CN110665008A - 强效溶瘤的棒状纳米组装体及其制备方法和应用 - Google Patents

强效溶瘤的棒状纳米组装体及其制备方法和应用 Download PDF

Info

Publication number
CN110665008A
CN110665008A CN201911131989.9A CN201911131989A CN110665008A CN 110665008 A CN110665008 A CN 110665008A CN 201911131989 A CN201911131989 A CN 201911131989A CN 110665008 A CN110665008 A CN 110665008A
Authority
CN
China
Prior art keywords
oncolytic
rod
tumor
assembly
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911131989.9A
Other languages
English (en)
Inventor
顾忠伟
吴花雨
徐翔晖
李亚超
钟单
张志军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Intelligent High-End Equipment Industry Research Institute Co Ltd
Original Assignee
Nanjing Intelligent High-End Equipment Industry Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Intelligent High-End Equipment Industry Research Institute Co Ltd filed Critical Nanjing Intelligent High-End Equipment Industry Research Institute Co Ltd
Priority to CN201911131989.9A priority Critical patent/CN110665008A/zh
Publication of CN110665008A publication Critical patent/CN110665008A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

本发明提供一种强效溶瘤的棒状纳米组装体及其制备方法,构建树枝状肽类分子的溶瘤单体,溶瘤单体包括通过敏感键连接的化疗药物和外围修饰的有溶瘤效果的残基,残基覆以负电荷的屏蔽层;诱导溶瘤单体在内核上自组装,紧密排布在内核表面,形成棒状纳米组装体;或者通过有机分子设计直接堆叠成棒状纳米组装。本发明提供的棒状的超分子组装体形貌会影响粒子的生物学行为,带来比如延长血药循环时间、增加肿瘤富集、提高实体瘤渗透能力、增加细胞摄取量以及特殊的亚细胞器富集等优点,大大增加了抗肿瘤效果。

Description

强效溶瘤的棒状纳米组装体及其制备方法和应用
技术领域
本发明属于医用生物材料领域,具体涉及一种溶瘤的棒状纳米组装体的制备方法及其逆转多药耐药肿瘤的应用。
背景技术
超分子自组装体被广泛应用于抗肿瘤研究。纳米尺度的粒子可以通过实体瘤的高通透性和滞留效应(EPR effect)被动靶向到肿瘤组织或者通过表面修饰的靶向分子主动靶向到肿瘤组织,大大提高药物的递送效率,被广泛应用于抗肿瘤治疗。
影响肿瘤递送效率的因素包括:粒子的尺寸、形貌、表面电荷等。其中,粒子的形貌被认为是在内在化过程中最关键的性质之一。现有的超分子组装体多为球状纳米粒子,而很多研究指出,瘦长形貌的粒子(如棒状、纤维状、蠕虫状)的递送效率远远高于球状粒子的递送效率,因为棒状粒子能够以更大的表面积和肿瘤细胞接触,增加了入胞效果。高长径比粒子也展现出优异的长循环效果、肿瘤富集、和肿瘤渗透效果。
且目前的纳米药物递送系统往往对于健康组织存在毒副作用的问题,所以仅仅可以在肿瘤部位激活,产生“溶瘤”效果的粒子逐渐进入大众视野。本发明中最优化粒子的形貌和其表面特性,使其特异性地富集在肿瘤部位,被肿瘤微环境所激活,只侵染肿瘤细胞而大大降低对健康组织毒副作用的纳米药物递送系统,为抗肿瘤研究提供新的思路。
发明内容
本发明的目的是提供一种强效溶瘤的棒状超分子自组装体(R-SAP)的制备方法,通过合理的设计,充分将棒状粒子的形貌优势,与溶瘤性质多机制结合起来,实现在血液中长循环,肿瘤部位高富集高渗透的特异性杀伤肿瘤细胞的药物递送系统,逆转肿瘤多药耐药。同时,纳米药物递送系统中引入具有良好的光热效果的碳纳米管,靶向到肿瘤部位后,在近红外光照下,光热治疗作用显著。协同的溶瘤效果能实现耐药的结肠癌移植瘤彻底治愈。
本发明通过以下技术方案来实现:
本发明提供一种强效溶瘤的棒状纳米组装体,通过以下制备方法所得,包括以下步骤:
(1)构建树枝状肽类分子的溶瘤单体,溶瘤单体包括通过敏感键连接的化疗药物和外围修饰的有溶瘤效果的残基,残基覆以负电荷的屏蔽层;
(2)引入内核,诱导溶瘤单体在内核上自组装,紧密排布在内核表面,形成棒状纳米组装体;或者通过有机分子设计直接堆叠成棒状纳米组装
所述的内核为ZnO纤维、金棒、碳纳米管中的一种。
溶瘤途径有:细胞膜扰动、光热治疗、化疗药物递送、亚细胞器扰动。
其中,所述的细胞膜扰动,策略为穿膜肽Tat,(Arg)9,pVEC,Pep-1,transportan或合理设计的外围胍基残基分布合理的树状肽类分子。
其中,所述的光热治疗为通过引入碳纳米管、金棒、Fe3O4、ICG,在近红外照射条件下产热。
该强效溶瘤的棒状纳米组装体用于耐药逆转。
本发明的有益效果:
(1)本发明提供了一种棒状的超分子组装体的构建方法。棒状的形貌会影响粒子的生物学行为,可以带来比如延长血药循环时间、增加肿瘤富集、提高实体瘤渗透能力、增加细胞摄取量以及特殊的亚细胞器富集等优点,大大增加了抗肿瘤效果。
(2)本发明还提供了一种将具有集扰动细胞膜、扰动亚细胞器、化疗、光热治疗为一体的溶瘤策略。
(3)本发明还充分利用了棒状纳米粒子的形貌优势,巧妙地在棒状粒子的侧表面赋予具有细胞膜穿透功能的残基,利用高长径比的棒状粒子能够和细胞膜有更大接触面积这一优势,大大提高破膜的效果,增强入胞效率和溶瘤效果。
附图说明
图1本发明所述的肿瘤部位酸可激活的溶瘤的棒状超分子组装体。
图2本发明所述的棒状超分子组装体程序性溶瘤的步骤。
图3实施例3中所述的棒状超分子组装体的原子力显微镜照片。
图4实施例4中所述的棒状超分子组装体的圆二色谱图。
图5实施例5中所述的棒状超分子组装体的光热转化效率测量。
图6实施例6中所述的肿瘤微环境刺激下溶瘤基团暴露。
图7实施例7中所述的棒状超分子组装体粘附肿瘤细胞表面的扫描电镜图片。
图8实施例8中所述的LDH渗漏测试。
图9实施例9中所述的棒状超分子组装体处理的肿瘤细胞表面的投射电镜图片。
图10实施例10中所述的棒状超分子组装体的亚细胞共定位的激光共聚焦图片。
图11实施例11中所述的棒状超分子组装体扰动内质网后导致的Ca2+外流的激光共聚焦图片和定量结果。
图12实施例12中所述的细胞凋亡的流式细胞仪检测结果。
图13实施例13中所述的毗连细胞渗透效果的流式细胞仪检测结果。
图14实施例14中所述的多细胞肿瘤球渗透效果。
图15实施例15中所述的活体肿瘤渗透效果的光声成像检测结果。
图16实施例16中所述的肿瘤切片的Raman-mapping检测结果。
图17实施例17中所述的光热治疗热像仪检测图片。
图18实施例17中所述的光热治疗热像仪定量值。
图19实施例18中所述的荷瘤小鼠的肿瘤体积变化。
图20实施例19中所述的抗肿瘤治疗后小鼠的肝脏H&E染色结果。
图21实施例19中所述的抗肿瘤治疗后小鼠肿瘤的免疫组化染色结果。
具体实施方式
以下通过具体实施方式对上述发明内容进一步详细说明,但不应当将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明的精神和原则之内做的任何修改,以及根据本领域普通技术只是和惯用手段做出的等同替换或者改进,均应包括在本发明的保护范围内。
本发明提供了一种溶瘤的棒状超分子组装体,如图1,以及构建方式,该溶瘤的棒状超分子组装体具有多功能的结合的强效溶瘤效果,如图2所示。制备方法,具体步骤如下:
(1)制备肽类树状分子的溶瘤单体
(2)氧化、打断单壁碳纳米管,制备长度较为均一的短碳纳米管(~300nm)后,修饰Arg-Gly-Asp靶向。
取步骤(1)中的溶瘤单体(10n当量)和步骤(2)中的单壁碳纳米管(1n当量),共溶于良溶剂中(DMSO),在超声条件下滴入去离子水,通过亲疏水自组装和π-π堆叠,扇形的溶瘤单体末端的疏水抗肿瘤药物驱动溶瘤单体分子自组装到碳纳米管表面,形成具有溶瘤功能的棒状超分子组装体。
实施例1:肽类树状分子的溶瘤单体的制备
具有细胞膜穿透功能的残基修饰:选取精氨酸作为穿膜的功能化基团,通过共价键偶联在肽类树状分子骨架的外围。精确称取3.0g二代赖氨酸,11.62g Boc保护和pdf的赖氨酸,11.83g六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷(PyBop)和3.04g 1-羟基苯并三唑(HOBT)于带有支管的单口瓶中,氮气氛围下加入N,N-二甲基酰胺(DMF)溶解,冰水浴下加入12.14mL N,N-二异丙基乙胺(DIPEA)。室温下反应24小时后,将反应液洗涤、干燥、浓缩后,柱层析纯化分离后,在赖氨酸末端修饰水合肼(偶联叔丁氧羰基肼Boc-NHNH2),缩合反应方法同上。缩合完成并纯化后,精确称取500mg三代树形分子置于带支管的单口瓶中,氮气保护下加入0.5mL DCM溶解后,加入1.5mL三氟乙酸(TFA)。室温下反应12小时,所得溶液浓缩后,加入冰冷的无水乙醚避光搅拌过夜,静置,倾去上清液后旋干剩余的乙醚得溶瘤的功能化基团修饰的肽类树状分子。
偶联化疗药物:精确称取510mg溶瘤的功能化基团修饰的肽类树状分子,557mg盐酸阿霉素,氮气保护下DMSO溶解,加入催化量冰醋酸。室温条件下反应72小时,将溶液置于截流量为1500Da的透析袋中透析48小时后,溶液冷冻干燥得到前述的溶瘤单体。
溶瘤残基屏蔽:精确称取80mg溶瘤单体,772.47mg 2,3-二甲基马来酸酐,氮气保护下加入混合溶剂(甲基亚砜:吡啶:三乙胺=1:1:1),反应24小时后,所得溶液置于截流量为2000Da的透析袋中,在4℃条件下,去离子水中透析48小时后,冻干。
实施例2:棒状前药自递送体系的制备
取10mg残基屏蔽的溶瘤单体和2mg靶向修饰的碳纳米管共溶于200μL良溶剂二甲基亚砜中。在超声条件下将上述溶液滴入1800μL去离子水中自组装,在疏水作用和π-π堆叠下,自组装形成棒状超分子组装体,透析(MWCO 100KDa)除去有机溶剂,棒状超分子组装体统称R-SAPs。
实施例3:溶瘤的棒状超分子组装体的形貌表征
配置100μg/mL R-SAP溶液,将其滴在通网上,室温干燥,然后通过原子力显微镜观察其形貌。如图3所示,棒状纳米粒子长度约300nm,宽度约20nm。
实施例4:粒子的二级结构表征
配置100μg/mL的R-SAP溶液,利用圆二色谱仪测定190nm~260nm区域的色谱性。如图4所示,R-SAP在192nm处为强正峰,210nm,220nm处为负峰,这是典型的α螺旋结构。
实施例5:棒状超分子组装体的光热性能研究
配置R-SAPs水溶液(100μg/mL),在波长808nm的近红外激光照射7分钟(功率2W/cm2)后,用热像仪记录温度,关闭激光,继续记录到20分钟。光热转换效率ηT的计算公式为:
Figure BDA0002278574050000041
其中h是热转换效率,A是容器的表面积,Tmax是最高温度,Tamb是周围的环境温度。I是激光功率,Aλ(0.8829)808nm激发时容器的吸收率。Q0溶液的吸收,hA由关闭激光后系统的散热效率决定。hA的值通过以下公式算得:
Figure BDA0002278574050000042
其中mD是质量(0.1g),CD是比热容(4.2J g-1),τs是样品的系统时间常数。根据图5,计算得粒子的光热转换效率为36.7%。
实施例6:肿瘤微环境刺激下溶瘤基团暴露
酸可激活的屏蔽层脱除导致的电荷翻转:配置100μg/mL的R-SAPs溶液,利用动态光散射法(DLS仪)测定有负电屏蔽层的粒子表面的Zeta电位为-38.1mV,酸激活脱除屏蔽层后,粒子表面的Zeta电位为12.8mV(图6),正电荷具有穿膜效果的精氨酸残基的暴露,有助于粒子扰动细胞膜,增强溶瘤效果。同时增加入胞效果。
实施例7:溶瘤的棒状超分子组装体和细胞膜接触
将细胞接种于底部有一片聚赖氨酸包覆的12孔板中,2×104个细胞/孔。24h后,加入R-SAPs孵育2小时,一组给予近红外照射另一组不照射。治疗后,盖玻片用PBS洗两次,用2.5%戊二醛在4℃固定1h。然后,细胞脱水在增加浓度递增的乙醇溶液中(50%,70%,80%,90%,95%和100%)分别脱水5分钟。然后用临界点干燥法处理。干燥后的细胞爬片喷金5kv下对其进行扫描电镜(SEM)测试。如图7所示,棒状的粒子都横向地嵌在细胞膜中,尤其是光照组,可以观察到明显的细胞膜扰动。
实施例8:R-SAPs处理后肿瘤细胞的LDH渗漏测试
将细胞接种于,96孔板中,1×104个细胞/孔,24h后,加入R-SAPs孵育2小时。随后每个孔中加入100μL LDH试剂盒的工作液,赋予30分钟后,加入50μL的终止液。用酶标仪检测每个孔在490nm处的吸光度。分别用PBS和裂解液作为阴性对照组和阳性对照组。
LDH渗漏率的计算公式:
relative LDH leakage=(ODsample-ODnegative)/(ODpositive-ODnagative)×100%
测试结果如图8。
实施例9:R-SAPs处理后的细胞TEM测试
将人结肠癌阿霉素耐药株细胞(LoVo/Adr)以2×104的密度接种六孔板中,培养24小时后,将2μg/mL R-SAPs和当量浓度的各对照组的1640培养基溶液与细胞孵育24小时,两组分别给予和不给予光照。用PBS洗两次,用2.5%戊二醛在4℃固定1h后,切片、染色,通过投射电镜(TEM)观察。如图9,有两个重要结果:(1)在细胞膜边缘观察到棒状的粒子粘附,同时,细胞膜遭到明显的破坏;(2)粒子处理后的细胞中能观察到明显的内质网扩张。扰动亚细胞器会导致细胞凋亡,增加溶瘤效果。
实施例10:R-SAPs的亚细胞器共定位
将人结肠癌阿霉素耐药株细胞(LoVo/Adr)以1×104的密度接种在玻底皿中,培养24小时后,将1μg/mL R-SAPs和当量浓度的各对照组的1640培养基溶液与细胞孵育0.5,6小时。用内质网染料ER-Tracker染色后,激光共聚焦观察化疗药物的对核递送情况。结果如图10所示,棒状的超分子组装体在内质网有明显的富集。
实施例11:内质网中的Ca2+释放
LoVo/Adr细胞培养密度为1×104细胞/在玻底皿24h。和R-SAPs共孵育24h后,用Fluo-3在37℃染色1h,Fluo-3是一种高亲和性Ca2+探针,只结合在细胞质中游离的Ca2+,但不结合存储在ER中的Ca2+。细胞用PBS洗涤3次。细胞质Ca2+水平检测采用激光共聚焦检测(Ex:494nm,Em:516nm)。如图11,R-SAPs共定位到内质网后,能够扰动内质网,导致Ca2+外流,进一步促进细胞凋亡,增加溶瘤效果。
实施例12:细胞凋亡检测
将人结肠癌阿霉素耐药株细胞(LoVo/Adr)以1×104的密度接种在6孔板中,将2μg/mL R-SAPs和当量浓度的各对照组的1640培养基溶液与细胞孵育48小时,PBS洗涤两遍后,用7-AAD和Annexin V-APC室温下染色15分钟,通过流式细胞仪检测。结果如图12所示,溶瘤的棒状超分子组装体能够使肿瘤细胞细胞大量晚期凋亡,证明了溶瘤效果。
实施例13:溶瘤的棒状超分子自组装体系对周围毗连细胞的渗透
每组细胞以5×104个细胞/孔的初始密度(6孔板)接种于2个孔(每组都是三个孔,分别是A,B,C)中,24小时后,A、B孔和材料共孵育,1小时后讲C孔细胞消化下来,加入A孔中共孵育24小时。B孔也是和材料赋予一小时后,PBS冲洗,更换新鲜的培养基,再继续培养24小时后,采集A和B孔的细胞,流式细胞仪检测DOX的阳性率。如果完全不向周围细胞渗透,A孔的阳性率应该是B孔的一半,如DOX.HCl组。而在R-SAPs组中,B孔的阳性率也高达95.0%,证明了该棒状超分子组装体有极强的穿透性,实现对周围毗连细胞的二次溶瘤效果(图13)。
实施例14:溶瘤的棒状超分子自组装体系在多细胞肿瘤球中的渗透
为了培养多细胞肿瘤球,将美国康宁公司的T75板子上覆盖10mL琼脂糖溶液(1.5w/v%),冷却至室温。将LoVo细胞以1×106个细胞/瓶的密度接种于含1%青霉素-链霉素的RPMI 1640培养基1.5mL中,培养约7天,培养成球形。
比较多细胞肿瘤球内的渗透能力,球被转移到玻璃底菜和孵化RPMI 1640介质pH6.5R-SAPs(10μg/mL)和其他治疗组与相同浓度的阿霉素和纳米管3h。然后将球用PBS三次,通过双光子激光扫描显微镜。如图14,能观测到明显的肿瘤球深层渗透。
实施例15:活体的肿瘤光声成像测量
动物饲养:所有动物在25℃、55%湿度的条件下饲养。所有动物的实验操作复合四川大学有关动物饲养管理条例规定。
将LoVo/Adr细胞以5×106的数量接种在BALB/c裸鼠的腋下。当肿瘤长到100mm3时,通过尾静脉注射DOX.HCl和R-SAPs,给药浓度为10mg/kg。分别在给药的1,5,10小时时间点用通过水合氯醛(0.1mg/mL)腹腔注射麻醉小鼠。用光声成像仪,观察SWNT的信号分布。如图15所示,棒状超分子自组装体系能深入渗透到小鼠实体瘤内部。
实施例16:肿瘤切片的Raman-mapping测定
LoVo肿瘤模型的建立:将LoVo/Adr细胞以5×106的数量接种在BALB/c裸鼠的腋下。当肿瘤长到100mm3时,通过尾静脉注射DOX.HCl和R-SAPs,给药浓度为10mg/kg。在24小时后处死小鼠,取肿瘤组织,制成厚度约10μm的石蜡切片。在785nm激发下测碳纳米管信号的Raman-mapping,设置步长20μm,积分时间0.1s。如图16,R-SAPs能够成功地深入渗透到实体瘤内部。
实施例17:光热治疗效果
将LoVo/Adr细胞以5×106的数量接种在BALB/c裸鼠的腋下。当肿瘤长到100mm3时,通过尾静脉注射SWNT和R-SAPs,给药浓度为10mg/kg。6小时后,近红外激光照射肿瘤10分钟(808nm,2W/cm2),用热像仪记录温度。如图17和图18,肿瘤部位的温度上升了22℃,强烈的光热效果会大大增加溶瘤效果。
实施例18:棒状前药自递送系统的体内抗肿瘤效果
将LoVo/Adr细胞以5×106的数量接种在BALB/c裸鼠的腋下。当肿瘤长到500mm3时,通过尾静脉注射Saline,DOX.HCl和R-SAPs,给药浓度为10mg/kg。将小鼠随机分为3组,每组6只,分别通过尾静脉注射生理盐水,DOX.HCl和R-SAPs,每三天给药一次,给药6小时后进行光热治疗。总共给药4次,测量肿瘤体积,如图19,相较于盐酸阿霉素组,实验组能够有效抑制肿瘤生长,抗肿瘤效果优异,充分证明了该设计能够有效提高前药的生物利用度,大大增加抗肿瘤效果。
实施例19:棒状前药自递送系统的抗肝转移效果
结肠癌是严重的肝转移癌症,病人往往死于肝转移。本次实验治疗完成后,剖出小鼠的肝脏。生理盐水和盐酸阿霉素组的肝脏表面有明显的肝转移节,而R-SAPs治疗后的小鼠肝脏形貌正常,如图20所示。将肝脏石蜡包埋后切片,H&E染色结果也显示出生理盐水和盐酸阿霉素组肝脏内部有大面积的转移灶,而R-SAPs治疗后的小鼠肝脏染色结果正常,如图21。

Claims (8)

1.强效溶瘤的棒状纳米组装体的制备方法,其特征在于,包括以下步骤:
(1)构建树枝状肽类分子的溶瘤单体,溶瘤单体包括通过敏感键连接的化疗药物和外围修饰的有溶瘤效果的残基,残基覆以负电荷的屏蔽层;
(2)引入内核,诱导溶瘤单体在内核上自组装,紧密排布在内核表面,形成棒状纳米组装体;或者通过有机分子设计直接堆叠成棒状纳米组装。
2.根据权利要求1所述的强效溶瘤的棒状纳米组装体的制备方法,其特征在于,所述的内核为ZnO纤维、金棒、碳纳米管中的一种。
3.根据权利要求1所述的强效溶瘤的棒状纳米组装体的制备方法,其特征在于,所述的溶瘤,溶瘤途径有:细胞膜扰动、光热治疗、化疗药物递送、亚细胞器扰动。
4.根据权利要求3所述的强效溶瘤的棒状纳米组装体的制备方法,其特征在于,所述的细胞膜扰动,策略为穿膜肽Tat,(Arg)9,pVEC,Pep-1,transportan或合理设计的外围胍基残基分布合理的树状肽类分子。
5.根据权利要求3所述的强效溶瘤的棒状纳米组装体的制备方法,其特征在于,所述的光热治疗为通过引入碳纳米管、金棒、Fe3O4、ICG,在近红外照射条件下产热。
6.根据权利要求3所述的强效溶瘤的棒状纳米组装体的制备方法,其特征在于,所述的化疗药物为阿霉素、紫杉醇、喜树碱、顺铂、奥沙利铂或吉西他滨中的一种。
7.强效溶瘤的棒状纳米组装体,其特征在于,由权利要求1到6所述的制备方法所得。
8.根据权利要求7所述的强效溶瘤的棒状纳米组装体的应用,其特征在于,用于耐药逆转。
CN201911131989.9A 2019-11-19 2019-11-19 强效溶瘤的棒状纳米组装体及其制备方法和应用 Pending CN110665008A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911131989.9A CN110665008A (zh) 2019-11-19 2019-11-19 强效溶瘤的棒状纳米组装体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911131989.9A CN110665008A (zh) 2019-11-19 2019-11-19 强效溶瘤的棒状纳米组装体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110665008A true CN110665008A (zh) 2020-01-10

Family

ID=69087746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911131989.9A Pending CN110665008A (zh) 2019-11-19 2019-11-19 强效溶瘤的棒状纳米组装体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110665008A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112618516A (zh) * 2021-01-05 2021-04-09 四川大学华西医院 一种用于调节肿瘤部位一氧化氮浓度的粒子制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003561A1 (en) * 2002-06-27 2004-01-08 Northwestern University Peptide rod amphiphiles and self-assembly of same
CN103554923A (zh) * 2013-10-18 2014-02-05 四川大学 一种肽类树状大分子自组装体及其制备方法和应用
CN107625968A (zh) * 2017-09-20 2018-01-26 四川大学 一种肿瘤特异性组织‑细胞双渗透纳米粒、制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003561A1 (en) * 2002-06-27 2004-01-08 Northwestern University Peptide rod amphiphiles and self-assembly of same
CN103554923A (zh) * 2013-10-18 2014-02-05 四川大学 一种肽类树状大分子自组装体及其制备方法和应用
CN107625968A (zh) * 2017-09-20 2018-01-26 四川大学 一种肿瘤特异性组织‑细胞双渗透纳米粒、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANGYING SHI等: "A drug-specific nanocarrier design for efficient anticancer therapy", 《NATURE COMMUNICATIONS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112618516A (zh) * 2021-01-05 2021-04-09 四川大学华西医院 一种用于调节肿瘤部位一氧化氮浓度的粒子制备方法及应用

Similar Documents

Publication Publication Date Title
Thambi et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery
Ren et al. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy
Jing et al. pH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy
Dong et al. Surface-engineered graphene-based nanomaterials for drug delivery
Chen et al. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo
Bruckman et al. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents
Fu et al. Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy
Li et al. Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy
Zhang et al. In vitro and in vivo behaviors of dextran functionalized graphene
Chen et al. Construction of surfactant-like tetra-tail amphiphilic peptide with RGD ligand for encapsulation of porphyrin for photodynamic therapy
Fan et al. Chlorambucil gemcitabine conjugate nanomedicine for cancer therapy
Bi et al. Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light
Wang et al. MMP-2-controlled transforming micelles for heterogeneic targeting and programmable cancer therapy
Seo et al. Multi-layered cellulose nanocrystal system for CD44 receptor-positive tumor-targeted anticancer drug delivery
CN104398493A (zh) 一种可逆转肿瘤耐药的肿瘤主动靶向纳米递药系统
Liang et al. Biocompatible tumor-targeting nanocomposites based on CuS for tumor imaging and photothermal therapy
Deng et al. Hydrophobic IR780 loaded sericin nanomicelles for phototherapy with enhanced antitumor efficiency
CN112843247B (zh) 一种具有线粒体靶向性的多肽超分子Bcl-xL拮抗剂纳米药物的制备方法
Lu et al. A novel clustered SPIO nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy
Xu et al. A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved ‘CAPIR cascade’for enhanced antitumor effect
Bao et al. Endoplasmic reticulum-targeted phototherapy using one-step synthesized trace metal-doped carbon-dominated nanoparticles: Laser-triggered nucleolar delivery and increased tumor accumulation
KR20160012079A (ko) 삼차원 자기조립 핵산 나노입자 구조를 갖는 약물전달체
Liu et al. Folic acid functionalized γ-Cyclodextrin C60, a novel vehicle for tumor-targeted drug delivery
Xie et al. The camouflage of graphene oxide by red blood cell membrane with high dispersibility for cancer chemotherapy
Cheng et al. One-pot synthesis of acid-induced in situ aggregating theranostic gold nanoparticles with enhanced retention in tumor cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110