CN110664987B - 一种抗肿瘤药物制剂及其制备方法 - Google Patents

一种抗肿瘤药物制剂及其制备方法 Download PDF

Info

Publication number
CN110664987B
CN110664987B CN201911016531.9A CN201911016531A CN110664987B CN 110664987 B CN110664987 B CN 110664987B CN 201911016531 A CN201911016531 A CN 201911016531A CN 110664987 B CN110664987 B CN 110664987B
Authority
CN
China
Prior art keywords
daa
maa
solution
pegma
tbdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911016531.9A
Other languages
English (en)
Other versions
CN110664987A (zh
Inventor
赵旭波
邱雨点
刘仲毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201911016531.9A priority Critical patent/CN110664987B/zh
Publication of CN110664987A publication Critical patent/CN110664987A/zh
Application granted granted Critical
Publication of CN110664987B publication Critical patent/CN110664987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于化学生物医药领域,公开一种抗肿瘤药物制剂及其制备方法。所述制剂包括药物载体以及负载在其上的抗肿瘤药物,抗肿瘤药物为阿霉素、硼替佐米或两者的组合;药物载体为MAA‑co‑DAA‑co‑PEGMA共聚物。S1、制备药物载体MAA‑co‑DAA‑co‑PEGMA共聚物:S1.1、分别将TBDMS‑DAA、BACy溶解于DMF中,获得TBDMS‑DAA溶液和BACy溶液;将TBAF溶解于THF中,获得TBAF溶液;S1.2、在氮气氛围下,将MAA、TBDMS‑DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合,搅拌下加热至40~100℃,加入APS,反应5~10 h后,离心洗涤,冷冻干燥;S1.3、将步骤S1.2所得产物加入到TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗并冷冻干燥即得MAA‑co‑DAA‑co‑PEGMA共聚物;S2、负载药物。本发明抗肿瘤药物制剂药物释放速率大于中性介质,具有pH和氧化还原双重刺激响应性,可用于肿瘤的治疗。

Description

一种抗肿瘤药物制剂及其制备方法
技术领域
本发明属于化学生物医药领域,具体涉及一种抗肿瘤药物制剂及其制备方法。
背景技术
化疗依旧是最常用的癌症术后治疗手段之一。目前,许多化学药物被广泛应用于癌症治疗,但这类化疗药物普遍存在水溶性差、作用机制选择性缺乏、无细胞特异性等诸多缺点。该类药物还会引起机体的多药耐药性,对正常组织具有毒副作用。因此,科研工作者致力于研制可以克服此类问题的组合物制剂,以期可以减少化疗药物对人体带来的伤害。
纳米微球是一种尺寸几十到几百纳米的胶状粒子,常见制备方法有蒸馏沉淀聚合、乳液聚合等。制备方法简易,成品粒径尺寸及形貌较为均匀稳定,往往具有良好生物相容性、生物可降解性、刺激响应性等。
硼替佐米被美国食品和药物管理局(FDA)批准用于治疗多发性骨髓瘤和套细胞淋巴瘤。它能在体外杀死不同的癌细胞,包括结直肠癌、黑色素瘤、乳腺癌、前列腺癌和淋巴瘤。阿霉素是临床上常用的抗肿瘤药物之一,被广泛用于恶性淋巴瘤、乳腺癌、白血病等癌症的治疗。但两者均在临床环境中的静脉给药受到低水溶性、不稳定性、低生物利用度和高毒性的限制。
发明内容
本发明的目的在于提供一种抗肿瘤药物制剂及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种抗肿瘤药物制剂,所述制剂包括药物载体以及负载在其上的抗肿瘤药物,所述抗肿瘤药物为阿霉素、硼替佐米或两者的组合;所述药物载体为MAA-co-DAA-co-PEGMA共聚物,结构式如下:
Figure 755778DEST_PATH_IMAGE001
较好地,a、b、c、d均为正整数并且 a∶b∶c∶d=(1~32)∶1∶2∶2。
一种所述抗肿瘤药物制剂的制备方法:
S1、制备药物载体MAA-co-DAA-co-PEGMA共聚物:
S1.1、分别将TBDMS-DAA、BACy溶解于DMF中,获得TBDMS-DAA溶液和BACy溶液;将TBAF溶解于THF中,获得TBAF溶液;
S1.2、在氮气氛围下,将MAA、TBDMS-DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合,搅拌下加热至40~100 ℃,加入APS,反应5~10 h后,离心洗涤,冷冻干燥;
S1.3、将步骤S1.2所得产物加入到TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗并冷冻干燥即得MAA-co-DAA-co-PEGMA共聚物;
S2、负载药物:
当负载的药物为硼替佐米时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH 8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米;
当负载的药物为阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@阿霉素;
当负载的药物为硼替佐米和阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH 8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗;所得固体沉淀超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米/阿霉素。
较好地,PEGMA的重均分子量为300~2000。
较好地,步骤S1.1中,TBDMS-DAA溶液的浓度为90~270 mg/mL,BACy溶液的浓度为50~170 mg/mL,TBAF溶液的浓度为0.1~0.4 mol/L;步骤S1.2中,MAA、BACy、PEGMA、TBDMS-DAA的摩尔比为(1~32)∶1∶2∶2,APS的总投入量为MAA、PEGMA、TBDMS-DAA三者总质量的(1~3)/1000,并且,水的用量为TBDMS-DAA溶液和BACy溶液两者总体积的10~15倍;SDS在步骤S1.2混合液(即MAA、TBDMS-DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合后所得的混合液)中的浓度是1.5~2.0 g/L;步骤S1.3中,以摩尔量计,TBAF的用量是步骤S1.2中TBDMS-DAA投入量的3~10倍。
本发明中:MAA为甲基丙烯酸,BACy为N, N’-双(丙烯酰)胱胺,PEGMA为聚乙二醇甲基丙烯酸酯,TBDMS-DAA为叔丁基二甲基硅烷基多巴胺丙烯酰胺,DMF为N,N-二甲基甲酰胺,SDS为十二烷基硫酸钠,APS为过硫酸铵,TBAF为四丁基氟化铵,THF为四氢呋喃。
有益效果:本发明MAA-co-DAA-co-PEGMA共聚物作为药物载体,载药量较高,能够解决药物自身的疏水性问题;交联剂选用BACy使载体具有较高的可降解性;所述共聚物载体负载药物后在酸性和10 mM的谷胱甘肽的存在下,释放速率大于中性介质,具有pH和氧化还原双重刺激响应性,可用于肿瘤的治疗。
附图说明
图1:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的TEM图;
图2:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的DLS图;
图3:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的红外光谱图;
图4:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的XPS光谱图:(a)全谱,(b)C1谱,(c)O1谱;
图5:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物在PBS缓冲液(pH=7.4)和PBS+DMEM(1∶9,pH=7.4)下的稳定性测试;
图6:MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX的药物缓释图:(a)BTZ缓释,(b)DOX缓释。
具体实施方式
下述实施例仅对本发明作进一步详细说明,但不构成对本发明的任何限制;下述实施例中,TBDMS-DAA可参考文献Lee S B, González-Cabezas C, Kim K M, et al.Catechol-functionalized synthetic polymer as a dental adhesive tocontaminated dentin surface for a composite restoration[J].Biomacromolecules, 2015, 16(8): 2265-2275制备获得,与该文献制备TBDMS-DMA的区别仅在于:利用等摩尔量的丙烯酰氯代替甲基丙烯酰氯;BACy参考文献 S. Jin, J.X. Wan,L.Z. Meng, X.X. Huang, J. Guo, L. Liu, C.C. Wang, Biodegradation and toxicityof protease/redox/pH stimuli-responsive PEGlated PMAA nanohydrogels fortargeting drug delivery, ACS Appl. Mater. Interfaces 7 (2015) 19843–19852制备获得,所用其它的材料,如无特殊说明,均购自常规化学试剂公司和原料供应商。
实施例1
一种所述抗肿瘤药物制剂的制备方法:
S1、制备药物载体--MAA-co-DAA-co-PEGMA共聚物,制备流程如下:
Figure 540325DEST_PATH_IMAGE002
制备步骤为:
S1.1、将0.27 g TBDMS-DAA溶解于2 mL DMF,获得TBDMS-DAA溶液;将0.085 gBACy溶解于1 mL DMF中,获得BACy溶液;将2 mmol TBAF溶解于10 mL THF中,获得0.2 mol/L TBAF溶液;
S1.2、在氮气氛围下,将0.492 g MAA、0.198 g PEGMA(平均分子量300)、0.0692 gSDS以及步骤S1.1所得TBDMS-DAA溶液、BACy溶液加入36 mL水中,混合,搅拌下加热至80℃,加入0.001 g APS,反应8 h后,离心洗涤,-40 ℃冷冻干燥;
S1.3、将步骤S1.2所得产物加入到10 mL TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗,-45 ℃冷冻干燥,即得MAA-co-DAA-co-PEGMA共聚物;
S2、负载药物:
当负载的药物为硼替佐米(BTZ)时,负载过程为:取90 mg MAA-co-DAA-co-PEGMA共聚物固体粉末,用81 mL pH 8.5的NaOH溶液超声分散均匀;90 mg硼替佐米溶于9 mL二甲基亚砜,加到上述超声溶液中,再次用pH 9.0的NaOH溶液调节体系pH至8.5,避光吸附24 h,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@BTZ;
当负载的药物为阿霉素(DOX)时,负载过程为:取90 mg MAA-co-DAA-co-PEGMA共聚物固体粉末,超声分散至90 mL 1 mg/mL阿霉素水溶液中,避光吸附24 h,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@DOX;
当负载的药物为硼替佐米和阿霉素(BTZ/DOX)时,负载过程为:取90 mgMAA-co-DAA-co-PEGMA共聚物固体粉末,用81 mL pH 8.5的NaOH溶液超声分散均匀;90 mg硼替佐米溶于9 mL二甲基亚砜,加到上述超声溶液中,再次用pH 9.0的NaOH溶液调节体系pH至8.5,避光吸附24 h,离心分离,水洗;所得固体沉淀超声分散至90 mL 1 mg/mL的阿霉素水溶液中,避光吸附24 h,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX。
图1为MAA-co-DAA-co-PEGMA共聚物的TEM图。由图1可知:所得MAA-co-DAA-co-PEGMA共聚物具有球形结构,直径约为170 nm,呈单分散状态。
图2为MAA-co-DAA-co-PEGMA共聚物的DLS图。由图2可知:MAA-co-DAA-co-PEGMA共聚物在pH 7.4的PBS中表现出稳定良好的分散稳定性。
图3为MAA-co-DAA-co-PEGMA共聚物的红外光谱图。由图3可知:在1240 cm-1处酚羟基特征峰是DAA功能单体存在的重要证据;2565 cm-1处S-S伸缩振动吸附,证明了聚合物主链中二硫键的引入;同时,还存在羧基型MAA的典型峰1728 cm-1,说明MAA的引入是成功的;此外,特征吸附在1100 cm-1处的出现证明了PEG的存在。
图4为MAA-co-DAA-co-PEGMA共聚物的XPS图:(a)全谱,(b)C1谱,(c)O1谱。MAA-co-DAA-co-PEGMA的C1s谱分解为5个能带,在这5个能带中,主成分由共聚物在284.95 eV处生成碳碳单键(C-C),286.45 eV的特征带为MAA-co-DAA-co-PEGMA中PEGMA单体的典型醚结构(C-O-C);位于285.58和287.41 eV的两个明显特征带,分别为C-N和N-C=O的酰胺结构,表明DAA的存在;羧基的288.57 eV的特征带证明了MAA单体的存在。此外,MAA-co-DAA-co-PEGMA的O1s谱在531.27、532.69、533.28 eV处被反析为3个波段,分别归属于MAA-co-DAA-co-PEGMA表面结构的羰基、醚基和羧基结构,进一步说明了上述各单体的存在。根据上述结果,证明了共聚物MAA-co-DAA-co-PEGMA的成功合成。
实施例2
与实施例1的不同之处在于:步骤S1.2中,保持TBDMS-DAA的用量不变,按照MAA∶TBDMS-DAA摩尔当量比32∶2调节MAA的用量,其它均同实施例1。
实施例3
与实施例1的不同之处在于:步骤S1.2中,保持TBDMS-DAA的用量不变,MAA∶TBDMS-DAA摩尔当量比8∶2调节MAA的用量,其它均同实施例1。
实施例4
与实施例1的不同之处在于:步骤S1.2中,PEGMA分子量为950,其它均同实施例1。
实施例5
与实施例1的不同之处在于:步骤S1.2中,反应温度为60 ℃,其它均同实施例1。
实施例6
与实施例1的不同之处在于:步骤S1.2中,反应时间为10 h,其它均同实施例1。
实施例7
与实施例1的不同之处在于:步骤S2中,使用KOH溶液代替NaOH溶液,其它均同实施例1。
稳定性测试:
使用DLS连续6天跟踪0.5mg/mL MAA-co-DAA-co-PEGMA共聚物(实施例1制备)在pH7.4的PBS缓冲液、PBS(pH 7.4)+DMEM混合溶液(体积比,PBS∶DMEM=1∶9)中的平均水动力直径,结果如图5所示,表明:MAA-co-DAA-co-PEGMA共聚物在测试时间范围内具有良好的稳定性。
药物负载量和缓释行为研究:
(一)Zeta电位和药物负载量:分别将5 mg实施例1制备的MAA-co-DAA-co-PEGMA共聚物本身以及MAA-co-DAA-co-PEGMA共聚物@BTZ、MAA-co-DAA-co-PEGMA共聚物@DOX、MAA- co-DAA-co-PEGMA共聚物@BTZ/DOX溶解在10 mL pH 7.4的PBS缓冲液中,测试Zeta电位和紫外测试药物负载量,结果分别如表1和表2所示。
Figure 251930DEST_PATH_IMAGE003
由表1可知:MAA-co-DAA-co-PEGMA共聚物本身在pH 7.4的PBS缓冲液中显较高电负性-36.75 mV,随着表面负载上一种带正电荷的药物后,电负性有减弱,同时负载两种药物时电负性降低到-21.86 mV,证明了MAA-co-DAA-co-PEGMA共聚物表面正电荷药物的成功连接。
Figure 54800DEST_PATH_IMAGE004
由表2可知:该共聚物对BTZ和DOX两种药物都有较高的药物负载量,其中对BTZ的负载量达到0.18 mg/mg,对DOX达到0.70 mg/mg。
(二)为模拟人体体液环境下药物的释放行为,在pH 7.4、pH 5.0、pH 7.4含10 mM谷胱甘肽(GSH)、pH 5.0含10 mM谷胱甘肽(GSH)的PBS缓冲溶液下进行体外药物缓释,具体为:将实施例1制备的MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX转移至截留分子量3500的透析袋内,置于150 mL的各PBS缓冲溶液(pH 7.4、pH 5.0、pH 7.4含10 mM GSH和pH 5.0含10 mMGSH)中,并在预先设定的时间点进行取样,随后利用紫外分光光度计测定药物的累计释放量。
MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX的药物缓释图如图6所示:(a)BTZ缓释,(b)DOX缓释,由图6可知:在pH 7.4、pH 5.0、pH7.4含10 mM GSH和pH 5.0含10 mM GSH的PBS缓冲溶液下进行体外药物缓释,其不同环境下对BTZ和DOX具体药物累计释放量如表3,证明:MAA-co-DAA-co-PEGMA共聚物具有pH和氧化还原双重刺激响应性,可用于肿瘤的治疗。
Figure 380608DEST_PATH_IMAGE005

Claims (5)

1.一种抗肿瘤药物制剂,其特征在于:所述制剂包括药物载体以及负载在其上的抗肿瘤药物,所述抗肿瘤药物为阿霉素、硼替佐米或两者的组合;所述药物载体为MAA-co-DAA- co-PEGMA共聚物,结构式如下:
Figure 185832DEST_PATH_IMAGE001
2.如权利要求1所述的抗肿瘤药物制剂,其特征在于:a、b、c、d均为正整数并且a∶b∶c∶d=(1~32)∶1∶2∶2。
3.一种如权利要求1或2所述的抗肿瘤药物制剂的制备方法,其特征在于:
S1、制备药物载体MAA-co-DAA-co-PEGMA共聚物:
S1.1、分别将TBDMS-DAA、BACy溶解于DMF中,获得TBDMS-DAA溶液和BACy溶液;将TBAF溶解于THF中,获得TBAF溶液;
S1.2、在氮气氛围下,将MAA、TBDMS-DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合,搅拌下加热至40~100 ℃,加入APS,反应5~10 h后,离心洗涤,冷冻干燥;
S1.3、将步骤S1.2所得产物加入到TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗并冷冻干燥即得MAA-co-DAA-co-PEGMA共聚物;
S2、负载药物:
当负载的药物为硼替佐米时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH 8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米;
当负载的药物为阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50-100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@阿霉素;
当负载的药物为硼替佐米和阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗;所得固体沉淀超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米/阿霉素。
4.如权利要求3所述的抗肿瘤药物制剂的制备方法,其特征在于:PEGMA的重均分子量为300~2000。
5.如权利要求3所述的抗肿瘤药物制剂的制备方法,其特征在于:
步骤S1.1中,TBDMS-DAA溶液的浓度为90~270 mg/mL,BACy溶液的浓度为50~170 mg/mL,TBAF溶液的浓度为0.1~0.4 mol/L;
步骤S1.2中,MAA、BACy、PEGMA、TBDMS-DAA的摩尔比为(1~32)∶1∶2∶2,APS的总投入量为MAA、PEGMA、TBDMS-DAA三者总质量的(1~3)/1000,并且,水的用量为TBDMS-DAA溶液和BACy溶液两者总体积的10~15倍;SDS在步骤S1.2混合液中的浓度是1.5~2.0 g/L;
步骤S1.3中,以摩尔量计,TBAF的用量是步骤S1.2中TBDMS-DAA投入量的3~10倍。
CN201911016531.9A 2019-10-24 2019-10-24 一种抗肿瘤药物制剂及其制备方法 Active CN110664987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911016531.9A CN110664987B (zh) 2019-10-24 2019-10-24 一种抗肿瘤药物制剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911016531.9A CN110664987B (zh) 2019-10-24 2019-10-24 一种抗肿瘤药物制剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110664987A CN110664987A (zh) 2020-01-10
CN110664987B true CN110664987B (zh) 2023-01-31

Family

ID=69084036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911016531.9A Active CN110664987B (zh) 2019-10-24 2019-10-24 一种抗肿瘤药物制剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110664987B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317335A (zh) * 2015-07-01 2017-01-11 南开大学 适于生物样品的分子印迹聚合物传感材料及其制备方法
CN107686541A (zh) * 2017-07-19 2018-02-13 华东理工大学 三多巴胺基化合物与聚合物及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317335A (zh) * 2015-07-01 2017-01-11 南开大学 适于生物样品的分子印迹聚合物传感材料及其制备方法
CN107686541A (zh) * 2017-07-19 2018-02-13 华东理工大学 三多巴胺基化合物与聚合物及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration";Sang-Bae Lee等;《Biomacromolecules》;20150715;第16卷;图4 *
"Novel fluorescent pH/reduction dual stimuli-responsive polymeric nanoparticles for intracellular triggered anticancer drug release";Xu Jia等;《Chemical Engineering Journal》;20160319;第295卷;摘要,第469页左栏第5段、右栏第3-5段,第473页右栏第1段 *
"pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy";Amin GhavamiNejad等;《Scientific Reports》;20160920;第6卷;第1-12页 *
"含儿茶酚基团聚合物胶束对硼替佐米的控制释放研究";杨柳;《中国优秀博硕士学位论文全文数据库(硕士) 医药卫生科技辑》;20170315(第3期);第11-15页 *
"含多巴胺基团高分子聚合物纳米材料的构筑及其应用";邱雨点等;《中国学位论文全文数据库》;20200902;第1-3页 *

Also Published As

Publication number Publication date
CN110664987A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
Fathi et al. Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib
Rao et al. Novel thermo/pH sensitive nanogels composed from poly (N-vinylcaprolactam) for controlled release of an anticancer drug
CN107550921B (zh) 一种纳米颗粒-高分子可注射复合水凝胶双载药体系及其制备方法
Kang et al. Triblock and star-block copolymers of N-(2-hydroxypropyl) methacrylamide or N-vinyl-2-pyrrolidone and d, l-lactide: synthesis and self-assembling properties in water
Sang et al. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release
Hsiao et al. Improved pH-responsive amphiphilic carboxymethyl-hexanoyl chitosan–poly (acrylic acid) macromolecules for biomedical applications
TWI400088B (zh) 藥物載體原料及其製備方法和使用方法
Jiang et al. A pH-sensitive nano drug delivery system of doxorubicin-conjugated amphiphilic polyrotaxane-based block copolymers
Wei et al. Well-defined labile diselenide-centered poly (ε-caprolactone)-based micelles for activated intracellular drug release
CN108434460B (zh) 一种靶向性介孔二氧化硅纳米药物及其制备方法
Hanna et al. Synthesis and characterization of poly (3-hydroxybutyrate)/chitosan-graft poly (acrylic acid) conjugate hyaluronate for targeted delivery of methotrexate drug to colon cancer cells
Asadi et al. Dual responsive nanogels for intracellular doxorubicin delivery
Patra et al. Biopolymeric nanogel derived from functionalized glycogen towards targeted delivery of 5-fluorouracil
Wan et al. pH and reduction-activated polymeric prodrug nanoparticles based on a 6-thioguanine-dialdehyde sodium alginate conjugate for enhanced intracellular drug release in leukemia
Lu et al. Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery
Le et al. Facile approach to prepare pH and redox-responsive nanogels via Diels-Alder click reaction
CN107224590B (zh) 一种可降解聚合物磁性纳米粒子及其制备方法
Wang et al. Temperature-triggered redox-degradable poly (ether urethane) nanoparticles for controlled drug delivery
Li et al. Synthesis and self-assembly behavior of pH-responsive star-shaped POSS-(PCL-P (DMAEMA-co-PEGMA)) 16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin
Das et al. Biocompatible amphiphilic microgel derived from dextrin and poly (methyl methacrylate) for dual drugs carrier
Tao et al. Acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly (ethylene glycol) as anticancer drug delivery carrier
Li et al. Redox-sensitive core cross-linked polyethylene glycol-polypeptide hybrid micelles for anticancer drug delivery
CN106349437B (zh) 一种三嵌段聚合物、其制备方法及用途
CN110664987B (zh) 一种抗肿瘤药物制剂及其制备方法
Krovi et al. Improved anti-proliferative effect of doxorubicin-containing polymer nanoparticles upon surface modification with cationic groups

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant