CN110664987A - 一种抗肿瘤药物制剂及其制备方法 - Google Patents
一种抗肿瘤药物制剂及其制备方法 Download PDFInfo
- Publication number
- CN110664987A CN110664987A CN201911016531.9A CN201911016531A CN110664987A CN 110664987 A CN110664987 A CN 110664987A CN 201911016531 A CN201911016531 A CN 201911016531A CN 110664987 A CN110664987 A CN 110664987A
- Authority
- CN
- China
- Prior art keywords
- daa
- maa
- solution
- pegma
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/05—Dipeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于化学生物医药领域,公开一种抗肿瘤药物制剂及其制备方法。所述制剂包括药物载体以及负载在其上的抗肿瘤药物,抗肿瘤药物为阿霉素、硼替佐米或两者的组合;药物载体为MAA‑co‑DAA‑co‑PEGMA共聚物。S1、制备药物载体MAA‑co‑DAA‑co‑PEGMA共聚物:S1.1、分别将TBDMS‑DAA、BACy溶解于DMF中,获得TBDMS‑DAA溶液和BACy溶液;将TBAF溶解于THF中,获得TBAF溶液;S1.2、在氮气氛围下,将MAA、TBDMS‑DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合,搅拌下加热至40~100℃,加入APS,反应5~10h后,离心洗涤,冷冻干燥;S1.3、将步骤S1.2所得产物加入到TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗并冷冻干燥即得MAA‑co‑DAA‑co‑PEGMA共聚物;S2、负载药物。本发明抗肿瘤药物制剂药物释放速率大于中性介质,具有pH和氧化还原双重刺激响应性,可用于肿瘤的治疗。
Description
技术领域
本发明属于化学生物医药领域,具体涉及一种抗肿瘤药物制剂及其制备方法。
背景技术
化疗依旧是最常用的癌症术后治疗手段之一。目前,许多化学药物被广泛应用于癌症治疗,但这类化疗药物普遍存在水溶性差、作用机制选择性缺乏、无细胞特异性等诸多缺点。该类药物还会引起机体的多药耐药性,对正常组织具有毒副作用。因此,科研工作者致力于研制可以克服此类问题的组合物制剂,以期可以减少化疗药物对人体带来的伤害。
纳米微球是一种尺寸几十到几百纳米的胶状粒子,常见制备方法有蒸馏沉淀聚合、乳液聚合等。制备方法简易,成品粒径尺寸及形貌较为均匀稳定,往往具有良好生物相容性、生物可降解性、刺激响应性等。
硼替佐米被美国食品和药物管理局(FDA)批准用于治疗多发性骨髓瘤和套细胞淋巴瘤。它能在体外杀死不同的癌细胞,包括结直肠癌、黑色素瘤、乳腺癌、前列腺癌和淋巴瘤。阿霉素是临床上常用的抗肿瘤药物之一,被广泛用于恶性淋巴瘤、乳腺癌、白血病等癌症的治疗。但两者均在临床环境中的静脉给药受到低水溶性、不稳定性、低生物利用度和高毒性的限制。
发明内容
本发明的目的在于提供一种抗肿瘤药物制剂及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种抗肿瘤药物制剂,所述制剂包括药物载体以及负载在其上的抗肿瘤药物,所述抗肿瘤药物为阿霉素、硼替佐米或两者的组合;所述药物载体为MAA-co-DAA-co-PEGMA共聚物,结构式如下:
较好地,a、b、c、d均为正整数并且 a∶b∶c∶d=(1~32)∶1∶2∶2。
一种所述抗肿瘤药物制剂的制备方法:
S1、制备药物载体MAA-co-DAA-co-PEGMA共聚物:
S1.1、分别将TBDMS-DAA、BACy溶解于DMF中,获得TBDMS-DAA溶液和BACy溶液;将TBAF溶解于THF中,获得TBAF溶液;
S1.2、在氮气氛围下,将MAA、TBDMS-DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合,搅拌下加热至40~100 ℃,加入APS,反应5~10 h后,离心洗涤,冷冻干燥;
S1.3、将步骤S1.2所得产物加入到TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗并冷冻干燥即得MAA-co-DAA-co-PEGMA共聚物;
S2、负载药物:
当负载的药物为硼替佐米时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH 8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米;
当负载的药物为阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@阿霉素;
当负载的药物为硼替佐米和阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH 8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗;所得固体沉淀超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米/阿霉素。
较好地,PEGMA的重均分子量为300~2000。
较好地,步骤S1.1中,TBDMS-DAA溶液的浓度为90~270 mg/mL,BACy溶液的浓度为50~170 mg/mL,TBAF溶液的浓度为0.1~0.4 mol/L;步骤S1.2中,MAA、BACy、PEGMA、TBDMS-DAA的摩尔比为(1~32)∶1∶2∶2,APS的总投入量为MAA、PEGMA、TBDMS-DAA三者总质量的(1~3)/1000,并且,水的用量为TBDMS-DAA溶液和BACy溶液两者总体积的10~15倍;SDS在步骤S1.2混合液(即MAA、TBDMS-DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合后所得的混合液)中的浓度是1.5~2.0 g/L;步骤S1.3中,以摩尔量计,TBAF的用量是步骤S1.2中TBDMS-DAA投入量的3~10倍。
本发明中:MAA为甲基丙烯酸,BACy为N, N’-双(丙烯酰)胱胺,PEGMA为聚乙二醇甲基丙烯酸酯,TBDMS-DAA为叔丁基二甲基硅烷基多巴胺丙烯酰胺,DMF为N,N-二甲基甲酰胺,SDS为十二烷基硫酸钠,APS为过硫酸铵,TBAF为四丁基氟化铵,THF为四氢呋喃。
有益效果:本发明MAA-co-DAA-co-PEGMA共聚物作为药物载体,载药量较高,能够解决药物自身的疏水性问题;交联剂选用BACy使载体具有较高的可降解性;所述共聚物载体负载药物后在酸性和10 mM的谷胱甘肽的存在下,释放速率大于中性介质,具有pH和氧化还原双重刺激响应性,可用于肿瘤的治疗。
附图说明
图1:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的TEM图;
图2:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的DLS图;
图3:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的红外光谱图;
图4:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物的XPS光谱图:(a)全谱,(b)C1谱,(c)O1谱;
图5:本发明实施例1所得MAA-co-DAA-co-PEGMA共聚物在PBS缓冲液(pH=7.4)和PBS+DMEM(1∶9,pH=7.4)下的稳定性测试;
图6:MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX的药物缓释图:(a)BTZ缓释,(b)DOX缓释。
具体实施方式
下述实施例仅对本发明作进一步详细说明,但不构成对本发明的任何限制;下述实施例中,TBDMS-DAA可参考文献Lee S B, González-Cabezas C, Kim K M, et al.Catechol-functionalized synthetic polymer as a dental adhesive tocontaminated dentin surface for a composite restoration[J].Biomacromolecules, 2015, 16(8): 2265-2275制备获得,与该文献制备TBDMS-DMA的区别仅在于:利用等摩尔量的丙烯酰氯代替甲基丙烯酰氯;BACy参考文献 S. Jin, J.X. Wan,L.Z. Meng, X.X. Huang, J. Guo, L. Liu, C.C. Wang, Biodegradation and toxicityof protease/redox/pH stimuli-responsive PEGlated PMAA nanohydrogels fortargeting drug delivery, ACS Appl. Mater. Interfaces 7 (2015) 19843–19852制备获得,所用其它的材料,如无特殊说明,均购自常规化学试剂公司和原料供应商。
实施例1
一种所述抗肿瘤药物制剂的制备方法:
S1、制备药物载体--MAA-co-DAA-co-PEGMA共聚物,制备流程如下:
。
制备步骤为:
S1.1、将0.27 g TBDMS-DAA溶解于2 mL DMF,获得TBDMS-DAA溶液;将0.085 g BACy溶解于1 mL DMF中,获得BACy溶液;将2 mmol TBAF溶解于10 mL THF中,获得0.2 mol/L TBAF溶液;
S1.2、在氮气氛围下,将0.492 g MAA、0.198 g PEGMA(平均分子量300)、0.0692 g SDS以及步骤S1.1所得TBDMS-DAA溶液、BACy溶液加入36 mL水中,混合,搅拌下加热至80 ℃,加入0.001 g APS,反应8 h后,离心洗涤,-40 ℃冷冻干燥;
S1.3、将步骤S1.2所得产物加入到10 mL TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗,-45 ℃冷冻干燥,即得MAA-co-DAA-co-PEGMA共聚物;
S2、负载药物:
当负载的药物为硼替佐米(BTZ)时,负载过程为:取90 mg MAA-co-DAA-co-PEGMA共聚物固体粉末,用81 mL pH 8.5的NaOH溶液超声分散均匀;90 mg硼替佐米溶于9 mL二甲基亚砜,加到上述超声溶液中,再次用pH 9.0的NaOH溶液调节体系pH至8.5,避光吸附24 h,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@BTZ;
当负载的药物为阿霉素(DOX)时,负载过程为:取90 mg MAA-co-DAA-co-PEGMA共聚物固体粉末,超声分散至90 mL 1 mg/mL阿霉素水溶液中,避光吸附24 h,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@DOX;
当负载的药物为硼替佐米和阿霉素(BTZ/DOX)时,负载过程为:取90 mgMAA-co-DAA- co-PEGMA共聚物固体粉末,用81 mL pH 8.5的NaOH溶液超声分散均匀;90 mg硼替佐米溶于9 mL二甲基亚砜,加到上述超声溶液中,再次用pH 9.0的NaOH溶液调节体系pH至8.5,避光吸附24 h,离心分离,水洗;所得固体沉淀超声分散至90 mL 1 mg/mL的阿霉素水溶液中,避光吸附24 h,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX。
图1为MAA-co-DAA-co-PEGMA共聚物的TEM图。由图1可知:所得MAA-co-DAA-co-PEGMA共聚物具有球形结构,直径约为170 nm,呈单分散状态。
图2为MAA-co-DAA-co-PEGMA共聚物的DLS图。由图2可知:MAA-co-DAA-co-PEGMA共聚物在pH 7.4的PBS中表现出稳定良好的分散稳定性。
图3为MAA-co-DAA-co-PEGMA共聚物的红外光谱图。由图3可知:在1240 cm-1处酚羟基特征峰是DAA功能单体存在的重要证据;2565 cm-1处S-S伸缩振动吸附,证明了聚合物主链中二硫键的引入;同时,还存在羧基型MAA的典型峰1728 cm-1,说明MAA的引入是成功的;此外,特征吸附在1100 cm-1处的出现证明了PEG的存在。
图4为MAA-co-DAA-co-PEGMA共聚物的XPS图:(a)全谱,(b)C1谱,(c)O1谱。MAA-co-DAA-co-PEGMA的C1s谱分解为5个能带,在这5个能带中,主成分由共聚物在284.95 eV处生成碳碳单键(C-C),286.45 eV的特征带为MAA-co-DAA-co-PEGMA中PEGMA单体的典型醚结构(C-O-C);位于285.58和287.41 eV的两个明显特征带,分别为C-N和N-C=O的酰胺结构,表明DAA的存在;羧基的288.57 eV的特征带证明了MAA单体的存在。此外,MAA-co-DAA-co-PEGMA的O1s谱在531.27、532.69、533.28 eV处被反析为3个波段,分别归属于MAA-co-DAA-co-PEGMA表面结构的羰基、醚基和羧基结构,进一步说明了上述各单体的存在。根据上述结果,证明了共聚物MAA-co-DAA-co-PEGMA的成功合成。
实施例2
与实施例1的不同之处在于:步骤S1.2中,保持TBDMS-DAA的用量不变,按照MAA∶TBDMS-DAA摩尔当量比32∶2调节MAA的用量,其它均同实施例1。
实施例3
与实施例1的不同之处在于:步骤S1.2中,保持TBDMS-DAA的用量不变,MAA∶TBDMS-DAA摩尔当量比8∶2调节MAA的用量,其它均同实施例1。
实施例4
与实施例1的不同之处在于:步骤S1.2中,PEGMA分子量为950,其它均同实施例1。
实施例5
与实施例1的不同之处在于:步骤S1.2中,反应温度为60 ℃,其它均同实施例1。
实施例6
与实施例1的不同之处在于:步骤S1.2中,反应时间为10 h,其它均同实施例1。
实施例7
与实施例1的不同之处在于:步骤S2中,使用KOH溶液代替NaOH溶液,其它均同实施例1。
稳定性测试:
使用DLS连续6天跟踪0.5mg/mL MAA-co-DAA-co-PEGMA共聚物(实施例1制备)在pH 7.4的PBS缓冲液、PBS(pH 7.4)+DMEM混合溶液(体积比,PBS∶DMEM=1∶9)中的平均水动力直径,结果如图5所示,表明:MAA-co-DAA-co-PEGMA共聚物在测试时间范围内具有良好的稳定性。
药物负载量和缓释行为研究:
(一)Zeta电位和药物负载量:分别将5 mg实施例1制备的MAA-co-DAA-co-PEGMA共聚物本身以及MAA-co-DAA-co-PEGMA共聚物@BTZ、MAA-co-DAA-co-PEGMA共聚物@DOX、MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX溶解在10 mL pH 7.4的PBS缓冲液中,测试Zeta电位和紫外测试药物负载量,结果分别如表1和表2所示。
由表1可知:MAA-co-DAA-co-PEGMA共聚物本身在pH 7.4的PBS缓冲液中显较高电负性-36.75 mV,随着表面负载上一种带正电荷的药物后,电负性有减弱,同时负载两种药物时电负性降低到-21.86 mV,证明了MAA-co-DAA-co-PEGMA共聚物表面正电荷药物的成功连接。
由表2可知:该共聚物对BTZ和DOX两种药物都有较高的药物负载量,其中对BTZ的负载量达到0.18 mg/mg,对DOX达到0.70 mg/mg。
(二)为模拟人体体液环境下药物的释放行为,在pH 7.4、pH 5.0、pH 7.4含10 mM谷胱甘肽(GSH)、pH 5.0含10 mM谷胱甘肽(GSH)的PBS缓冲溶液下进行体外药物缓释,具体为:将实施例1制备的MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX转移至截留分子量3500的透析袋内,置于150 mL的各PBS缓冲溶液(pH 7.4、pH 5.0、pH 7.4含10 mM GSH和pH 5.0含10 mMGSH)中,并在预先设定的时间点进行取样,随后利用紫外分光光度计测定药物的累计释放量。
MAA-co-DAA-co-PEGMA共聚物@BTZ/DOX的药物缓释图如图6所示:(a)BTZ缓释,(b)DOX缓释,由图6可知:在pH 7.4、pH 5.0、pH7.4含10 mM GSH和pH 5.0含10 mM GSH的PBS缓冲溶液下进行体外药物缓释,其不同环境下对BTZ和DOX具体药物累计释放量如表3,证明:MAA-co-DAA-co-PEGMA共聚物具有pH和氧化还原双重刺激响应性,可用于肿瘤的治疗。
Claims (5)
2.如权利要求1所述的抗肿瘤药物制剂,其特征在于:a、b、c、d均为正整数并且a∶b∶c∶d=(1~32)∶1∶2∶2。
3.一种如权利要求1或2所述的抗肿瘤药物制剂的制备方法,其特征在于:
S1、制备药物载体MAA-co-DAA-co-PEGMA共聚物:
S1.1、分别将TBDMS-DAA、BACy溶解于DMF中,获得TBDMS-DAA溶液和BACy溶液;将TBAF溶解于THF中,获得TBAF溶液;
S1.2、在氮气氛围下,将MAA、TBDMS-DAA溶液、PEGMA、BACy溶液和SDS加入水中,混合,搅拌下加热至40~100 ℃,加入APS,反应5~10 h后,离心洗涤,冷冻干燥;
S1.3、将步骤S1.2所得产物加入到TBAF溶液中,搅拌,离心收集沉淀物,THF洗涤,水洗并冷冻干燥即得MAA-co-DAA-co-PEGMA共聚物;
S2、负载药物:
当负载的药物为硼替佐米时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH 8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米;
当负载的药物为阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50-100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@阿霉素;
当负载的药物为硼替佐米和阿霉素时,负载过程为:按照质量份为mg、体积份为mL计,取50~100质量份MAA-co-DAA-co-PEGMA共聚物固体粉末,用50~100体积份pH8~9的碱溶液超声分散均匀;另取与MAA-co-DAA-co-PEGMA共聚物等质量份的硼替佐米溶于5~10体积份的二甲基亚砜中,加到上述超声溶液中,再次用pH 8~9的碱溶液调节体系pH至8~9,避光搅拌吸附1~3天,离心分离,水洗;所得固体沉淀超声分散至50~100体积份的阿霉素水溶液中,阿霉素水溶液中所含阿霉素与MAA-co-DAA-co-PEGMA共聚物等质量份,避光吸附1~3天,离心分离,水洗,即得抗肿瘤药物制剂:MAA-co-DAA-co-PEGMA共聚物@硼替佐米/阿霉素。
4.如权利要求3所述的抗肿瘤药物制剂的制备方法,其特征在于:PEGMA的重均分子量为300~2000。
5.如权利要求3所述的抗肿瘤药物制剂的制备方法,其特征在于:
步骤S1.1中,TBDMS-DAA溶液的浓度为90~270 mg/mL,BACy溶液的浓度为50~170 mg/mL,TBAF溶液的浓度为0.1~0.4 mol/L;
步骤S1.2中,MAA、BACy、PEGMA、TBDMS-DAA的摩尔比为(1~32)∶1∶2∶2,APS的总投入量为MAA、PEGMA、TBDMS-DAA三者总质量的(1~3)/1000,并且,水的用量为TBDMS-DAA溶液和BACy溶液两者总体积的10~15倍;SDS在步骤S1.2混合液中的浓度是1.5~2.0 g/L;
步骤S1.3中,以摩尔量计,TBAF的用量是步骤S1.2中TBDMS-DAA投入量的3~10倍。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911016531.9A CN110664987B (zh) | 2019-10-24 | 2019-10-24 | 一种抗肿瘤药物制剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911016531.9A CN110664987B (zh) | 2019-10-24 | 2019-10-24 | 一种抗肿瘤药物制剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110664987A true CN110664987A (zh) | 2020-01-10 |
CN110664987B CN110664987B (zh) | 2023-01-31 |
Family
ID=69084036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911016531.9A Active CN110664987B (zh) | 2019-10-24 | 2019-10-24 | 一种抗肿瘤药物制剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110664987B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106317335A (zh) * | 2015-07-01 | 2017-01-11 | 南开大学 | 适于生物样品的分子印迹聚合物传感材料及其制备方法 |
CN107686541A (zh) * | 2017-07-19 | 2018-02-13 | 华东理工大学 | 三多巴胺基化合物与聚合物及其制备方法与应用 |
-
2019
- 2019-10-24 CN CN201911016531.9A patent/CN110664987B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106317335A (zh) * | 2015-07-01 | 2017-01-11 | 南开大学 | 适于生物样品的分子印迹聚合物传感材料及其制备方法 |
CN107686541A (zh) * | 2017-07-19 | 2018-02-13 | 华东理工大学 | 三多巴胺基化合物与聚合物及其制备方法与应用 |
Non-Patent Citations (5)
Title |
---|
AMIN GHAVAMINEJAD等: ""pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy"", 《SCIENTIFIC REPORTS》 * |
SANG-BAE LEE等: ""Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration"", 《BIOMACROMOLECULES》 * |
XU JIA等: ""Novel fluorescent pH/reduction dual stimuli-responsive polymeric nanoparticles for intracellular triggered anticancer drug release"", 《CHEMICAL ENGINEERING JOURNAL》 * |
杨柳: ""含儿茶酚基团聚合物胶束对硼替佐米的控制释放研究"", 《中国优秀博硕士学位论文全文数据库(硕士) 医药卫生科技辑》 * |
邱雨点等: ""含多巴胺基团高分子聚合物纳米材料的构筑及其应用"", 《中国学位论文全文数据库》 * |
Also Published As
Publication number | Publication date |
---|---|
CN110664987B (zh) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel | |
CN107550921B (zh) | 一种纳米颗粒-高分子可注射复合水凝胶双载药体系及其制备方法 | |
Hu et al. | Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications | |
Chen et al. | Surface modification of mitoxantrone-loaded PLGA nanospheres with chitosan | |
Zhu et al. | Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles | |
Xi et al. | Drug-loaded chondroitin sulfate-based nanogels: Preparation and characterization | |
Ha et al. | Self-aggregates of cholesterol-modified carboxymethyl konjac glucomannan conjugate: Preparation, characterization, and preliminary assessment as a carrier of etoposide | |
Sang et al. | Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release | |
Hsiao et al. | Improved pH-responsive amphiphilic carboxymethyl-hexanoyl chitosan–poly (acrylic acid) macromolecules for biomedical applications | |
TWI400088B (zh) | 藥物載體原料及其製備方法和使用方法 | |
Jiang et al. | A pH-sensitive nano drug delivery system of doxorubicin-conjugated amphiphilic polyrotaxane-based block copolymers | |
Wei et al. | Well-defined labile diselenide-centered poly (ε-caprolactone)-based micelles for activated intracellular drug release | |
CN108434460B (zh) | 一种靶向性介孔二氧化硅纳米药物及其制备方法 | |
Wang et al. | Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery | |
Zhou et al. | Fluorescent dextran-based nanogels: efficient imaging nanoprobes for adipose-derived stem cells | |
Asadi et al. | Dual responsive nanogels for intracellular doxorubicin delivery | |
Li et al. | Synthesis and self-assembly behavior of pH-responsive star-shaped POSS-(PCL-P (DMAEMA-co-PEGMA)) 16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin | |
Lu et al. | Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery | |
Wang et al. | Temperature-triggered redox-degradable poly (ether urethane) nanoparticles for controlled drug delivery | |
Lu et al. | Poly (ethylene glycol) crosslinked multi-armed poly (ε-benzyloxycarbonyl-L-lysine) s as super-amphiphiles: Synthesis, self-assembly, and evaluation as efficient delivery systems for poorly water-soluble drugs | |
CN107224590B (zh) | 一种可降解聚合物磁性纳米粒子及其制备方法 | |
WO2009091103A1 (en) | Complex of biopolymers and insoluble biomolecules, and manufacturing method thereof | |
Kumar et al. | The effective treatment of multi-drug resistant tumors with self-assembling alginate copolymers | |
Das et al. | Biocompatible amphiphilic microgel derived from dextrin and poly (methyl methacrylate) for dual drugs carrier | |
CN111407740A (zh) | 一种超声可激活释放药物的白蛋白纳米粒子、其制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |