3,0.35<x≤1,其双层结构由一层沿着衬底外延生长的0-40 nm厚的连续层和垂直于连续层的纳米柱层构成,所述纳米柱层沿着连续层外延生长。
2.根据权利要求1所述的一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料,其特征在于所述衬底为陶瓷衬底或半导体衬底;其中,陶瓷衬底为铝酸镧系衬底、拉萨特或钛酸锶衬底,半导体衬底为硅衬底。
3.根据权利要求1所述的一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料,其特征在于所述纳米柱层中单个纳米柱的直径为10-60 nm。
4.根据权利要求1所述的一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料的制备方法,其特征在于,包括以下步骤:
S1、按照镧、钙、锰和氧的摩尔比,称量氧化镧、氧化钙和氧化锰,通过玛瑙钵研磨均匀,再通过多次高温烧结,形成镧钙锰氧粉末,最后通过模具压片高温烧结,制备成镧钙锰氧靶材;其中,高温烧结的温度控制在1100-1400℃;
S2、在衬底上生长单相薄膜:首先将衬底和S1中制备的镧钙锰氧靶材安装在脉冲激光沉积系统中,然后通过分子泵对脉冲激光沉积系统的腔体抽真空;在制备薄膜之前,先将衬底加热到680℃,然后用超导磁体垂直于衬底平面施加大于等于5 T的强磁场,并将脉冲激光沉积系统的真空腔体保持在0.35 mbar的氧气压力;当磁场强度达到要求后,通过脉冲激光沉积系统中的KrF准分子激光器发射脉冲激光沉积薄膜,脉冲激光的波长为248 nm,能量为200 mJ,重复频率为5 Hz,沉积时间为30分钟;沉积完成后,在与沉积过程相同的磁场、衬底温度和氧气压力条件下,对薄膜进行原位热处理20分钟,即可制得所述双层钙钛矿锰氧化物单相薄膜材料。
5.根据权利要求1所述的一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料在垂直磁记录材料、磁存储器或磁头传感器上的应用。
CN201910920569.2A 2019-09-27 2019-09-27 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法 Active CN110668503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910920569.2A CN110668503B (zh) 2019-09-27 2019-09-27 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910920569.2A CN110668503B (zh) 2019-09-27 2019-09-27 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110668503A true CN110668503A (zh) 2020-01-10
CN110668503B CN110668503B (zh) 2022-02-08

Family

ID=69079500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910920569.2A Active CN110668503B (zh) 2019-09-27 2019-09-27 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110668503B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592237A (zh) * 2022-03-11 2022-06-07 淮北师范大学 一种外延薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870174A (zh) * 2005-05-27 2006-11-29 中国科学院物理研究所 钙钛矿类氧化物薄膜复合器件
CN101775644A (zh) * 2010-02-10 2010-07-14 中国科学技术大学 具有各向异性磁阻效应的锰氧化物外延薄膜及其制备方法与应用
CN101876054A (zh) * 2009-11-16 2010-11-03 中国科学技术大学 锰氧化物外延薄膜及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870174A (zh) * 2005-05-27 2006-11-29 中国科学院物理研究所 钙钛矿类氧化物薄膜复合器件
CN101876054A (zh) * 2009-11-16 2010-11-03 中国科学技术大学 锰氧化物外延薄膜及其制备方法与应用
CN101775644A (zh) * 2010-02-10 2010-07-14 中国科学技术大学 具有各向异性磁阻效应的锰氧化物外延薄膜及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. ANTONAKOS等: "Strain effects on La0.5Ca0.5MnO3 thin films", 《MATERIALS SCIENCE AND ENGINEERING B》 *
D. RUBI等: "Structural and electrical characterisation of La0.5Ca0.5MnO3 thin films grown by pulsed laser deposition", 《PHYSICA B》 *
G.H. AYDOGDU等: "Thickness dependent microstructural changes in La0.5Ca0.5MnO3 thin films deposited on (111) SrTiO3", 《THIN SOLID FILMS》 *
KEJUN ZHANG等: "Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition", 《SCIENTIFIC REPORTS》 *
SHANKAR S. KEKADE等: "Electron transport behavior and charge ordering phenomena in La0.5Ca0.5MnO3", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592237A (zh) * 2022-03-11 2022-06-07 淮北师范大学 一种外延薄膜的制备方法

Also Published As

Publication number Publication date
CN110668503B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
Izumi et al. Atomically defined epitaxy and physical properties of strained La 0.6 Sr 0.4 MnO 3 films
CN106756793B (zh) 一种镍酸钕基超晶格相变薄膜材料及其制备和金属-绝缘转变温度的调控方法
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN102101793B (zh) 具有可调节电荷轨道有序特性的锰氧化物薄膜
Jiang et al. Epitaxial growth of BiFeO3 films on SrRuO3/SrTiO3
CN102544093B (zh) 半导体场效应结构、及其制备方法和用途
CN110668503B (zh) 一种具有垂直排列纳米结构的双层钙钛矿锰氧化物单相薄膜材料及其制备方法
Hao et al. Preparation of SrCoOx thin films on LaAlO3 substrate and their reversible redox process at moderate temperatures
Sheeraz et al. Freestanding Oxide Membranes for Epitaxial Ferroelectric Heterojunctions
US20120058323A1 (en) Control of Strain Through Thickness in Epitaxial Films Via Vertical Nanocomposite Heteroepitaxy
CN110047992A (zh) 具有水平和垂直交换偏置效应的锰氧化物薄膜及制备方法
CN101775644A (zh) 具有各向异性磁阻效应的锰氧化物外延薄膜及其制备方法与应用
Punugupati et al. Structural, magnetic and magnetotransport properties of bi-epitaxial La0. 7Sr0. 3MnO3 (110) thin films integrated on Si (001)
CN103276360B (zh) 一种磁性纳米线阵列薄膜及其制备方法
Alaria et al. Structural and magnetic properties of wurtzite CoO thin films
Esat et al. Microstructure development of BiFeO3–PbTiO3 films deposited by pulsed laser deposition on platinum substrates
CN110581217B (zh) 在单晶硅基片上外延生长制备双层钙钛矿锰氧化物薄膜的方法
Pugazhvadivu et al. Structural, magnetic and electrical properties of calcium modified bismuth manganite thin films
Bae et al. Novel sol-gel processing for polycrystalline and epitaxial thin films of La 0.67 Ca 0.33 MnO 3 with colossal magnetoresistance
Saito et al. Chemical solution deposition of magnetoelectric ZnO–La2CoMnO6 nanocomposite thin films using a single precursor solution
Malisa et al. Colossal magnetoresistance effect in epitaxially grown La2/3Ca1/3MnO3 perovskite-like manganite thin films
Markna et al. Size dependent modifications in the physical properties of chemical solution deposition and pulsed laser deposition grown La 0.7 Ca 0.3 MnO 3 manganite thin films: a comparative study
Choi et al. Epitaxial growth of antiperovskite GaCMn 3 film on perovskite LaAlO 3 substrate
Shim et al. Low-Field Tunnel-Type Magnetoresistance Properties of Polycrystalline and Expitaxial La~ 0~.~ 6~ 7Sr~ 0~.~ 3~ 3MnO~ 3 Thin Films
Lee et al. Fabrication details of Ba 1-x K x Fe 2 As 2 films by pulsed laser deposition technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant