CN110665114A - 具有小尺寸发射天线的远程rf功率系统 - Google Patents

具有小尺寸发射天线的远程rf功率系统 Download PDF

Info

Publication number
CN110665114A
CN110665114A CN201910720180.3A CN201910720180A CN110665114A CN 110665114 A CN110665114 A CN 110665114A CN 201910720180 A CN201910720180 A CN 201910720180A CN 110665114 A CN110665114 A CN 110665114A
Authority
CN
China
Prior art keywords
antenna
stimulation
electromagnetic energy
implantable device
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910720180.3A
Other languages
English (en)
Other versions
CN110665114B (zh
Inventor
L·T·佩里曼
R·勒巴伦
A·西梅乌诺维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuronix LLC
Swt Special Purpose LLC
Original Assignee
Mikelen Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikelen Equipment Co Ltd filed Critical Mikelen Equipment Co Ltd
Publication of CN110665114A publication Critical patent/CN110665114A/zh
Application granted granted Critical
Publication of CN110665114B publication Critical patent/CN110665114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • A61N1/37223Circuits for electromagnetic coupling
    • A61N1/37229Shape or location of the implanted or external antenna
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种天线组件,包括:天线,所述天线包括:具有辐射表面的金属信号层,和馈入端口;以及波导,其包围天线并且被配置用于在远离天线的方向上引导从辐射表面发射的电磁能;和控制器模块,其被连接到所述馈入端口并且被配置用于驱动天线以从辐射表面发射电磁能;其中,所述天线、波导和控制器模块被构造成使得,当控制器模块驱动天线时,所发射的电磁能匹配可植入装置的接收特征并且,在所述可植入装置被设置为距天线至少10厘米时,足以使可植入装置仅仅利用从天线接收的电磁能即可制造振幅足以刺激患者的神经组织的一个或多个电脉冲。

Description

具有小尺寸发射天线的远程RF功率系统
本申请是2015年5月12日提交的申请号为“201580036252.2”发明名称为“具有小尺寸发射天线的远程RF功率系统”的发明专利申请的分案申请。
相关申请的交叉引用
本申请要求于2014年5月12日提交的美国临时专利申请61/992,150 的权益,该申请被整体以引用方式并入本文。
技术领域
本申请总体上涉及包括向可植入装置远程提供功率和刺激参数的天线组件的RF刺激系统。
背景技术
天线已经被设计出来并且与被植入装置一起使用,来帮助多种医学条件下的治疗。通常,这些天线被靠近患者身体放置。在一些情况下,天线的导电元件过度地吸收电磁能,当这些天线靠近患者身体放置时,这会引起不利的事件,比如组织燃烧、不期望的血块以及由于天线直接粘附到皮肤组织而引起的皮肤刺激。
发明内容
在一个方面中,一些实施方式提供了一种天线组件,包括:天线,所述天线包括:具有辐射表面的金属信号层,和馈入端口;以及波导,其包围天线并且被配置用于在远离天线的方向上引导从辐射表面发射的电磁能;和控制器模块,其被连接到所述馈入端口并且被配置用于驱动天线以从辐射表面发射电磁能;其中,所述天线、波导和控制器模块被构造成使得,当控制器模块驱动天线时,所发射的电磁能匹配可植入装置的接收特征并且,在所述可植入装置被设置为距天线至少10厘米时,足以使可植入装置仅仅利用从天线接收的电磁能即可制造振幅足以刺激患者的神经组织的一个或多个电脉冲。
实施方式可包括下述特征中的一个或多个。天线组件可还包括介质透镜,其充填波导并且从波导的开口向外突伸以形成突出部,所述突出部被成形为使所发射的电磁能在远离发射表面的方向上在空间上缩窄。所述突出部可被制成锥形渐缩形状。所述突出部可被制成锥形渐缩而具有高斯或正弦曲线轮廓。
所述天线组件可具有与波导相关联的回波损耗截止频率并且所述介质透镜可被进一步配置用于降低回波损耗截止频率。所述天线可在从约500 MHz至约4GHz的频带内可操作。所述辐射表面可以是蝶形的并且具有两个叶结构,所述两个叶结构在馈入端口处通过两个大致平行的杆结构连接到彼此。所发射的电磁能可被沿着杆结构的长轴极化。所述辐射表面可以是从第一空间定向至第二空间定向可调节的以使在可植入装置处接收的极化电磁能增加。
所述波导可以是矩形波导,所述矩形波导具有包围所述蝶形的辐射表面的四个壁。所述矩形波导可具有约15cm的内部长度,约7.6cm的内部宽度,和约5cm的高度。所述矩形波导可具有至少10cm的内部长度,所述矩形波导可具有约为15:7.6:5的内部长度、宽度、和高度比。
在另一个方面中,一些实施方式可包括一种向可植入装置无线供应能量的方法,所述方法包括:从天线组件上的辐射表面辐射电磁能,被辐射的电磁能到达可植入装置,所述可植入装置被设置在至少10厘米远处并且被植入患者体内,使得可植入装置仅仅通过利用所辐射的电磁能即可制造适合于刺激患者的神经组织的一个或多个电刺激脉冲并且将所述电刺激脉冲应用到患者的神经组织。
实施方式可包括下述特征中的一个或多个。辐射电磁能还包括在患者睡着时辐射电磁能,使得被制造的所述一个或多个电刺激脉冲在患者睡着期间被应用而刺激患者的神经组织。
所述方法可还包括:调节天线组件的位置使得天线组件的辐射表面距离可植入装置不大于六英尺。所述方法可还包括:调节天线组件的位置使得天线组件的辐射表面距离可植入装置不小于一英尺。所述方法可还包括:调节天线组件的定向使得在可植入装置处接收的被辐射电磁能增加。所述方法可还包括:将天线组件连接到控制器模块;和从连接于其上的控制器模块驱动天线组件,使天线组件上的辐射表面辐射电磁能以启动可植入装置。所述方法可还包括:建立编程模块至控制器模块之间的链接;和从编程模块向控制器模块发射对将在可植入装置处制造以及随后被应用于刺激患者的神经组织的所述一个或多个刺激脉冲的参数编码的数据。
在又另一方面中,一些实施方式可包括一种系统,该系统包括:无线启动可植入装置的天线组件,天线组件包括:天线,所述天线包括:金属信号层,其具有辐射表面并且被配置为经由辐射耦合而发射电磁能;波导,其包围天线并且被配置用于在远离天线的方向上引导从辐射表面发射的电磁能;和;控制器模块,其被连接到天线的馈入端口并且被配置用于驱动天线组件以使天线上的辐射表面辐射电磁能。
实施方式可包括下述特征中的一个或多个。所述系统可还包括可植入装置,其从患者体内的一位置可操作并且距离天线组件大于10厘米,其中,可植入装置仅仅利用从天线组件接收的电磁能即制造振幅足以刺激患者的神经组织的一个或多个刺激脉冲。
所述波导可以是具有包围辐射表面的四个壁的矩形波导。所述矩形波导可具有约15cm的内部长度,约7.6cm的内部宽度,和约5cm的高度。所述矩形波导可具有至少10cm的内部长度,并且所述矩形波导可具有约为15:7.6:5的内部长度、宽度、和高度比。
所述系统可还包括介质透镜,其充填波导并且从波导的开口向外突伸以形成突出部,所述突出部被成形为使所发射的电磁能在远离发射表面的方向上在空间上缩窄。所述突出部可被制成锥形渐缩形状。所述突出部可被制成锥形渐缩而具有高斯或正弦曲线轮廓。
所述天线可以是在从约500MHz至约4GHz的频带内可操作的。所述辐射表面可以是蝶形的并且具有两个叶结构,所述两个叶结构在馈入端口处通过两个大致平行的杆结构连接到彼此。
所发射的电磁能可被沿着杆结构的长轴极化。所述可植入装置可包括设置在患者体内的可植入装置上的偶极天线,并且所述辐射表面是从第一空间定向至第二空间定向可调节的以使在偶极天线处接收的极化电磁能增加。
附图说明
图1描绘出无线刺激系统的例子的高级概要图。
图2描绘出无线刺激系统的例子的细节图。
图3A-3C示出微波刺激系统的操作的例子。
图4A-4B示出当微波刺激系统处于操作中时的辐射空间区域的例子。
图5A-5B示出了无线刺激系统的天线组件的例子。
图6A-6C是带波导的天线组件的示意图。
图7示出了图6A-6C的天线组件的回波损耗特征的例子。
图8示出了在约915MHz处共振的天线组件的模拟回波损耗特征的例子。
图9A-9B示出了来自图8的天线组件的模拟电磁辐射图的例子。
图10示出了包括蝶形辐射表面、波导、和介质透镜的天线组件的例子。
图11A-11B示出了图10的天线组件的模拟回波损耗和发射特征。
图12示出了来自图10的天线组件的模拟电磁辐射图的立体图。
图13A-13B示出了图12的模拟电磁辐射图的X-Z和Y-Z平面图。
不同图中类似的参考标记表示类似的部件。
具体实施方式
在各实施方式中,公开了向目标可刺激组织、比如神经应用一个或多个电脉冲的系统和方法,用于治疗慢性疼痛,炎症,关节炎,睡眠呼吸暂停,病情突发,大小便失禁,与癌症相关的疼痛,大小便失禁,运动开始与控制的问题,不自主运动,血管功能不全,心率不齐,肥胖症,糖尿病,颅面痛、比如偏头痛或丛集性头痛,以及其它身心机能失调。在某些实施例中,一装置可被用于,通过在不使用缆线或感应耦合的情况下利用远程射频(RF)能量,发送电能至目标神经组织,以启动无源的被植入无线刺激器装置。这些目标神经可包括、但不限于脊髓和周围区域,包括背角,背根节,存在的神经根,神经节,背柱纤维和离开背柱和脑的周围神经束,比如迷走神经,枕骨,三叉神经,舌下神经,骶椎,尾神经等。
无线刺激系统可包括带有一个或多个电极和一个或多个导电天线(例如,偶极或贴片天线)的可植入刺激器装置,以及用于频率波形和电能整流的内部电路。该系统可还包括外部控制器和天线,用于在既不用缆线也不用感应耦合的方式从外部源向可植入刺激器装置发射射频或微波能量以提功率。
在各种实施方式中,无线的可植入刺激器装置被以无线方式启动(并且因此不需要有线连接),并且包含从体外源接收脉冲指令所必须的电路。例如,各实施例采用内部偶极(或其它)天线配置来通过电辐射耦合接收 RF功率。这允许这种装置在不用物理连接到可植入脉冲反生器(IPG)的情况下或不使用感应线圈的情况下产生能够刺激神经束的电流。
天线可被设计用于从一遥远位置(例如,多达四至六英尺并且静止不动)向接收天线发射微波能量的目的,所述接收天线位于患者的皮肤下面,或位于皮肤上。该天线设计可取决于患者在接受治疗的同时进行移动的需求。天线具有小尺寸可能是有利的,这样天线就可以与房间的周围环境协调。本公开聚焦于具有较好的匹配和收益的、紧凑的远程发射天线设计,比同类天线便宜若干数量级以及更容易制造。
根据一些实施方式,无线刺激系统可包括天线组件,其被耦合至控制器模块并且被配置用于向可植入装置辐射电磁能。在一些例子中,可植入装置可以是被配置用于以无线方式接收RF能量和刺激参数的无源神经刺激器装置。仅仅通过使用所接收的电磁能,可植入的无源神经刺激器制造一个或多个刺激脉冲来刺激患者的神经组织。特别地,天线组件可包括具有蝶形辐射表面和馈入端口的天线。馈入端口可被耦合到控制器模块,所述控制器模块驱动天线以从蝶形辐射表面发射电磁能。蝶形辐射表面被总体上设计尺寸和形状为辐射电磁能,以匹配可植入的无源神经刺激器的接收特征。在一个例子中,可植入的无源神经刺激器包括偶极天线,并且所述辐射表面被配置用于发射与偶极接收特征相应的极化(polarized)电磁能。而且,天线组件可还包括波导,其包围天线以远离所述辐射表面引导所发射的电磁能。在一些例子中,介质透镜充满(fill)波导并且从波导的开口向外延伸以形成突出部。该突出部被成形为使所发射的电磁能在远离发射表面的方向上在空间上缩窄。该突出部在形状上可被制成锥形并且可具有高斯或正弦曲线轮廓。
用于向患者提供神经刺激的示例性无线系统的进一步介绍可在下述共同拥有的、已公布的待审PCT申请中找到:2011年1月28日提交的 PCT/US2012/23029,2011年4月11日提交的PCT/US2012/32200,2011年1月28日提交的PCT/US2012/48903,2011年8月12日提交的 PCT/US2012/50633和2011年9月15日提交的PCT/US2012/55746,这些申请被以引用方式并入本文。
图1描绘了无线刺激系统的例子的高级概要图。无线刺激系统可包括四个主要部件,即,程序设计器模块102,RF脉冲发生器模块106,发射 (TX)天线110(例如,贴片天线、槽缝天线、或偶极天线),和被植入无线刺激器装置114。程序设计器模块102可以是运行支持无线连接104的软件应用、比如
Figure BDA0002156909130000061
的计算机装置,比如智能手机。本申请可使使用者能够观察系统状态和诊断情况,改变各参数,增大/减小电极脉冲的预期刺激振幅,和调节RF脉冲发生器模块106的反馈敏感性,以及其它功能。
RF脉冲发生器模块106可包括支持无线连接104的通信电子器件,刺激电路,和为发生器电子器件供电的电池。在一些实施方式中,RF脉冲发生器模块106包括嵌到其包装尺寸外型(form factor)内的TX天线,而在其它实施方式中,TX天线被通过有线连接108或无线连接(未示出)连接到RF脉冲发生器模块106。TX天线110可被直接耦合到组织,以制造启动被植入无线刺激器装置114的电场。TX天线110通过RF接口与被植入无线刺激器装置114通信。例如,TX天线110辐射RF发射信号,该信号通过RF脉冲发生器模块110调制和编码。模块114的被植入无线刺激器装置包含一个或多个天线,比如偶极天线,用于通过RF接口112接收和传输。特别地,天线110与模块114的被植入无线刺激装置上的所述一个或多个天线之间的耦合机构利用的是电辐射耦合并且不是感应耦合。换句话说,此耦合是通过电场,而不是磁场。
通过此电辐射耦合,TX天线110可向被植入无线刺激器装置114提供输入信号。此输入信号包含能量并且可包含对将在被植入无线刺激器装置 114的电极处应用的刺激波形进行编码的信息。在一些实施方式中,此输入信号的功率水平直接决定利用包含在该输入信号中的电能产生的所述一个或多个电脉冲的应用振幅(例如,功率,电流,或电压)。在被植入无线刺激器装置114内具有用于解调RF发射信号的部件,和用于向周围的神经组织传递刺激的电极。
RF脉冲发生器模块106可被皮下植入,或它可被穿戴在体外。当在体 外时,RF发生器模块106可被合并到带或背带设计中,以允许穿过皮肤和 下面的组织的电辐射耦合,向被植入无线刺激器装置114传递功率和/或控 制参数。在任一情况下,无线刺激器装置114内部的接收器电路可捕捉由 TX天线110辐射的能量并且将此能量转换成电波形。接收器电路可进一步 修改该波形以制造适合于神经组织的刺激的电脉冲。
在一些实施方式中,RF脉冲发生器模块106可远程控制刺激参数(即,应用于神经组织的电脉冲的参数)和基于从被植入无线刺激器装置114接收的RF信号监控来自无线刺激器装置114的反馈。通过RF脉冲发生器模块106实施的反馈检测算法可监控从被植入无线刺激器装置114无线发送的数据,该数据包括与被植入无线刺激器装置114正在从RF脉冲发生器接收的能量有关的信息以及与正在被传递至电极垫的刺激波形有关的信息。为了在给定医疗条件下提供有效治疗,该系统可被调节,以通过电刺激向神经纤维提供最佳量值的应激或抑制。闭环反馈控制方法可被使用,其中来自被植入无线刺激器装置114的输出信号被监控并且被用于确定适当水平的神经刺激电流用于维持有效的神经活动,或者,在一些情况下,在开环控制方法中患者可手动调节输出信号。
图2绘示了无线刺激系统的例子的详细图示。如图所示,编程模块102 可包括用户输入系统202和通信子系统208。用户输入系统221可允许各参数设置被用户以指令组的形式进行调节(在一些情况下,在开环形式中)。通信子系统208可经由无线连接104、比如Bluetooth或Wi-Fi向RF脉冲发生器模块106发射这些指令组(以及其它信息),以及从模块106接收数据。
例如,程序设计器模块102可为多个用户使用,比如患者的控制单元或临床医生的程序设计器单元,可被用于发送刺激参数至RF脉冲发生器模块106。可被控制的刺激参数可包括如表1中所示范围内的脉冲振幅、脉冲频率、和脉冲宽度。本文中,术语脉冲是指直接产生该组织的刺激的波形相位;电荷平衡相位的参数(在下面描述的)可类似地进行控制。患者和/ 或临床医生也可以可选地控制治疗的总体持续时间和模式。
刺激参数表1
脉冲振幅:0至20mA
脉冲频率:0至10000Hz
脉冲宽度:0至2ms
在初始植入手术期间,RF脉冲发生器模块106可初始时被编程为满足用于每一单个患者的特殊参数设置。因为医疗条件或身体本身可能随时间变化,能够重新调节参数设置可能是有益的,以确保神经调节疗法的持续功效。
程序设计器模块102在功能上可以是智能装置和相关的应用装置。智能装置的硬件可包括CPU 206,并且可被用作媒介物用于处理在图形用户界面(GUI)204上的触摸屏输入,进行处理和存储数据。
RF脉冲发生器模块106可经由有线连接108连接到外部TX天线110。可选地,天线和RF脉冲发生器两者都被皮下设置(未示出)。
由RF脉冲发生器模块106发送至被植入无线刺激器装置114的信号可包括功率和参数设置属性两者,关于刺激波形、振幅、脉冲宽度、和频率。 RF脉冲发生器模块106可还用作从被植入无线刺激器装置114接收反馈信号的无线接收单元。为此目的,RF脉冲发生器模块106可包含,用于处理被发射至装置114的信号的产生以及用于处理反馈信号、比如来自刺激器装置114的那些信号,的微电子器件或其它电路。例如,RF脉冲发生器模块106可包括控制器子系统214,高频振荡器218,RF放大器216,RF开关,和反馈子系统212。
控制器子系统214可包括用于处理数据处理的CPU 230,存储子系统 228、比如本地存储器,与程序设计器模块102通信(包括从程序设计器模块接收刺激参数)的通信子系统234,脉冲发生器电路236,和数字/模拟(D/A) 转换器232。
控制器子系统214可被患者和/或临床医生使用,用于控制刺激参数设置(例如,通过控制从RF脉冲发生器模块106发送至刺激器装置114的信号的参数)。例如,这些参数设置能够影响所述一个或多个电脉冲的功率、电流水平、或形状。对刺激参数的编程可使用编程模块102进行,如上所述,以设置通过RF能量发射至被植入无线刺激装置214中的接收(RX)天线238、典型地偶极天线(但其它类型可被使用)的重复率、脉冲宽度、振幅、和波形。临床医生可选择将某些设置锁定和/或隐藏在程序设计器接口内,从而限制患者观察或调节某些参数的能力,因为某些参数的调整可能需要神经心理学、神经解剖学、神经调控协议、和电刺激的安全极限的详细医学知识。
控制器子系统214可将所接收的参数设置存储在当地存储器子系统228 中,直到这些参数设置被从编程模块102接收的新输入数据修改。CPU 206 可使用存储在当地存储器装置中的参数来控制脉冲发生器电路236,以产生刺激波形,该波形通过从300MHz至8GHz范围内(优选约700MHz和 5.8GHz之间并且更优选约800MHz和1.3GHz之间)的高频振荡器218 调制。所生成的RF信号可被RF放大器226放大,然后通过RF开关223 发送至TX天线110,穿过组织的深度到达RX天线238。
在一些实施方式中,通过TX天线110发射的RF信号简单地来说可以是被无线刺激装置模块114使用用来产生电脉冲的功率发射信号。在其它实施方式中,遥测信号也可被发射到无线刺激器装置114,以发送有关无线刺激器装置114的各操作的指令。遥测信号可通过载体信号的调制而发送 (如果在外面则穿过皮肤,或如果脉冲发生器模块106被皮下植入则穿过其它身体组织)。遥测信号被用于调制该载体信号(高频信号),所述载体信号被耦合到植入天线238但不与在同一刺激器装置上接收的输入干涉,用于启动该装置。在一个实施例中,遥测信号和启动信号被结合成一个信号,其中RF遥测信号被用于调制RF启动信号,因此无线刺激装置通过所接收的遥测信号直接启动;无线刺激装置中的分离的子系统利用包含在信号中的功率并且解释信号的数据内容。
RF开关223可以是多功能器件、比如双定向耦合器,其以最小的插入损耗将相对高振幅的、极短持续时间的RF脉冲传递至TX天线110,同时提供两个低水平输出至反馈子系统212;一个输出传递前向功率信号至反馈子系统212,其中前向功率信号是被发送至TX天线110的RF脉冲的衰减形式,另一输出传递反向功率信号至反馈子系统212的不同端口,其中反向功率是来自TX天线110的反射RF能的衰减形式。
在运转周期时间期间(其中RF信号被发射至无线刺激器装置114), RF开关223被设定为向反馈子系统发送前向功率信号。在停止运转周期时间期间(其中RF信号不被发射至无线刺激器装置114),RF开关223可变化至接收模式,其中来自无线刺激器装置114的反射RF能和/或RF信号被接收,以在反馈子系统212中进行分析。
RF脉冲发生器模块106的反馈子系统212可包括接收电路,用于接收和提取来自无线刺激器装置114的遥测或其它反馈信号,和/或来自TX天线110发射的信号的反射RF能。反馈子系统可包括放大器226,滤波器224,解调器222,和AID转换器220。
反馈子系统212接收前向功率信号并且将此高频AC信号转换成能够被取样和发送到控制器子系统214的DC水平。以这种方式,所生成的RF脉冲的特征可被与控制器子系统214内的参考信号进行比较。如果在任一参数中存在差异(误差),则控制器子系统214可以调控至RF脉冲发生器106 的输出。例如,该调节的特性可与计算误差成比例。控制器子系统214可在其调控方案上引入另外的输入并且限制,比如反向功率的信号振幅和各脉冲参数的任何预定最大或最小值。
反向功率信号可被用于检测RF功率传递系统中的故障环境。在理想环境下,当TX天线110具有与其接触的组织完美匹配的阻抗时,从RF脉冲发生器106产生的电磁波将不受阻地从TX天线110传递到身体组织内。然而,在现实应用中,在用户的身体体型、所穿戴的衣服类型、以及天线110 相对于身体表面的定位方面可能存在较大程度的变化性。因为天线110的阻抗取决于下面的组织和任何介入材料的相对介电常数,并且还取决于天线距皮肤的总体间隔距离,在任何给定应用中,在TX天线110与身体表面的接口处都可能阻抗的不匹配。当发生这种不匹配时,从RF脉冲发生器 106发出的电磁波就会在此接口处部分地反射,并且此反射的能量向回传播通过天线馈送装置。
双定向耦合器RF开关223可防止被反射的RF能向回传播到放大器226 内,并且可减弱此反射RF信号以及将被减弱的信号作为反向功率信号发射至反馈子系统212。反馈子系统212可将此高频AC信号转换成能够进行取样并且发送到控制器子系统214的DC水平。然后,控制器子系统214可以计算反向功率信号的振幅与前向功率信号的振幅的比。反向功率信号的振幅与前向功率信号的振幅的比可以表示阻抗不匹配的严重性。
为了感测阻抗匹配环境,控制器子系统214可实时测量反射功率比,并且根据此测量的预设临界值,控制器子系统214可修改由RF脉冲发生器 106产生的RF功率的水平。例如,对于中等程度的反射功率来说,采取的方案可以是控制器子系统214增大被发射到TX天线110的RF功率的振幅,如用于补偿TX天线至身体的耦合轻微不佳、但可接受的情况时所需要的那样。对于较高比值的反射功率来说,采取的方案可以是禁止RF脉冲发生器 106操作并且设定表示TX天线110与身体很少地耦合或没有耦合的错误代码。这种类型的反射功率故障环境也可能由至TX天线的不良连接或断开的连接产生。在任一情况下,当反射功率比高于预定临界值时都可能希望停止RF发射,因为内部反射的功率可导致不希望的加热内部部件,并且此故障环境意味着本系统不能传递足够的功率至被植入无线刺激装置因而不能向用户传递疗法。
在接收循环期间,无线刺激器装置114的控制器242可通过天线238 发射报告信号、比如遥测信号,以与RF脉冲发生器模块106通信。例如,在晶体管电路的通和断状态期间,来自无线刺激器装置114的遥测信号可被耦合到偶极天线238上的调制信号,以启动或禁用生成用于发射到外部 (或远程植入的)脉冲发生器模块106所必须的对应RF突发的波形。天线 238可被连接到与组织接触的电极254,以为所发射的信号提供返回路径。 A/D(未示出)转换器可用于将所存储的数据转化成能够在来自无线刺激器装置114的内部天线238的脉冲-调制信号上传输的序列化模式。
来自被植入无线刺激器装置114的遥测信号可包括刺激参数,比如从电极传递到组织的电流的功率或振幅。反馈信号可被发射到RF脉冲发生器模块116,以指示在神经束处的刺激的强度,通过将该信号耦合到被植入 RX天线238,RX天线238辐射遥测信号至外部(或远程植入的)RF脉冲发生器模块106。反馈信号可包括模拟的和数字的遥测脉冲调制载体信号之一或两者。诸如刺激脉冲参数以及所测量的刺激器性能的特征的数据可被存储在被植入刺激器装置114内的内部存储装置中,并且被发送到遥测信号上。载体信号的频率可在300MHz至8GHz的范围内(优选在约700MHz 和5.8GHz之间并且更优选在约800MHz和1.3GHz之间)。
在反馈子系统212中,遥测信号可利用解调器222向下行调制,并且通过模拟至数字(AD)转换器220进行处理而被数字化。然后,数字遥测信号可被路由到CPU 230,所述CPU230带嵌入码、带有重新编程的选项,以基于所接收的信号的振幅将该信号翻译成该组织中的对应电流测量结果。控制器子系统214的CPU 230可以使报告的刺激参数与保持在本地存储器 228中的那些相比较,来验证无线刺激器装置114传递到组织的特定刺激。例如,如果无线刺激装置报告电流比指定的低,则来自RF脉冲发生器模块106的电流可被增大,以使被植入无线刺激器装置114具有更大的可用功率用于刺激。被植入无线刺激器装置114可实时生成遥测数据,例如,以每秒8千字节的速率。从被植入刺激器装置114接收的所有反馈数据可按照时间进行记录,并且被取样进行存储以被能够由健康护理人员访问的遥控监测系统取用用于进行趋势研究和分析相互关系。
被内部天线238接收的可远程编程的RF信号序列可被调理成波形,所述波形在可植入无线刺激器装置114内通过控制子系统242控制并且被路由至靠近待刺激组织设置的适当电极254。例如,从RF脉冲发生器模块106 发射的RF信号可被RX天线238接收,并且通过被植入无线刺激器装置114 内的电路、比如波束调理电路240处理而被转换成电脉冲,所述电脉冲通过电极接口252应用到电极254。在一些实施方式中,被植入无线刺激器装置114包含两个至十六个之间的电极254。
波束调理电路240可包括整流器244,所述整流器整流RX天线238接收的信号。经整流的信号可被馈送到控制器242用于接收来自RF脉冲发生器模块106的编码指令。整流器信号也可被馈送到电荷平衡部件246,所述电荷平衡部件被配置用于制造一个或多个电脉冲使得所述一个或多个电脉冲在所述一个或多个电极处生成大致零净电荷(也就是,脉冲被电荷平衡)。被电荷平衡的脉冲经过限流器248传递至电极接口252,其根据需要将脉冲应用到电极254。
限流器248确保了被应用到电极254的脉冲的电流水平不高于临界电流水平。在一些实施方式中,被接收的RF脉冲的振幅(例如,电流水平、低压水平、或功率水平)直接决定刺激的振幅。在这种情况下,包括限流器248来防止过高电流或电荷被传递通过这些电极可能是特别有利的,虽然在其它实施方式中限流器248可以使用,而在本实例中不是这种情况。一般来说,对于具有若干平方毫米表面积的给定电极来说,为安全起见应该被限制的是每相的电荷数(其中,刺激相所传递的电荷是电流的积分)。但是,在一些情况下,该限制可以放置在电流上,其中最大电流乘以最大可能的脉冲持续时间小于或等于最大安全电荷。更一般地,限制器248用作限制电脉冲特征(例如,电流或持续时间)的电荷限制器,以使每相的电荷数保持低于临界水平(典型地,安全电荷极限)。
在被植入无线刺激器装置114接收足以产生超过预定安全电荷极限的刺激的RF功率“强”脉冲的情况下,限流器248可自动限制或“剪断”刺激相以将相的总电荷维持在安全极限内。限流器248可以是一旦达到安全电流极限(临界电流水平)即切断至电极254的信号的无源电流限制件。可选地或附加地,限流器248可与电极接口252通信以断开所有电极254,防止破坏组织的电流水平。
剪断事件可以触发限流器反馈控制模式。剪断的动作可导致控制器向脉冲发生器106发送临界功率数据信号。反馈子系统212检测到临界功率信号并且将该信号解调成被通信至控制器子系统214的数据。控制器子系统214算法可以通过特别地降低RF脉冲发生器产生的RF功率或完全切断功率而在此电流限制环境发挥作用。以这种方式,如果被植入无线刺激器装置114报告其正在接收过高RF功率则脉冲发生器106可降低被传递至身体的RF功率。
刺激器205的控制器250可与电极接口252通信,用于控制电极设置的各方面以及被应用到电极254的脉冲。电极接口252可用作多路并且控制每一个电极254的极性和开关。例如,在一些实施方式中,无线刺激器 106具有与组织接触的多个电极254,并且,对于给定的刺激来说,RF脉冲发生器模块106可以通过以参数指令无线地发送分派讯息来任意分派一个或多个电极1)用作刺激电极,2)用作回流电极,或3)停用,该控制器250根据需要利用所述参数指令设置电极接口252。例如,在生理学上来说可能有利的是分派一个或两个电极作为刺激电极并且分派所有剩余的电极作为回流电极。
而且,在一些实施方式中,对于给定的刺激脉冲来说,控制器250可以控制电极接口252,以在被指定的各刺激电极中任意分割电流(或根据来自脉冲发生器模块106的指令)。此对电极分派的控制和电流控制可能是有利的,因为实际上电极254可能沿着不同的神经结构空间地分配,并且,通过对刺激电极位置的选择以及为每一个位置指定的电流比例,组织中的总体电流分布可被修改,以选择性地激活特定神经目标。此电流控制策略可提高患者的治疗效果。
在另一实施方式中,刺激的时间进程可被任意操控。给定的刺激波形可在时刻T_start开始并且在时刻T_final结束,此时间进程可被横跨所有刺激电极和回流电极同步;此外,此刺激循环的重复频率可以对于所有电极同步。然而,控制器250,独立地或响应于来自脉冲发生器106的指令,能够控制电极接口252以指定一个或多个电极子集以非同步的开始和停止时间传递刺激波形,并且每一个刺激循环的重复频率可被任意且独立地指定。
例如,具有八个电极的刺激器可被配置为具有五个电极构成的一子集,被称为集合A,和三个电极构成的一子集,被称为集合B。集合A可被配置为使其电极中的两个用作刺激电极,剩余的用作回流电极。集合B可被配置为仅具有一个刺激电极。然后,控制器250指定集合A传递3mA的刺激相、持续时间为200us,然后是电荷平衡相持续时间为400us。此刺激循环可被指定以每秒60个循环的速率重复。然后,对于集合B,控制器250 可指定1mA电流的刺激相、持续时间为500us,然后是电荷平衡相持续时间为800us。集合B的刺激循环的重复速率可独立于集合A设置,例如可以指定每秒25个循环。或者,如果控制器250被配置为使集合B的重复速率匹配至集合A,那么,对于这种情况,控制器250可以指定刺激循环的相对开始时间在时间上同时进行或从彼此随意偏置某一延迟间隔。
在一些实施方式中,控制器250可任意成形刺激波形振幅,并且可以响应于来自脉冲发生器106的指令进行。刺激相可通过恒流源或恒压源进行,并且这种类型的控制可产生静态不变的特征波形,例如恒流源产生特征矩形脉冲,其中电流波形具有非常急剧的上升、用于刺激持续的恒定振幅、以及之后非常急剧地返回到基线。可选地或附加地,控制器250能够增大或减小在刺激相期间和/或在电荷平衡相期间任一时刻的电流水平。因此,在一些实施方式中,控制器250可传递任意成形的刺激波形,比如三角形脉冲、正弦脉冲、或高斯脉冲,例如。类似地,电荷平衡相可被任意地振幅成形,并且也可以振幅成形为领先的阳极脉冲(在刺激相之前)。
如上所述,无线刺激器装置114可包括电荷平衡部件246。一般来说,对于恒流刺激脉冲来说,脉冲应通过使阴电流的量值等于阳电流的量值而进行电荷平衡,这通常称为双相刺激。电荷密度是电流的量值乘以其被应用的持续时间,并且通常用单位uC/cm2表示。为了避免诸如pH变化的不可逆电化学反应、电极溶解以及组织破坏,在电极-电解质界面处不应出现净电荷,电荷密度小于30uC/cm2一般来说是可接受的。双相刺激电流脉冲确保了在每一个刺激循环之后没有净电荷出现在电极处,并且电化学过程被平衡以防止纯直流电流。无线刺激器装置114可被设计用于保证所生成的刺激波形具有零净电荷。通过减少或消除在电极-组织分界面处形成的电化学反应产物,电荷平衡的刺激被认为对组织具有最小破坏效果。
刺激脉冲可具有负电压或电流,被称为波形的阴极相。刺激电极在刺激循环期间的不同时刻可具有阴极相和阳极相两者。传递振幅足以刺激相邻神经组织的负电流的电极被称为“刺激电极”。在刺激相期间,刺激电极用作电流吸收器。一个或多个另外的电极用作电流源并且这些电极被称为“回流电极”。回流电极设置在距刺激电极某一距离处的、组织中的其它地方。当典型的负刺激相被在刺激电极处传递到组织时,回流电极具有正刺激相。在随后的电荷平衡相期间,每一个电极的极性被颠倒。
在一些实施方式中,电荷平衡部件246利用与刺激电极和身体组织串联电设置的隔直流电容器,其位于在刺激器电路内的刺激产生点和刺激传递至组织的位置点之间。以这种方式,可形成阻容(RC)网络。在多电极刺激器中,对于每一个电极可使用一个电荷平衡电容器或者在刺激器电路内、在电极选择点之前可使用集中式电容器。RC网络可阻挡直流电(DC),然而它还可以阻止低频交流电(AC)被传递到组织。低于一截止频率,串联RC网络会从根本上阻挡信号,并且在一个实施例中,刺激器系统的设计可以确保截止频率不高于刺激波形的基频。在如这里描述的本实施例中,无线刺激器可具有电荷平衡电容器,其具有根据所测量的电极串联电阻和植入该刺激器的组织环境来选择的数值。在本实施例中,通过选择特定的电容值,RC网络的截止频率为刺激脉冲的基频或之下。
在其它实施方式中,截止频率可被选择为该刺激的基频或之上,并且,在此情景下,在电荷平衡电容器之前制造的刺激波形被称为驱动波形,其可被设计为非平稳的,其中驱动波形的包络在驱动脉冲的持续时间期间变化。例如,在一个实施例中,驱动波形的初始振幅被设定为初始振幅Vi,并且在脉冲的持续时间期间本振幅增加,直到其到达最终值k*Vi。通过随时间改变驱动波形的振幅,经过电荷平衡电容器的刺激波形的形状也被修改。刺激波形的形状可以此方式修改以便制造在生理学上有利的刺激。
在一些实施方式中,无线刺激器装置114可制造遵循由接收偶极天线 238接收的RF脉冲的包络的驱动波形包络。在这种情况下,RF脉冲发生器模块106可直接控制无线刺激器装置114内驱动波形的包络,因而在刺激器自身内不需要能量存储装置。在本实施方式中,刺激器电路可以修改驱动波形的包络或可以将其直接传递至电荷平衡电容器和/或电极选择平台 (stage)。
在一些实施方式中,被植入无线刺激器装置114可传递单相驱动波形至电荷平衡电容器或者它可以传递多相驱动波形。在单相驱动波形、例如负向矩形脉冲情况下,脉冲包括生理学刺激相,并且电荷平衡电容器在此相期间被极化(充电)。在驱动脉冲结束之后,电荷平衡功能完全由电荷平衡电容器的被动放电进行,其以相对于前面的刺激相反的极性穿过组织散尽其电荷。在一个实施方式中,刺激器内的电阻器有助于电荷平衡电容器的放电。在一些实施方式中,利用被动放电阶段,电容器可在后面的刺激脉冲开始之前允许差不多完全放电。
在多相驱动波形情况下,无线刺激器可进行内部切换以传递负向的或正向的脉冲(相)到电荷平衡电容器。这些脉冲可以任何序列以及以变化的振幅和波形形状传递,以实现预期的生理学效果。例如,刺激相之后可以是主动驱动的电荷平衡相,和/或在刺激相之前可以是相反相。在该刺激之前具有相反极性相,例如,可以具有减小用于刺激组织所需的刺激相振幅的优势。
在一些实施方式中,刺激和电荷平衡相的振幅和定时通过来自RF脉冲发生器模块106的RF脉冲的振幅和定时控制,并且在其它实施方式中此控制可以通过无线刺激器装置114自身携带的电路、比如控制器250内部管理。在自身携带方式控制的情况下,振幅和定时可以通过从脉冲发生器模块106传递的数据命令指定或修改。
在一些应用中,发射天线110可紧密靠近接收天线238放置。例如,发射天线110可由患者佩戴。在其它例子中,发射天线110可放置成更远离患者(以及容置着接收天线238的被植入无源神经刺激器)。在前一情况下,较少的能量可被从远程天线发射出,以向无源神经刺激器无线地提供功率和刺激参数设置。在一些场景中,患者可保持固定不动或睡着。在睡觉期间,患者可能不想佩戴通过缆线连接到控制器模块(比如控制器子系统214)的发射天线110。天线组件可被用于远程提供功率和刺激参数设置至无源神经刺激器。在本例子中,天线组件可以距被植入患者体内的无源神经刺激器大于10厘米。如果患者可以在房间四周移动;那么整个房间可能需要用微波能量场照射。在此情形下,天线的阵列、或宽波束天线可被使用。一些实施方式可引入可调控(例如,机械地,电地)的天线布置,包括接收天线位置跟踪系统。这些实施方式可进一步应用发射天线110的运动控制,以调节天线的照射角度或定向,使其指向接收天线的方向。输出功率根据需要、根据发射天线和接收天线之间的距离以及发射天线的指向性进行调节。
图3A-3C示出RF刺激系统的操作的例子。这些例子可引入单一远程发射天线或发射天线阵列。在一些例子中,该阵列可以是可调控的以聚焦到特殊位置上。在其它例子中,发射天线可以是固定的。
在图3A中,被植入有神经刺激器装置114的患者304在床306上休息,同时从发射天线系统302(例如,发射天线110和控制器子系统214)接受疗法。如图示,发射天线系统302被放置在同一房间中的其它地方,用于向被植入神经刺激器装置114发射包括功率和刺激参数的电磁能308。例如,远程发射天线系统302可放置在外科手术助手310身上或患者床附近的床头柜上。远程发射天线310系统可以是电池或墙上的电源。远程发射天线系统310可通过实体按钮(或控制器子系统214上的其它触碰用户界面) 手动地、或通过无线指令协议比如Bluetooth或RF(例如,cellular,Wi-Fi 等)从编程模块(未示出)接收编程或治疗指令。患者304可通过实体按钮或Bluetooth控制远程发射天线系统302。
图3B描绘了在没有可佩带天线系统的情况下发射电磁能308以向被植入神经刺激器装置114远程提供功率和刺激器参数同时患者304站立或四处走动的场景。在图示中,发射天线系统302(例如,发射天线110和控制器子系统214)设置在与站立或走动的患者在同一房间中的任意家具320上。
图3C描绘了带有被植入神经刺激器装置114的患者304背离发射天线系统302(例如,发射天线110和控制器子系统214)坐着的另一类似场景。例如,患者304可坐在办公椅上。在本图示中,电磁能308被从发射天线系统302发射出以向被植入神经刺激器装置114远程提供功率和刺激参数。
图4A示意出射线空间区域404在从远程发射天线系统302发射时的俯视图。更具体地,远程发射天线系统302的范围被图示为大致锥形和定向的,在远离远程发射天线系统302的一个方向上延伸。一般来讲,患者406 可能需要停留在该射线空间区域内,来接收预期的刺激疗法。该空间区域可与站着或坐着的患者相互作用(即,远程发射天线系统可被配置为与在距远程天线给定距离和有效角度内的被植入天线相互作用)。
图4B示意出射线空间区域404在从远程发射天线系统302产生时的侧视图和三维图。在本图示中,系统射线空间区域404可覆盖在有效角度/距离内站立的患者406,以在患者站立时在被植入神经刺激器装置114上的接收天线处产生有效电场。
在这些图示中,功率和刺激参数的无线发射总体上通过视线操作。换句话说,发射天线系统302大致发射电磁辐射通过自由空间然后进入人体和被植入神经刺激器装置114内。阻挡的物体,比如带有导电损耗材料(例如,低介电常数)或反射RF的材料、比如金属,可能负面影响无线发射。
在这些图示中,发射天线系统302的位置可被调节以使发射天线系统 302的辐射表面距被植入神经刺激器装置不小于一英尺。在此配置中,对于患者来说发射天线系统302可能不能是可穿戴设备。发射天线系统302的位置也可被调节为使得发射天线系统302的辐射表面距被植入神经刺激器装置不大于六英尺,以便可植入神经刺激器装置从发射天线系统302无线地接收足够的操作能量。发射天线系统302可以辐射极化电磁能,并且发射天线系统302的发射天线的定向可被调节以使发射天线与可植入神经刺激器装置上的接收天线更好地对准。当该对准通过重新定向而改进时,在接收天线处接收的电磁能也能够增加。
总体上参考图5A-5B,示出了UWB天线(例如,用于远程发射天线系统302)的总体设计。如图所示,远程发射天线系统302包括包围具有辐射表面504和馈入端口502的天线的矩形孔隙波导506。馈入端口502可包括用于耦合到缆线的缆线连接器508。示例性连接器可包括BNC(Bayonet Neill-Concelman)连接器或SMA(SubMiniature version A)连接器。
在本例子中,天线的辐射表面504是蝶形形状的。除两个叶结构504C1 和504C2之外,此蝶形形状还包括连接这两个叶结构的两个杆结构504A 和504B。蝶形辐射表面504具有连接波导506的接触件504C和504D。蝶形天线在波导506中分布电磁场并且诱导例如沿着杆结构504A和504B的长轴极化的波导传播模式。蝶形天线可在类似偶极子的宽带宽上辐射。用波导506包围天线改进了天线的指向性。将天线尺寸缩放比例可以确定天线的带宽。在一个实施方式中,天线尺寸可被缩放比例使得天线被参数化为具有从500MHz至4GHz的带。缩放比例可被简化至仅仅矩形波导内部的长度、宽度、和高度。
天线的优化尺寸的一个例子在下面的表1中给出了:
优化的UWB天线尺寸 数值(单位)
波导(内部)的长度 30【cm】
波导(内部)的宽度 15【cm】
波导(内部)的高度 10.03【cm】
表1:参数化后的UWB天线示例尺寸
波导尺寸可随着蝶形天线的操作频率成比例变化。本文中,每个波导具有截止频率,超出了该频率波导便不能支持波的传播。当波导包围发射天线时,例如如图所示的蝶形天线,波导需要足够大以支持来自发射天线的电磁波的传播。然而,对于在图3A-3C中绘示的应用来说紧凑的发射天线系统是有利的。
如这里绘示的蝶形天线组件在尺寸上可小于在同一频率上操作的喇叭天线。在一些例子中,蝶形天线组件比在同一频率上操作的喇叭天线小2 至3的因子。除波导横截面和总长度减小了之外,蝶形天线组件的指向性也可得到控制。在一些例子中,天线从波导的嘴口开始并且在辐射表面上可包括被制成锥形的介电过渡部。此锥形部在嘴口处可匹配波导,从而减少至馈入端口508的向回反射。此锥形还可以通过在空间上缩窄蝶形天线的主束宽而聚焦蝶形天线的主束。例如,在一个空间尺寸上缩窄能够致使所发射的电磁束在相同尺寸上的带宽缩窄。
下面示出了超宽带(UWB)天线的设计,同时通过建模进行了分析。在理论结果和从原型得到的实际测量结果之间具有强烈的相互关系,从而证明了仿真模型的精确度和可信性。一般来说,背后带腔的矩形孔隙天线 (CB-RAA,如这里所使用的)具有使它们自身完美适合于远程天线应用的性能特征。CB-RAA可拥有用于在宽带上辐射的辐射特征。此外,其辐射效率非常接近圆形孔(81%对83.6%),同时CB-RAA的电场线是平行的,因而在发射偏离发射天线110的瞄准线时提高了交叉极化性能。
用于UWB天线的这些特征可被引入到在这里讨论的发射天线110中。有利的是远程发射天线110是定向的、高效的、且深至远处的天线,所有这些都相对简单且容易制造。用于发射天线110的交叉极化和E-场定向可允许天线放置在一定范围内的位置,使得足够的能量到达被植入天线以启动该天线。与波导和聚焦透镜的添加相关联的大带宽响应可允许发射天线 110精调至特殊频率,从而使天线更加能够在不同的特殊频率下操作。
参考图6A-6C,示出了带有波导的天线组件的例子。在图6A-6B中,侧板被除去以暴露出天线组件的内部结构,包括带有蝶形辐射表面以及被耦合到缆线连接器的馈入端口的发射天线110。图6C描绘出完整的天线组件(没有除去侧壁)。尺寸与目标天线模型(在表1中示出的)的尺寸的匹配在±0.5mm的公差内。
图7示意出HFSS模型(从有限元求解器)和图6的天线组件的原型在感兴趣的频带上的回波损耗的比较。回波损耗的特征在于由于天线的阻抗不匹配而导致的反射能的量。较多的反射损耗表示更加有效的功率传输。如图7中所示,用于回波损耗的模拟值和实际测量值两者都大致小于或等于-5dB。实际测量的原型值在500MHz和1.25GHz之间的频率上紧密匹配或改进了建模结果。
图8示出以915MHz的共振频率设计的天线组件的模拟回波损耗特征的例子。如图所示,根据需要反射缺口发生在915MHz处,那么蝶形天线参数化至915MHz。
图9A-9B示出模拟的来自图8的天线组件的电磁辐射图的例子。这些图对应于参数化的蝶形天线在共振(915MHz)时的总远场辐射图。在图 9A中,该图是对蝶形天线并且没有波导的情况下计算得到的。在此结构中,蝶形天线围绕着极化轴线均匀地辐射。为了改进发射天线110的指向性,矩形波导可布置在蝶形天线的周围。图9B示出蝶形天线在共振(915MHz) 时并且具有矩形孔隙波导的情况下在远场辐射图中所证明的改进的指向性。如图示,能量被集中在凸角上,如波导的孔隙所引导的。因此,在蝶形天线周围添加波导根据需要极大地增加了天线的指向性。在一些情况下,束宽可被矩形波导减小50%或以上。然而,由于波导的截止频率引起的频率成形,回波损耗、以及阻抗匹配可减小。为了缓和其下侧,波导的嘴口可提供被制成锥形的介电(例如,Dk=3)圆顶部。
现在参考图10,介电圆顶部1006安装在波导孔隙1004的嘴口处并且覆盖辐射表面1002。在这种结构中,圆顶部1004用作天线嘴口处的聚集透镜。添加介电圆顶部1006以充填波导并且覆盖波导的嘴口可为蝶形天线的设计提供若干好处,例如,包括将没有介电充填物的矩形波导的回波损耗截止频率降低至915MHz以下,使得矩形波导的尺寸可进一步减小。此外,介电圆顶部在被制成锥形时可使所发射的能量在空间上缩窄,从而发射变得更集中。例如,在一个尺寸上被制成锥形的介电圆顶部可致使被辐射电磁波的束宽在相同尺寸上变窄。
圆顶部可以具有简单的半周期正弦或高斯形状,例如,沿着Y方向(虽然沿着X-方向的曲线分布可以保持常数)。如上面所讨论的,天线组件可诱导被沿着X方向(沿着杆结构1002A和1002B的长轴的方向)极化的波导发射模式图。显著地,被成形的介电圆顶部可在蝶形天线的上方和下方充填波导。然而,形状或轮廓的变化仅从波导的嘴口延伸,如图示。形状或轮廓的变化-如图示在本示例中为沿着Y方向-可有助于使所发射的电磁能在其向前传播时的散布减少。
圆顶部的高度-Hdome-可被配置用于改进S11(回波损耗)和S21(发射损耗)。圆顶部的高度是指从波导的嘴口延伸到圆顶部的顶点的高度。在一些实施方式中,高度可从0.5英寸变化到6英寸,取决于介电常数,介电常数可从1.5变化到9。对于915MHz的操作来说,介电的圆顶部的高度被选择为3英寸。
如图示,L表示波导的长度并且在从2.5cm至10cm的范围内变化。 Hbowtie是指蝶形的高度位置并且可以固定在L/2处。在本图示中,“a”表示波导基部的较短侧向尺寸,其可以在从3.75cm至7.5cm的范围内变化,“b”表示波导基部的较长侧向尺寸,其可以在从7.5cm至15cm的范围内变化。选择特定的介电常数可以减小波导的尺寸。介电常数也可以帮助从金属波导释放电磁波,因而用作缓冲器来减少馈入端口处的反射。馈入端口可经由如上面所讨论的多种连接器(例如,BNC,SMA等)耦合到50ohm 同轴电缆。
图11A-11B示出了图10的天线组件的模拟回波损耗和发射特征。在图 11A中,对于一定范围的圆顶部高度来说,回波损耗被绘制为频率的函数。特别地,图示的回波损耗是与在915MHz下操作并且被间隔开1英寸的两个偶极天线的基线回波损耗相比的相对回波损耗。参数化(即,调节系统参数进行设计)的结果显示三英寸以及更大的圆顶部高度产生良好的匹配。然而,对于回波损耗中相对小收益的尺寸权衡显示高于三英寸仅有边际收益。因此,三英寸可被认为是具有可接受的反射损耗的最小高度,因此是可取的圆顶部高度。
图11B示出了对于一定范围的圆顶部高度的模拟发射损耗与频率。发射损耗是所发射的电磁波的衰减的特征。较大的数值(较小的负值)对应于较好的发射损耗和更高效的天线。当圆顶部高度高于三英寸时发射损耗中的增益在减小。显著地,发射损耗可以用作远程发射天线的特性的互补量度。因此,将圆顶部的高度制造成大于3英寸可得到非常小的收益。
参数化之后,尺寸可被明智地确定。用于915MHz的尺寸的例子在表2 中给出了。反射和发射损耗曲线说明本设计得到了实质上的改进,用于本公开目的,但是为了进一步验证这些结果,可以检查在接收器处电场相互作用的等高线(contour)和远场辐射图。下面在表2中示出的波导尺寸随着蝶形天线的尺寸(如在上面表1中所示)成比例变化。
优化的远程天线尺寸 数值(单位)
波导(内部)的长度 15.0【cm】
波导(内部)的宽度 7.6【cm】
波导(内部)的高度 5.0【cm】
表2:参数化后的最终远程天线尺寸
图12示出了来自图10的天线组件的模拟电磁辐射图的立体图。特别地,图12示出了根据表2的远程天线设计在915MHz时的远场辐射图。介质加载波导进一步改进了天线的指向性,用于提供传递至被植入神经刺激器装置的足够能量。远场图显示附加的介质加载进一步改进了指向性,这证实了前面发现的损耗特征以及E-场传播结果。另外,该图量化了天线相对于被植入神经刺激器装置的空间定向变化。结果证明被植入神经刺激器可以在远程发射天线的中心轴线的15°内并且仍接收所发射能量的一大部分。
图13A-13B示出了图12的模拟电磁辐射图的X-Z和Y-Z平面图。接收器天线1304是这两个平面的顶部部分。等高线示出与接收器天线1304 相互作用的电磁能的前移凸角。这些图显示发射天线1302和接收器天线1304良好地耦合到一起,因为发射天线1302指向包括接收器天线1304的植入体,并且能量被高效地传递到植入体。由于所进行的进一步参数化,在915MHz时的远场辐射图得以改进,如上面所讨论的。
已经描述了许多实施方式。然而,应理解可制造许多修改。相应地,其它实施方式在下述权利要求的范围内。

Claims (6)

1.一种向可植入装置无线供应能量的方法,所述方法包括:
从天线组件上的辐射表面向所述可植入装置辐射电磁能,所述可植入装置被设置在至少10厘米远处,其中所述天线组件包括:
天线,所述天线包括具有所述辐射表面的金属信号层和馈入端口;和
波导,其包围天线并且被配置用于在远离天线的方向上引导从辐射表面发射的电磁能;和
控制器模块,其被连接到所述馈入端口并且被配置用于驱动天线以从辐射表面发射电磁能;
其中,所述辐射表面是蝶形的并且具有两个叶结构,所述两个叶结构在馈入端口处通过两个大致平行的杆结构连接到彼此,并且其中,所述天线、波导和控制器模块被构造成使得,当控制器模块驱动天线时,所发射的电磁能匹配可植入装置的接收特征并且足以使可植入装置仅仅利用从天线接收的电磁能即可制造振幅足以刺激患者的神经组织的一个或多个电脉冲。
2.根据权利要求1所述的方法,其中,辐射电磁能还包括在患者睡着时辐射电磁能,使得被制造的所述一个或多个电刺激脉冲在患者睡着期间被应用而刺激患者的神经组织。
3.根据权利要求1所述的方法,还包括:调节天线组件的位置使得天线组件的辐射表面距离可植入装置不大于六英尺。
4.根据权利要求1所述的方法,还包括:调节天线组件的位置使得天线组件的辐射表面距离可植入装置不小于一英尺。
5.根据权利要求1所述的方法,还包括:调节天线组件的定向使得在可植入装置处接收的被辐射电磁能增加。
6.根据权利要求1所述的方法,还包括:
建立编程模块至控制器模块之间的链接;和
从编程模块向控制器模块发射对将在可植入装置处制造以及随后被应用于刺激患者的神经组织的所述一个或多个刺激脉冲的参数编码的数据。
CN201910720180.3A 2014-05-12 2015-05-12 具有小尺寸发射天线的远程rf功率系统 Active CN110665114B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461992150P 2014-05-12 2014-05-12
US61/992,150 2014-05-12
CN201580036252.2A CN106794339B (zh) 2014-05-12 2015-05-12 具有小尺寸发射天线的远程rf功率系统
PCT/US2015/030433 WO2015175572A1 (en) 2014-05-12 2015-05-12 Remote rf power system with low profile transmitting antenna

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580036252.2A Division CN106794339B (zh) 2014-05-12 2015-05-12 具有小尺寸发射天线的远程rf功率系统

Publications (2)

Publication Number Publication Date
CN110665114A true CN110665114A (zh) 2020-01-10
CN110665114B CN110665114B (zh) 2022-12-06

Family

ID=54366910

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910720180.3A Active CN110665114B (zh) 2014-05-12 2015-05-12 具有小尺寸发射天线的远程rf功率系统
CN201580036252.2A Active CN106794339B (zh) 2014-05-12 2015-05-12 具有小尺寸发射天线的远程rf功率系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580036252.2A Active CN106794339B (zh) 2014-05-12 2015-05-12 具有小尺寸发射天线的远程rf功率系统

Country Status (6)

Country Link
US (3) US9409029B2 (zh)
EP (1) EP3142743B1 (zh)
CN (2) CN110665114B (zh)
AU (1) AU2015259305B2 (zh)
IL (1) IL248747B (zh)
WO (1) WO2015175572A1 (zh)

Families Citing this family (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2831062A1 (en) 2011-01-28 2012-08-02 Stimwave Technologies Incorporated Neural stimulator system
US12115374B2 (en) 2011-01-28 2024-10-15 Curonix Llc Microwave field stimulator
US8849412B2 (en) 2011-01-28 2014-09-30 Micron Devices Llc Microwave field stimulator
EP2694154B1 (en) 2011-04-04 2019-07-17 Micron Devices LLC Implantable lead
US9220897B2 (en) 2011-04-04 2015-12-29 Micron Devices Llc Implantable lead
CN107789730B (zh) 2011-07-29 2020-11-10 米克伦设备有限责任公司 用于神经刺激器的功率或极性选择的远程控制
EP2755718B8 (en) 2011-09-15 2018-06-06 Micron Devices LLC Relay module for implant
WO2013111137A2 (en) 2012-01-26 2013-08-01 Rainbow Medical Ltd. Wireless neurqstimulatqrs
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9831718B2 (en) * 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US12057715B2 (en) 2012-07-06 2024-08-06 Energous Corporation Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
WO2014087337A1 (en) 2012-12-06 2014-06-12 Bluewind Medical Ltd. Delivery of implantable neurostimulators
WO2014105973A1 (en) 2012-12-26 2014-07-03 Micron Devices, LLC Wearable antenna assembly
US9930592B2 (en) 2013-02-19 2018-03-27 Mimosa Networks, Inc. Systems and methods for directing mobile device connectivity
US9179336B2 (en) 2013-02-19 2015-11-03 Mimosa Networks, Inc. WiFi management interface for microwave radio and reset to factory defaults
WO2014138292A1 (en) 2013-03-06 2014-09-12 Mimosa Networks, Inc. Enclosure for radio, parabolic dish antenna, and side lobe shields
US9130305B2 (en) 2013-03-06 2015-09-08 Mimosa Networks, Inc. Waterproof apparatus for cables and cable interfaces
US10742275B2 (en) 2013-03-07 2020-08-11 Mimosa Networks, Inc. Quad-sector antenna using circular polarization
US9191081B2 (en) 2013-03-08 2015-11-17 Mimosa Networks, Inc. System and method for dual-band backhaul radio
JP6298145B2 (ja) 2013-03-15 2018-03-20 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ 高速のターンオン時間をもつ電流検出複数出力電流刺激装置
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
JP2016523125A (ja) 2013-05-30 2016-08-08 グラハム エイチ. クリーシー 局所神経性刺激
US9295103B2 (en) 2013-05-30 2016-03-22 Mimosa Networks, Inc. Wireless access points providing hybrid 802.11 and scheduled priority access communications
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10938110B2 (en) 2013-06-28 2021-03-02 Mimosa Networks, Inc. Ellipticity reduction in circularly polarized array antennas
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
CA3075310C (en) 2013-07-29 2022-04-05 Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class e driver
CN105744986B (zh) 2013-09-16 2019-02-22 斯坦福大学董事会 用于电磁能量生成的多元件耦合器
US9001689B1 (en) 2014-01-24 2015-04-07 Mimosa Networks, Inc. Channel optimization in half duplex communications systems
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9780892B2 (en) 2014-03-05 2017-10-03 Mimosa Networks, Inc. System and method for aligning a radio using an automated audio guide
US9998246B2 (en) 2014-03-13 2018-06-12 Mimosa Networks, Inc. Simultaneous transmission on shared channel
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
WO2015175572A1 (en) 2014-05-12 2015-11-19 Micron Devices Llc Remote rf power system with low profile transmitting antenna
EP3294173B1 (en) 2014-05-18 2020-07-15 Neuspera Medical Inc. Midfield coupler
US20160336813A1 (en) 2015-05-15 2016-11-17 NeuSpera Medical Inc. Midfield coupler
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
CA2958199C (en) 2014-08-15 2023-03-07 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
AU2015301489B2 (en) 2014-08-15 2020-01-23 Axonics Modulation Technologies, Inc. External pulse generator device and associated methods for trial nerve stimulation
EP3180073B1 (en) 2014-08-15 2020-03-11 Axonics Modulation Technologies, Inc. System for neurostimulation electrode configurations based on neural localization
JP6779860B2 (ja) 2014-08-15 2020-11-04 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド 埋込可能神経刺激装置と共に用いるための統合型筋電図臨床医用プログラム装置
CA2982572C (en) 2014-08-15 2022-10-11 Axonics Modulation Technologies, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indications
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US10958332B2 (en) 2014-09-08 2021-03-23 Mimosa Networks, Inc. Wi-Fi hotspot repeater
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
CN107427685B (zh) 2015-01-09 2021-09-21 艾克索尼克斯股份有限公司 与神经刺激充电设备一起使用的附接设备及相关联方法
CN107427683B (zh) 2015-01-09 2019-06-21 艾克索尼克斯调制技术股份有限公司 用于可植入神经刺激器的改进天线和使用方法
EP3242712B1 (en) 2015-01-09 2019-04-10 Axonics Modulation Technologies, Inc. Patient remote and associated methods of use with a nerve stimulation system
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
AU2016291554B2 (en) 2015-07-10 2021-01-07 Axonics Modulation Technologies, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10105540B2 (en) 2015-11-09 2018-10-23 Bluewind Medical Ltd. Optimization of application of current
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10186892B2 (en) 2015-12-24 2019-01-22 Energous Corporation Receiver device with antennas positioned in gaps
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
WO2017123558A1 (en) * 2016-01-11 2017-07-20 Mimosa Networks, Inc. Printed circuit board mounted antenna and waveguide interface
EP3402567B1 (en) 2016-01-15 2022-03-09 Stimwave Technologies Incorporated An implantable relay module
ES2862303T3 (es) 2016-01-29 2021-10-07 Axonics Modulation Tech Inc Sistemas de ajuste de frecuencia para optimizar la carga de un neuroestimulador implantable
CA3014195A1 (en) 2016-02-12 2017-08-17 Axonics Modulation Technologies, Inc. External pulse generator device and associated methods for trial nerve stimulation
US11116988B2 (en) * 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10541468B2 (en) * 2016-07-28 2020-01-21 Stimwave Technologies Incorporated Fabric antenna
WO2018022526A1 (en) 2016-07-29 2018-02-01 Mimosa Networks, Inc. Multi-band access point antenna array
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10124178B2 (en) 2016-11-23 2018-11-13 Bluewind Medical Ltd. Implant and delivery tool therefor
CN116455101A (zh) 2016-12-12 2023-07-18 艾诺格思公司 发射器集成电路
US10790703B2 (en) * 2016-12-19 2020-09-29 Koji Yoden Smart wireless power transfer between devices
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US20180353764A1 (en) 2017-06-13 2018-12-13 Bluewind Medical Ltd. Antenna configuration
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
EP3706856A4 (en) 2017-11-07 2021-08-18 Neurostim Oab, Inc. NON-INVASIVE NERVOUS ACTIVATOR WITH ADAPTIVE CIRCUIT
US10511074B2 (en) 2018-01-05 2019-12-17 Mimosa Networks, Inc. Higher signal isolation solutions for printed circuit board mounted antenna and waveguide interface
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
CA3090810A1 (en) 2018-02-22 2019-08-29 Axonics Modulation Technologies, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
WO2019168800A1 (en) 2018-03-02 2019-09-06 Mimosa Networks, Inc. Omni-directional orthogonally-polarized antenna system for mimo applications
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11266840B2 (en) 2018-06-27 2022-03-08 Arizona Board Of Regents On Behalf Of Arizona State University Wireless cardiac pace making
US11289821B2 (en) 2018-09-11 2022-03-29 Air Span Ip Holdco Llc Sector antenna systems and methods for providing high gain and high side-lobe rejection
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
WO2020160015A1 (en) 2019-01-28 2020-08-06 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
EP3921945A1 (en) 2019-02-06 2021-12-15 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
WO2020185902A1 (en) 2019-03-11 2020-09-17 Axonics Modulation Technologies, Inc. Charging device with off-center coil
US11696713B2 (en) 2019-03-15 2023-07-11 Arizona Board Of Regents On Behalf Of Arizona State University Contour electrocorticography (ECoG) array
US11428588B2 (en) 2019-03-28 2022-08-30 Arizona Board Of Regents On Behalf Of Arizona State University Fully-passive pressure sensors and methods for their use
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
EP3990100A4 (en) 2019-06-26 2023-07-19 Neurostim Technologies LLC NON-INVASIVE NERVE ACTIVATOR WITH ADAPTIVE CIRCUIT
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
CN115104234A (zh) 2019-09-20 2022-09-23 艾诺格思公司 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN110854541B (zh) * 2019-11-01 2021-03-30 Oppo广东移动通信有限公司 介质透镜、透镜天线和电子设备
WO2021119483A1 (en) 2019-12-13 2021-06-17 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
CA3152451A1 (en) 2019-12-16 2021-06-24 Michael Bernard Druke Non-invasive nerve activator with boosted charge delivery
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
IT202200015774A1 (it) * 2022-07-26 2024-01-26 Asmundis Carlo De Dispositivo impiantabile, sistema medicale comprendente detto dispositivo e metodo di ricarica del dispositivo impiantabile e del sistema medicale

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044385A1 (en) * 2002-09-03 2004-03-04 Fenn Alan J. Monopole phased array thermotherapy applicator for deep tumor therapy
US20090125091A1 (en) * 2005-08-19 2009-05-14 Old Dominion University Ultrawideband antenna for operation in tissue
CN101524298A (zh) * 2008-03-06 2009-09-09 伊西康内外科公司 与可植入的天线通信的系统和方法
US20100114245A1 (en) * 2008-10-31 2010-05-06 Yamamoto Joyce K Antenna for Implantable Medical Devices Formed on Extension of RF Circuit Substrate and Method for Forming the Same
CN102301530A (zh) * 2008-12-29 2011-12-28 麦德托尼克公司 相控阵列共烧天线结构及其形成方法
US20130018438A1 (en) * 2011-07-14 2013-01-17 Cyberonics, Inc. Far field radiative powering of implantable medical therapy delivery devices

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2990547A (en) 1959-07-28 1961-06-27 Boeing Co Antenna structure
US3662758A (en) 1969-06-30 1972-05-16 Mentor Corp Stimulator apparatus for muscular organs with external transmitter and implantable receiver
US3663758A (en) 1970-03-24 1972-05-16 Teaching Complements Inc Speech pattern recognition system
US3727616A (en) 1971-06-15 1973-04-17 Gen Dynamics Corp Electronic system for the stimulation of biological systems
FR2283590A1 (fr) 1974-08-30 1976-03-26 Commissariat Energie Atomique Procede de stimulation nerveuse et stimulateur d'application du procede
US4102344A (en) 1976-11-15 1978-07-25 Mentor Corporation Stimulator apparatus for internal body organ
US4223679A (en) 1979-02-28 1980-09-23 Pacesetter Systems, Inc. Telemetry means for tissue stimulator system
US4612934A (en) 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
US4793353A (en) 1981-06-30 1988-12-27 Borkan William N Non-invasive multiprogrammable tissue stimulator and method
DE3130104A1 (de) 1981-07-30 1983-02-17 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Anordnung zur stimulation eines menschlichen muskels
JPS5889075A (ja) 1981-11-24 1983-05-27 Hitachi Ltd 共振形スイツチング電源装置
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4561443A (en) 1983-03-08 1985-12-31 The Johns Hopkins University Coherent inductive communications link for biomedical applications
US4532930A (en) 1983-04-11 1985-08-06 Commonwealth Of Australia, Dept. Of Science & Technology Cochlear implant system for an auditory prosthesis
AU569636B2 (en) 1984-09-07 1988-02-11 University Of Melbourne, The Bipolar paired pulse supplied prosthetic device
CA1246680A (en) 1984-10-22 1988-12-13 James M. Harrison Power transfer for implanted prosthesis
AU5481786A (en) 1985-03-20 1986-09-25 Hochmair, E.S. Transcutaneous power and signal transmission system
US4592359A (en) 1985-04-02 1986-06-03 The Board Of Trustees Of The Leland Stanford Junior University Multi-channel implantable neural stimulator
US4628933A (en) 1985-07-23 1986-12-16 Michelson Robin P Method and apparatus for visual prosthesis
US4837049A (en) 1986-06-17 1989-06-06 Alfred E. Mann Foundation For Scientific Research Method of making an electrode array
US4750499A (en) 1986-08-20 1988-06-14 Hoffer Joaquin A Closed-loop, implanted-sensor, functional electrical stimulation system for partial restoration of motor functions
US4736752A (en) 1986-11-28 1988-04-12 Axelgaard Manufacturing Co., Ltd. Transcutaneous medical electrode
US5058581A (en) 1990-02-20 1991-10-22 Siemens-Pacesetter, Inc. Telemetry apparatus and method for implantable tissue stimulator
US5314458A (en) 1990-06-01 1994-05-24 University Of Michigan Single channel microstimulator
US5262793A (en) 1991-11-18 1993-11-16 Winegard Company Low profile television antenna for vehicles
US5193539A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US5343766A (en) 1992-02-25 1994-09-06 C & J Industries, Inc. Switched capacitor transducer
JPH05245215A (ja) 1992-03-03 1993-09-24 Terumo Corp 心臓ペースメーカ
US5626630A (en) 1994-10-13 1997-05-06 Ael Industries, Inc. Medical telemetry system using an implanted passive transponder
US5583510A (en) 1994-11-16 1996-12-10 International Business Machines Corporation Planar antenna in the ISM band with an omnidirectional pattern in the horizontal plane
US5591217A (en) 1995-01-04 1997-01-07 Plexus, Inc. Implantable stimulator with replenishable, high value capacitive power source and method therefor
US5735887A (en) 1996-12-10 1998-04-07 Exonix Corporation Closed-loop, RF-coupled implanted medical device
US6164284A (en) 1997-02-26 2000-12-26 Schulman; Joseph H. System of implantable devices for monitoring and/or affecting body parameters
US5991664A (en) 1997-03-09 1999-11-23 Cochlear Limited Compact inductive arrangement for medical implant data and power transfer
US5861019A (en) 1997-07-25 1999-01-19 Medtronic Inc. Implantable medical device microstrip telemetry antenna
US6458157B1 (en) 1997-08-04 2002-10-01 Suaning Gregg Joergen Retinal stimulator
US6647296B2 (en) 1997-10-27 2003-11-11 Neuropace, Inc. Implantable apparatus for treating neurological disorders
US5995874A (en) 1998-02-09 1999-11-30 Dew Engineering And Development Limited Transcutaneous energy transfer device
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6141588A (en) 1998-07-24 2000-10-31 Intermedics Inc. Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy
JP2002524124A (ja) 1998-09-04 2002-08-06 ウルフ リサーチ プロプライエタリー リミテッド 医療埋込みシステム
US6615081B1 (en) 1998-10-26 2003-09-02 Birinder R. Boveja Apparatus and method for adjunct (add-on) treatment of diabetes by neuromodulation with an external stimulator
US6611715B1 (en) 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6415184B1 (en) 1999-01-06 2002-07-02 Ball Semiconductor, Inc. Implantable neuro-stimulator with ball implant
US6350335B1 (en) 1999-02-16 2002-02-26 Lucent Technologies Inc. Microstrip phase shifters
US6463336B1 (en) 1999-04-01 2002-10-08 Mmtc, Inc Active bandage suitable for applying pulsed radio-frequencies or microwaves to the skin for medical purposes
US6684104B2 (en) 1999-04-14 2004-01-27 Transneuronix, Inc. Gastric stimulator apparatus and method for installing
US6445955B1 (en) 1999-07-08 2002-09-03 Stephen A. Michelson Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US7177690B2 (en) 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6442434B1 (en) 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
JP4304558B2 (ja) 1999-11-14 2009-07-29 ソニー株式会社 携帯機器
US6364889B1 (en) 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
JP2001211018A (ja) 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd アンテナ装置及びそれを用いた腕時計型無線装置
US6466822B1 (en) 2000-04-05 2002-10-15 Neuropace, Inc. Multimodal neurostimulator and process of using it
US7277728B1 (en) 2000-05-05 2007-10-02 Nokia Corporation Base station of a communication network, preferably of a mobile telecommunication network
CN1207067C (zh) 2000-11-16 2005-06-22 波利瓦洛尔公司 人体电子植入体及其人工视觉系统
USD460430S1 (en) 2000-12-28 2002-07-16 Seiko Instruments Inc. Mobile phone
US6675045B2 (en) 2001-01-16 2004-01-06 Cardiac Pacemakers, Inc. Split-can dipole antenna for an implantable medical device
US6445953B1 (en) 2001-01-16 2002-09-03 Kenergy, Inc. Wireless cardiac pacing system with vascular electrode-stents
US6889086B2 (en) 2001-04-06 2005-05-03 Cardiac Pacemakers, Inc. Passive telemetry system for implantable medical device
US6662052B1 (en) 2001-04-19 2003-12-09 Nac Technologies Inc. Method and system for neuromodulation therapy using external stimulator with wireless communication capabilites
WO2003026736A2 (en) 2001-09-28 2003-04-03 Northstar Neuroscience, Inc. Methods and implantable apparatus for electrical therapy
US20070213773A1 (en) 2001-10-26 2007-09-13 Hill Michael R Closed-Loop Neuromodulation for Prevention and Treatment of Cardiac Conditions
US6993393B2 (en) 2001-12-19 2006-01-31 Cardiac Pacemakers, Inc. Telemetry duty cycle management system for an implantable medical device
US7231252B2 (en) 2002-01-21 2007-06-12 Neopraxis Pty Ltd. FES stimulator having multiple bundled leads
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US6888502B2 (en) 2002-03-05 2005-05-03 Precision Dynamics Corporation Microstrip antenna for an identification appliance
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US7483748B2 (en) 2002-04-26 2009-01-27 Medtronic, Inc. Programmable waveform pulses for an implantable medical device
US7110823B2 (en) 2002-06-11 2006-09-19 Advanced Bionics Corporation RF telemetry link for establishment and maintenance of communications with an implantable device
US7132173B2 (en) 2002-06-28 2006-11-07 Advanced Bionics Corporation Self-centering braze assembly
US8386048B2 (en) 2002-06-28 2013-02-26 Boston Scientific Neuromodulation Corporation Systems and methods for communicating with or providing power to an implantable stimulator
US7047079B2 (en) 2002-07-26 2006-05-16 Advanced Neuromodulation Systems, Inc. Method and system for energy conservation in implantable stimulation devices
USD474982S1 (en) 2002-08-15 2003-05-27 Nike, Inc. Portion of a watch
SE0202537D0 (sv) 2002-08-28 2002-08-28 Siemens Elema Ab Nervstimuleringsapparat
AU2002951217A0 (en) 2002-09-04 2002-09-19 Cochlear Limited Method and apparatus for measurement of transmitter/receiver separation
US7209790B2 (en) 2002-09-30 2007-04-24 Medtronic, Inc. Multi-mode programmer for medical device communication
US7599737B2 (en) 2002-10-04 2009-10-06 Microchips, Inc. Medical device for neural stimulation and controlled drug delivery
US7162305B2 (en) 2002-10-23 2007-01-09 The Hong Kong Polytechnic University Functional electrical stimulation system
US7512448B2 (en) 2003-01-10 2009-03-31 Phonak Ag Electrode placement for wireless intrabody communication between components of a hearing system
US7551957B2 (en) 2003-03-06 2009-06-23 Bioelectronics Corp. Electromagnetic therapy device and methods
IL154801A0 (en) 2003-03-06 2003-10-31 Karotix Internat Ltd Multi-channel and multi-dimensional system and method
US7253735B2 (en) 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
AU2003901390A0 (en) 2003-03-26 2003-04-10 University Of Technology, Sydney Microwave antenna for cardiac ablation
US7221979B2 (en) 2003-04-30 2007-05-22 Medtronic, Inc. Methods and apparatus for the regulation of hormone release
US6904323B2 (en) 2003-05-14 2005-06-07 Duke University Non-invasive apparatus and method for providing RF energy-induced localized hyperthermia
US7317947B2 (en) 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
US6972727B1 (en) * 2003-06-10 2005-12-06 Rockwell Collins One-dimensional and two-dimensional electronically scanned slotted waveguide antennas using tunable band gap surfaces
US20050004622A1 (en) 2003-07-03 2005-01-06 Advanced Neuromodulation Systems System and method for implantable pulse generator with multiple treatment protocols
US7392093B2 (en) 2003-09-26 2008-06-24 Advanced Neuromodulation Systems, Inc. Electrical stimulation system including a device for partially shielding electrical energy emitted from one or more electrical stimulation leads implanted in a human's body
US7729766B2 (en) 2003-10-02 2010-06-01 Medtronic, Inc. Circuit board construction for handheld programmer
US8594778B2 (en) 2003-12-17 2013-11-26 Regents Of The University Of Colorado Activeinvasive EEG device and technique
WO2005062823A2 (en) * 2003-12-19 2005-07-14 Savacor, Inc. Digital electrode for cardiac rhythm management
EP1588609B1 (fr) 2004-02-27 2010-09-08 IC Services Procédé et set pour l'identification d'animaux
US20050245994A1 (en) 2004-04-12 2005-11-03 Advanced Neuromodulation Systems, Inc. Active discharge systems and methods
US7894913B2 (en) 2004-06-10 2011-02-22 Medtronic Urinary Solutions, Inc. Systems and methods of neuromodulation stimulation for the restoration of sexual function
US7038634B2 (en) 2004-07-02 2006-05-02 Eta Sa Manufacture Horlogère Suisse Optimization of a loop antenna geometry embedded in a wristband portion of a watch
US7162217B2 (en) 2004-07-02 2007-01-09 Eta Sa Manufacture Horlogère Suisse Interconnection circuit between two loop antennas embedded in a wristband of a wrist-carried wireless instrument
US7214189B2 (en) 2004-09-02 2007-05-08 Proteus Biomedical, Inc. Methods and apparatus for tissue activation and monitoring
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
US20060161216A1 (en) 2004-10-18 2006-07-20 John Constance M Device for neuromuscular peripheral body stimulation and electrical stimulation (ES) for wound healing using RF energy harvesting
US7532933B2 (en) 2004-10-20 2009-05-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US7650186B2 (en) 2004-10-20 2010-01-19 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
FR2881353B1 (fr) 2005-02-03 2008-12-05 Vygon Sa Perfectionnement aux embouts de ponction et aux tubes catheters
US7231256B2 (en) 2005-03-11 2007-06-12 Medtronic, Inc. Neurostimulation site screening
CA2602292A1 (en) 2005-03-15 2006-09-21 The Regents Of The University Of California Method and system for modulating energy expenditure and neurotrophic factors
JP2008536636A (ja) 2005-04-19 2008-09-11 コンペックス テクノロジーズ インコーポレイテッド 背中及び腹部の筋肉に対して電極による刺激を実施する装置
CN100403690C (zh) 2005-04-30 2008-07-16 华为技术有限公司 用户驻地设备配置管理方法及其系统
US20110040350A1 (en) 2005-05-05 2011-02-17 Griffith Glen A FSK telemetry for cochlear implant
EP1890765A1 (en) 2005-06-07 2008-02-27 Fractus S.A. Wireless implantable medical device
EP1902505B1 (en) 2005-07-12 2021-09-01 Massachusetts Institute of Technology (MIT) Wireless non-radiative energy transfer
US7640059B2 (en) 2005-09-08 2009-12-29 Medtronic, Inc. External presentation of electrical stimulation parameters
US7420516B2 (en) 2005-10-11 2008-09-02 Motorola, Inc. Antenna assembly and method of operation thereof
US20070112402A1 (en) 2005-10-19 2007-05-17 Duke University Electrode systems and related methods for providing therapeutic differential tissue stimulation
WO2007048052A2 (en) 2005-10-21 2007-04-26 The Regents Of The University Of Colorado Systems and methods for receiving and managing power in wireless devices
EP1945299A4 (en) 2005-10-21 2009-04-15 Purdue Research Foundation ELECTRICAL STIMULATION OF WIRELESS NEURONAL LESION
US20070106337A1 (en) 2005-11-10 2007-05-10 Electrocore, Inc. Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention
WO2007059386A2 (en) 2005-11-10 2007-05-24 Medtronic, Inc. Intravascular medical device
US20070109208A1 (en) 2005-11-16 2007-05-17 Microsoft Corporation Antenna in a shielded enclosure
US7436752B2 (en) 2005-11-17 2008-10-14 Realtek Semiconductor Corp. Method and apparatus for signal equalization in a light storage system
WO2007081971A2 (en) 2006-01-11 2007-07-19 Powercast Corporation Pulse transmission method
USD529402S1 (en) 2006-02-13 2006-10-03 Nike, Inc. Portion of a watch
EP1984066B1 (en) 2006-02-16 2020-05-06 Imthera Medical, Inc. An rfid based system for therapeutic treatment of a patient
US7894905B2 (en) 2006-03-13 2011-02-22 Neuropace, Inc. Implantable system enabling responsive therapy for pain
US20100174340A1 (en) 2006-04-18 2010-07-08 Electrocore, Inc. Methods and Apparatus for Applying Energy to Patients
US8768311B2 (en) 2006-04-27 2014-07-01 Harris Corporation Intelligent asymmetric service denial system for mobile cellular devices and associated methods
US7869885B2 (en) 2006-04-28 2011-01-11 Cyberonics, Inc Threshold optimization for tissue stimulation therapy
US7908014B2 (en) 2006-05-05 2011-03-15 Alfred E. Mann Foundation For Scientific Research Antenna on ceramic case
US20070265690A1 (en) 2006-05-12 2007-11-15 Yoav Lichtenstein Position tracking of passive resonance-based transponders
US7613522B2 (en) 2006-06-09 2009-11-03 Cardiac Pacemakers, Inc. Multi-antenna for an implantable medical device
US8644934B2 (en) 2006-09-13 2014-02-04 Boston Scientific Scimed Inc. Cardiac stimulation using leadless electrode assemblies
US7877139B2 (en) 2006-09-22 2011-01-25 Cameron Health, Inc. Method and device for implantable cardiac stimulus device lead impedance measurement
EP1903000B1 (fr) 2006-09-25 2019-09-18 Sorin CRM SAS Composant biocompatible implantable incorporant un élément actif intégré tel qu'un capteur de mesure d'un paramètre physiologique, microsystème électromécanique ou circuit électronique
US20080077184A1 (en) 2006-09-27 2008-03-27 Stephen Denker Intravascular Stimulation System With Wireless Power Supply
US20080103558A1 (en) 2006-10-30 2008-05-01 Stuart Wenzel Focused electromagnetic-wave and ultrasonic-wave structures for tissue stimulation
CN101568847B (zh) 2006-11-27 2012-02-01 Nxp股份有限公司 磁场传感器电路
US7792588B2 (en) 2007-01-26 2010-09-07 Medtronic, Inc. Radio frequency transponder based implantable medical system
US8264362B2 (en) 2007-04-30 2012-09-11 Kimberly-Clark Worldwide, Inc. Embedded antenna for sensing article
JP2010525901A (ja) 2007-05-04 2010-07-29 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 生体電位のワイヤレス伝送のためのシステムおよび方法
US7687678B2 (en) 2007-05-10 2010-03-30 Cisco Technology, Inc. Electronic bandage with flexible electronic controller
US20090132002A1 (en) 2007-05-11 2009-05-21 Cvrx, Inc. Baroreflex activation therapy with conditional shut off
US7939346B2 (en) 2007-05-25 2011-05-10 Wisconsin Alumni Research Foundation Nanomembranes for remote sensing
US7765013B2 (en) 2007-06-04 2010-07-27 Wisconsin Alumni Research Foundation Nano- and micro-scale wireless stimulating probe
US7630771B2 (en) 2007-06-25 2009-12-08 Microtransponder, Inc. Grooved electrode and wireless microtransponder system
WO2009020938A1 (en) 2007-08-05 2009-02-12 Neostim, Inc. Monophasic multi-coil arrays for trancranial magnetic stimulation
US8366652B2 (en) * 2007-08-17 2013-02-05 The Invention Science Fund I, Llc Systems, devices, and methods including infection-fighting and monitoring shunts
US8702640B2 (en) * 2007-08-17 2014-04-22 The Invention Science Fund I, Llc System, devices, and methods including catheters configured to monitor and inhibit biofilm formation
WO2009051540A1 (en) 2007-10-16 2009-04-23 Milux Holding Sa Method and apparatus for supplying energy to a medical device
US8412332B2 (en) 2007-10-18 2013-04-02 Integrated Sensing Systems, Inc. Miniature wireless system for deep brain stimulation
CN101185789B (zh) 2007-11-06 2010-06-09 浙江大学 植入式神经微刺激和采集遥控芯片
US8738147B2 (en) 2008-02-07 2014-05-27 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
USD612543S1 (en) 2008-02-22 2010-03-23 Marseille Jean D Wrist supporting device
US8332040B1 (en) 2008-03-10 2012-12-11 Advanced Neuromodulation Systems, Inc. External charging device for charging an implantable medical device and methods of regulating duty of cycle of an external charging device
DE102008002228A1 (de) 2008-06-05 2009-12-10 Biotronik Crm Patent Ag Langgestrecktes Implantat mit externer Energieeinkopplung
CN101352596B (zh) 2008-09-19 2011-06-29 清华大学 体外供电式植入医疗仪器
SE0901000A2 (en) 2008-10-10 2010-07-20 Milux Holding Sa A voice control system for an implant
EP2349452B1 (en) 2008-10-21 2016-05-11 Microcube, LLC Microwave treatment devices
JP5643764B2 (ja) 2008-10-27 2014-12-17 スパイナル・モデュレーション・インコーポレイテッドSpinal Modulation Inc. 選択的刺激システムおよび医学的状態の信号パラメータ
US9597505B2 (en) 2008-10-31 2017-03-21 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8497804B2 (en) 2008-10-31 2013-07-30 Medtronic, Inc. High dielectric substrate antenna for implantable miniaturized wireless communications and method for forming the same
US8332037B2 (en) 2008-11-05 2012-12-11 Incube Labs, Llc Housing structure for a medical implant including a monolithic substrate
US8242968B2 (en) 2008-11-12 2012-08-14 Winegard Company Mobile television antenna with integrated UHF digital booster
JP2012508624A (ja) 2008-11-13 2012-04-12 プロテウス バイオメディカル インコーポレイテッド 多重化複数電極神経刺激装置
US8626310B2 (en) 2008-12-31 2014-01-07 Medtronic, Inc. External RF telemetry module for implantable medical devices
US9662021B2 (en) 2009-01-12 2017-05-30 Purdue Research Foundation Miniature stent-based implantable wireless monitoring devices
US8855786B2 (en) 2009-03-09 2014-10-07 Nucurrent, Inc. System and method for wireless power transfer in implantable medical devices
US9444213B2 (en) * 2009-03-09 2016-09-13 Nucurrent, Inc. Method for manufacture of multi-layer wire structure for high efficiency wireless communication
US8154402B2 (en) 2009-03-12 2012-04-10 Raytheon Company Wireless temperature sensor network
US8320850B1 (en) 2009-03-18 2012-11-27 Rf Micro Devices, Inc. Power control loop using a tunable antenna matching circuit
US10020075B2 (en) 2009-03-24 2018-07-10 Leaf Healthcare, Inc. Systems and methods for monitoring and/or managing patient orientation using a dynamically adjusted relief period
US8473061B2 (en) 2009-04-16 2013-06-25 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US8046909B2 (en) 2009-04-24 2011-11-01 Advanced Neuromodulation Systems, Inc. Method of fabricating stimulation lead
US8634928B1 (en) * 2009-06-16 2014-01-21 The Board Of Trustees Of The Leland Stanford Junior University Wireless power transmission for implantable medical devices
US8406896B2 (en) 2009-06-29 2013-03-26 Boston Scientific Neuromodulation Corporation Multi-element contact assemblies for electrical stimulation systems and systems and methods of making and using
JP2011055912A (ja) 2009-09-07 2011-03-24 Terumo Corp 電気刺激装置
EP2462981A4 (en) 2009-08-06 2013-01-23 Terumo Corp ELECTRIC STIMULATOR
US20110066042A1 (en) 2009-09-15 2011-03-17 Texas Instruments Incorporated Estimation of blood flow and hemodynamic parameters from a single chest-worn sensor, and other circuits, devices and processes
AU2009222439B2 (en) 2009-09-28 2011-07-21 Cochlear Limited Method and circuitry for measurement and control of stimulation current
US20110074342A1 (en) 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
US8958880B2 (en) 2009-10-05 2015-02-17 The Regents Of The University Of California Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders
US8390516B2 (en) 2009-11-23 2013-03-05 Harris Corporation Planar communications antenna having an epicyclic structure and isotropic radiation, and associated methods
JP5015309B2 (ja) 2009-11-24 2012-08-29 ヤマハ発動機株式会社 車両用油圧式緩衝器
US8543202B2 (en) 2009-11-25 2013-09-24 Steven M. Goetz Medical electrical stimulation with external simulated case electrode
TW201117849A (en) 2009-11-30 2011-06-01 Unimed Invest Inc Implantable pulsed-radiofrequency micro-stimulation system
EP2515996B1 (en) 2009-12-23 2019-09-18 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
CN101773701A (zh) 2010-01-11 2010-07-14 杭州诺尔康神经电子科技有限公司 神经刺激器
US9216297B2 (en) 2010-04-05 2015-12-22 Medtronic, Inc. Flexible recharge coil techniques
CN201676401U (zh) 2010-04-09 2010-12-22 浙江大学 一种经皮刺激仪
US9044616B2 (en) * 2010-07-01 2015-06-02 Boston Scientific Neuromodulation Corporation Charging system for an implantable medical device employing magnetic and electric fields
SG189891A1 (en) * 2010-10-15 2013-06-28 Searete Llc Surface scattering antennas
CA2831062A1 (en) 2011-01-28 2012-08-02 Stimwave Technologies Incorporated Neural stimulator system
US8849412B2 (en) * 2011-01-28 2014-09-30 Micron Devices Llc Microwave field stimulator
US8880189B2 (en) 2011-02-23 2014-11-04 John D. LIPANI System and method for electrical stimulation of the lumbar vertebral column
US9220897B2 (en) 2011-04-04 2015-12-29 Micron Devices Llc Implantable lead
EP2694154B1 (en) 2011-04-04 2019-07-17 Micron Devices LLC Implantable lead
US8989867B2 (en) * 2011-07-14 2015-03-24 Cyberonics, Inc. Implantable nerve wrap for nerve stimulation configured for far field radiative powering
TW201304272A (zh) 2011-07-15 2013-01-16 Wistron Neweb Corp 隨身電子裝置之天線結構及隨身無線電子裝置
CN107789730B (zh) 2011-07-29 2020-11-10 米克伦设备有限责任公司 用于神经刺激器的功率或极性选择的远程控制
USD658302S1 (en) 2011-08-02 2012-04-24 Nixon Amy H Hand brace
EP2755718B8 (en) 2011-09-15 2018-06-06 Micron Devices LLC Relay module for implant
WO2013177006A2 (en) 2012-05-21 2013-11-28 Stimwave Technologies, Incorporated Methods and devices for modulating excitable tissue of the exiting spinal nerves
EP2743786B1 (fr) 2012-12-17 2018-10-31 The Swatch Group Research and Development Ltd. Dispositif électronique portable et procédé de fabrication d'un tel dispositif
WO2014105973A1 (en) 2012-12-26 2014-07-03 Micron Devices, LLC Wearable antenna assembly
USD703204S1 (en) 2013-01-02 2014-04-22 Tomtom International B.V. Watch module
USD709873S1 (en) 2013-03-15 2014-07-29 Samsung Electronics Co., Ltd. Electronic device
US20140266935A1 (en) 2013-03-15 2014-09-18 Senseonics, Incorporated Mini flat antenna system
USD701504S1 (en) 2013-03-15 2014-03-25 Microsoft Corporation Electronic band
JP1522550S (zh) 2013-08-01 2018-04-16
JP1515100S (zh) 2013-08-05 2017-12-25
USD734330S1 (en) 2014-01-14 2015-07-14 Compal Electronics, Inc. Wearable device
USD725652S1 (en) 2014-02-18 2015-03-31 Kyocera Corporation Portable terminal
WO2015175572A1 (en) 2014-05-12 2015-11-19 Micron Devices Llc Remote rf power system with low profile transmitting antenna
USD721701S1 (en) 2014-08-25 2015-01-27 Khalid Al-Nasser Smart watch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044385A1 (en) * 2002-09-03 2004-03-04 Fenn Alan J. Monopole phased array thermotherapy applicator for deep tumor therapy
US20090125091A1 (en) * 2005-08-19 2009-05-14 Old Dominion University Ultrawideband antenna for operation in tissue
CN101524298A (zh) * 2008-03-06 2009-09-09 伊西康内外科公司 与可植入的天线通信的系统和方法
US20100114245A1 (en) * 2008-10-31 2010-05-06 Yamamoto Joyce K Antenna for Implantable Medical Devices Formed on Extension of RF Circuit Substrate and Method for Forming the Same
CN102301530A (zh) * 2008-12-29 2011-12-28 麦德托尼克公司 相控阵列共烧天线结构及其形成方法
US20130018438A1 (en) * 2011-07-14 2013-01-17 Cyberonics, Inc. Far field radiative powering of implantable medical therapy delivery devices

Also Published As

Publication number Publication date
IL248747B (en) 2019-10-31
EP3142743B1 (en) 2020-07-29
EP3142743A1 (en) 2017-03-22
EP3142743A4 (en) 2018-01-10
CN106794339A (zh) 2017-05-31
AU2015259305A1 (en) 2016-11-24
CN106794339B (zh) 2019-08-27
AU2015259305B2 (en) 2019-09-12
IL248747A0 (en) 2017-01-31
CN110665114B (zh) 2022-12-06
US20190217106A1 (en) 2019-07-18
US9409029B2 (en) 2016-08-09
US10258800B2 (en) 2019-04-16
WO2015175572A1 (en) 2015-11-19
US20150321017A1 (en) 2015-11-12
US20160339258A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
CN110665114B (zh) 具有小尺寸发射天线的远程rf功率系统
US11128049B2 (en) Patch antenna assembly
US11938321B2 (en) Antenna assembly for supplying power to an implantable neural stimulator device
US11324957B2 (en) Systems and methods for implantable stimulator
US11831070B2 (en) Fabric antenna
US20240216699A1 (en) Earpiece assembly to interact with implantable neural stimulators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210707

Address after: Florida, USA

Applicant after: STIMWAVE TECHNOLOGIES Inc.

Address before: Florida, USA

Applicant before: Micron Devices, LLC

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Florida USA

Patentee after: Kuronix LLC

Address before: USA New York

Patentee before: SWT Special Purpose LLC

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20230619

Address after: USA New York

Patentee after: SWT Special Purpose LLC

Address before: Fla

Patentee before: STIMWAVE TECHNOLOGIES Inc.

TR01 Transfer of patent right