CN110658141A - 一种适用于多污染源的甲醛排放在线测量方法和系统 - Google Patents
一种适用于多污染源的甲醛排放在线测量方法和系统 Download PDFInfo
- Publication number
- CN110658141A CN110658141A CN201910942075.4A CN201910942075A CN110658141A CN 110658141 A CN110658141 A CN 110658141A CN 201910942075 A CN201910942075 A CN 201910942075A CN 110658141 A CN110658141 A CN 110658141A
- Authority
- CN
- China
- Prior art keywords
- formaldehyde
- gas
- subsystem
- stage
- data acquisition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 title claims abstract description 410
- 238000000691 measurement method Methods 0.000 title claims abstract description 12
- 238000005070 sampling Methods 0.000 claims abstract description 85
- 238000001514 detection method Methods 0.000 claims abstract description 80
- 238000010790 dilution Methods 0.000 claims abstract description 56
- 239000012895 dilution Substances 0.000 claims abstract description 56
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000004321 preservation Methods 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 238000009833 condensation Methods 0.000 claims abstract description 10
- 230000005494 condensation Effects 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000031700 light absorption Effects 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 114
- 239000007788 liquid Substances 0.000 claims description 35
- 239000000243 solution Substances 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000004809 Teflon Substances 0.000 claims description 10
- 229920006362 Teflon® Polymers 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 9
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- 239000003546 flue gas Substances 0.000 claims description 6
- 238000001212 derivatisation Methods 0.000 claims description 5
- 230000002572 peristaltic effect Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 239000012483 derivatization solution Substances 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims 2
- 239000003344 environmental pollutant Substances 0.000 description 12
- 231100000719 pollutant Toxicity 0.000 description 12
- 230000008569 process Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003445 Hantzsch reaction Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001184 proton transfer reaction mass spectrometry Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2247—Sampling from a flowing stream of gas
- G01N1/2252—Sampling from a flowing stream of gas in a vehicle exhaust
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0047—Organic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种适用于多污染源的甲醛排放在线测量方法,包括步骤:对待检测气体进行保温采样;利用零气对待检测气体进行前处理,具体包括两级零气稀释;以防止冷凝后水汽凝结导致甲醛组分损失,同时使高浓度甲醛降到量程范围内;结合湿化学法和吸光法,对稀释后的气体进行甲醛在线测量。本发明还公开了一种适用于多污染源的甲醛排放在线测量系统以实现上述方法,包括加热采样子系统、两级稀释子系统、甲醛在线检测子系统和数据采集与主控制子系统。本发明可应用于浓度变化范围极大、排放特征多样的多污染源甲醛排放浓度在线测量。
Description
技术领域
本发明涉及环境检测技术领域,特别涉及一种适用于多污染源的甲醛排放在线测量方法和系统。
背景技术
甲醛(HCHO)是大气中一种高活性、高毒性的物质。在大气中,气态甲醛浓度范围约为几百pptv至几十ppbv,是含氧挥发性有机物浓度中占比较高的物质。甲醛作为一种氧化中间态物质,对OH和HO2(HOx)自由基生成和去除的影响大,因此在大气污染形成过程中有着重要作用。另外,甲醛与臭氧和二次有机气溶胶生成也有很大相关性。然而,受限于现有的测量技术,一次排放源(固定源包括工艺过程源、固定燃烧源、生物质燃烧源、溶剂使用源和移动源等)的甲醛排放测量和特征研究依旧缺乏。目前,甲醛直接排放测量都使用DNPH管采样与HPLC分析的离线方法,无法体现实际排放特征,并且存在干扰大、损失大的问题,从而导致真实的甲醛一次排放尚不明确。尤其是对于道路移动源机动车尾气的甲醛排放测量,现有的便携式车载尾气排放系统并不针对甲醛等高活性组分,且已有的甲醛在线测量方法仍不适用于车载排放测试。然而,机动车尾气污染物排放受实际行驶工况影响,因此采用此种离线方法无法反映实际工况下甲醛组分的排放特征。另外,在线质谱仪(如PTR-MS质子传递反应质谱)虽然能够在线、快速测量甲醛,但无法应用于车载尾气、烟道气的测试中。
随着研究的不断深入,迫切需要针对一次污染源的在线甲醛排放测量技术用以探索各污染源的甲醛排放特征,并准确量化其排放水平。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种适用于多污染源的甲醛排放在线测量方法及系统,此方法及系统可适用于多种排放源测量,可应用于移动源和固定源多种污染源现场(或车载)甲醛在线排放检测。
本发明的原理是:采用两级稀释方法和甲醛在线监测技术进行源排放甲醛的在线检测,为多种源甲醛排放测量提供一种新型测量技术。采样过程中,通过防吸附和保温加热设计,避免采样过程中甲醛污染物的损失。前处理过程对气体进行两级稀释,同时实现气体的快速干燥降温与稀释,减少检测组分的丢失,并且使其符合浓度范围变化极大的测量需求。然后采用结合湿化学法和吸收法进行甲醛在线检测。另外,本发明系统可以远程调控,并可通过有线或者无线方式实现系统控制和数据传输展示。
本发明的目的通过以下方案实现,一种适用于多污染源的甲醛排放在线测量方法,包括以下步骤:
对待检测气体进行保温采样;以避免采样过程中水蒸气冷凝而导致的污染物损失,在针对移动源气体排放的检测时,还可获取机动车和非道路机械等的尾气排量和温湿度信息;
利用零气对待检测气体进行前处理,具体包括两级零气稀释;以防止冷凝后水汽凝结导致甲醛组分损失,同时使高浓度甲醛降到量程范围内;
结合湿化学法和吸光法,对稀释后的气体进行甲醛在线测量。
优选的,所述对稀释后的气体进行甲醛在线测量的步骤具体包括:
在吸收液作用下,使气态甲醛被吸收转为液态甲醛;
使液态甲醛与衍生液发生衍生化反应,形成有色溶液;
检测有色溶液光强,采集稀释后气体流量、吸收液流量及光强信号;
根据光强信号和琅勃比尔定律计算得到甲醛浓度。
一种适用于多污染源的甲醛排放在线测量系统,该系统可实现上述任一在线测量方法,该系统包括加热采样子系统、两级稀释子系统、甲醛在线检测子系统和数据采集与主控制子系统;
所述加热采样子系统包括气体排放测试仪、皮托管流量计、温湿度传感器、保温采样管;所述气体排放测试仪接收待排放气体,其后端设有气体出口与保温采样管相连,在数据采集与主控制系统的控制下保持气体温度于恒温,减少因冷却导致的监测组分的丢失;所述皮托管流量计为S型皮托管,安装于气体排放测试仪中,用于计算排气流量;所述温湿度传感器安装于气体排放测试仪中,用于检测排气温度。
所述的两级稀释子系统包括一级稀释器、二级稀释器、第一级流量控制器、第二级流量控制器;一级稀释器气体入口与上述保温采样管相连,一级稀释器气体出口与二级稀释器气体入口相连;二级稀释器气体出口与甲醛在线检测系统相连;一级稀释器和二级稀释器皆设有零空气入口,以注入零空气;所述的两级稀释系统可完成对气体的稀释,实现气体的快速干燥降温与稀释,减少监测组分的丢失,同时使得污染物浓度稀释至可测量范围。系统可调稀释倍数为1~50倍;所述第一级流量控制器与所述一级稀释器的零空气入口连接;所述第二级流量控制器与所述二级稀释器的零空气入口连接;
所述甲醛在线检测子系统采用基于Hantzsch反应的湿化学法和吸收光学法结合的检测方法,采样口通过特氟龙管与所述两级稀释子系统连接;其包括依次设置的基于螺旋管捕集阱的采样单元、高温反应单元、恒温检测单元、液体蠕动泵、气液分离装置、质量流量计、气泵,还包括向采样单元、高温反应单元、恒温检测单元输送吸收液、衍生液、有色溶液的溶液输送单元;该甲醛在线检测子系统通过特氟龙管与两级稀释子系统连接,对甲醛的捕集效率高于98%,测量检出限低于400pptv,最大测量范围为150ppbv,数据时间分辨率1s,响应时间≤3分钟,可实现对污染源甲醛排放浓度的快速响应和准确测量;
所述数据采集与主控制子系统包括第一、第二、第三数据采集与控制单元,第一数据采集与控制单元和加热采样子系统连接,控制其加热采样,并采集排气流量和温湿度信息;第二数据采集与控制单元和两级稀释子系统连接,根据流量信号调节所述第一级流量控制器和第二级流量控制器分别为所述一级稀释器和二级稀释器提供恒定流量的零空气,控制其稀释,所述第二数据采集控制单元采集所述第一级流量控制器和第二级流量控制器传输的流量信号;第三数据采集与控制单元和甲醛在线检测子系统连接,控制其完成甲醛在线检测,采集采样单元、高温反应单元、溶液输送单元、恒温检测单元、质量流量计和气泵中传输的流量、温度和浓度信息,可调节流量和温度。
优选的,当用于固定源烟道排放测试时,所述气体排放测试仪包括低损失采样枪和气体流量测量仪,S型皮托管、温湿度传感器安装在气体流量测量仪上,测试时S型皮托管和低损失采样枪入口端位于固定源烟道内,低损失采样枪出口端与保温采样管连接,S型皮托管监测烟道气体的压差,计算烟道内排气流量。
更进一步的,所述低损失采样枪内表面采用聚四氟材料涂层,防止甲醛污染物被吸附,枪头为L型以便置入烟道内。
优选的,当用于移动源尾气排放测试时,所述气体排放测试仪为尾气流量计,具体包括不锈钢管、S型皮托管、温度传感器,不锈钢管一端与尾气管连接,另一端与保温采样管连接。
更进一步的,所述不锈钢管内表面为聚四氟材料涂层,可防止钢管对甲醛污染物吸附导致污染物的损失。
优选的,所述适用于多污染源的甲醛排放在线测量系统还包括辅助参数检测子系统,具体包括OBD解码器、差分GPS接收器、大气环境监测仪、行车记录仪,专门用于移动源测试,差分GPS接收器对地理位置信息的实时监控,行车记录仪实时视频记录道路车辆行驶的路况信息,大气环境监测仪实时监测大气温度、湿度和大气压信息;所述数据采集与主控制子系统包括第四数据采集控制单元,与辅助参数检测子系统连接,控制其检测大气温度、湿度和大气压信息,通过OBD解码器串口获得汽车实时行驶参数。
优选的,所述数据采集与主控制子系统,具体包括移动设备、双电源输入接口和嵌入式软件系统,主要实现通过移动设备对软件系统进行IP访问,从而实现对各模块的控制和数据采集传输。
更进一步的,所述数据采集与主控制子系统中的双电源输入接口采用电池或220V电源的模式供电。
更进一步的,所述数据采集与主控制子系统通过移动设备有线或者无线方式对软件系统进行访问。
优选的,所述两级稀释子系统的一级稀释器和二级稀释器皆可手动选择开启和关闭,用户可根据需求选择使用两级稀释或仅使用一级稀释。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明可以应用于浓度变化范围极大、排放特征多样的多种污染源甲醛排放浓度在线测量。
2、本发明实现了便携式设计,适用于多种污染源的现场排放测量。
3、本发明的加热采样子系统和两级稀释子系统避免了甲醛组分缺失、高温高湿样气对甲醛采样测量的影响以及其他干扰物质(如其他醛酮类物质)对测量的影响。
4、本发明能够快速响应甲醛浓度,适用于甲醛排放的在线实时测量。
5、本发明的甲醛在线检测子系统不受震动影响,尤其适用于移动源的实际道路行驶尾气甲醛实时排放测量。
6、本发明采用便携式甲醛快速在线检测技术,适用于多种污染源的甲醛浓度实时在线测量,结合监测传感器,可以实时反映甲醛源排放特征。
7、本发明采用新型采样系统和稀释系统,避免了高活性甲醛的损失。
附图说明
图1为本发明一种适用于多污染源的甲醛排放在线测量方法流程图;
图2为本发明一种适用于多污染源的甲醛排放在线测量系统用于移动源测试时的总体结构图;
图3为本发明一种适用于多污染源的甲醛排放在线测量装置用于固定源测试时的总体结构图;
图4为甲醛在线检测子系统结构图;
其中,1-尾气流量计;2-低损失采样枪;3-S型皮托管;4-温湿度传感器;5-气体流量测量仪;6-保温采样管;7-两级稀释子系统;8-特氟龙采样管;9-甲醛在线检测子系统;10-数据采集与主控制子系统;11-辅助参数检测子系统;12-差分GPS接收器;13-大气环境监测仪;14-行车记录仪;15-OBD解码器;16-移动设备;17-220V电源线;18-通讯线;19-采样单元;20-高温反应单元;21-恒温检测单元;22-溶液输送单元;23-气液分离装置;24-液体蠕动泵;25-质量流量计;26-气泵;27-液体聚四氟三通。
图中的箭头方向为气体流向。
具体实施方式
为了更好的理解本发明的技术方案,下面结合附图详细描述本发明提供的实施例,但本发明的实施方式不限于此。
实施例1
如图1所示,一种适用于多污染源的甲醛排放在线测量方法,包括以下步骤:
S1、对待检测气体进行保温采样;以避免采样过程中水蒸气冷凝而导致的污染物损失,在针对移动源气体排放的检测时,还可获取机动车和非道路机械等的尾气排量和温湿度信息;
S2、利用零气对待检测气体进行前处理,具体包括两级零气稀释;以防止冷凝后水汽凝结导致甲醛组分损失,同时使高浓度甲醛降到量程范围内;
S3、结合湿化学法和吸光法,对稀释后的气体进行甲醛在线测量。
所述甲醛在线测量的步骤具体包括:
S3.1、在吸收液作用下,使气态甲醛被吸收转为液态甲醛;
S3.2、使液态甲醛与衍生液发生衍生化反应,形成有色溶液;
S3.3、检测有色溶液光强,采集稀释后气体流量、吸收液流量及光强信号;
S3.4、根据光强信号和琅勃比尔定律可计算得到甲醛浓度:
式中,I0为零气测量得到的光信号强度,I为有色溶液光信号强度,K为摩尔吸光系数,b为吸收层厚度,c为甲醛的浓度。
S4、数据的传输与展示:将步骤S1-S3过程中的流量、温湿度、稀释倍数和甲醛浓度等数据实时传输并展示。
实施例2
如图3-4所示,一种适用于固定烟道甲醛排放在线测量系统,包括加热采样子系统、两级稀释子系统、甲醛在线检测子系统、数据采集与主控制子系统、辅助参数检测子系统;
所述加热采样子系统包括气体排放测试仪、皮托管流量计、温湿度传感器;所述气体排放测试仪接收待排放气体,在数据采集与主控制子系统的控制下进行保温采样;所述皮托管流量计为S型皮托管,安装于气体排放测试仪上,用于计算排气流量;所述温湿度传感器安装于气体排放测试仪上,用于检测排气温湿度;所述气体排放测试仪为低损失采样枪和气体流量测量仪,,皮托管流量计为S型皮托管,S型皮托管和低损失采样枪入口端位于固定源烟道内,低损失采样枪出口端与保温采样管连接,S型皮托管监测烟道气体的压差,计算烟道内排气流量。所述低损失采样枪内表面采用聚四氟材料涂层,防止甲醛污染物被吸附,枪头为L型以便置入烟道内。
所述的两级稀释子系统包括一级稀释器、二级稀释器、第一级流量控制器、第二级流量控制器;一级稀释器气体入口与上述保温采样管相连,一级稀释器气体出口与二级稀释器气体入口相连;二级稀释器气体出口与甲醛在线检测系统相连;一级稀释器和二级稀释器皆设有零空气入口,以注入零空气;所述的两级稀释系统可完成对气体的稀释,实现气体的快速干燥降温与稀释,减少监测组分的丢失,同时使得污染物浓度稀释至可测量范围。系统可调稀释倍数为1~50倍;所述第一级流量控制器与所述一级稀释器的零空气入口连接;所述第二级流量控制器与所述二级稀释器的零空气入口连接;所述一级稀释器和二级稀释器皆可手动选择开启和关闭,用户可根据需求选择使用两级稀释或仅使用一级稀释,并根据排放浓度值调节稀释倍数。
所述甲醛在线检测子系统采用基于Hantzsch反应的湿化学法和吸收光学法结合的检测方法,采样口通过特氟龙管与所述两级稀释子系统连接。其包括依次设置的基于螺旋管捕集阱的采样单元、高温反应单元、恒温检测单元、液体蠕动泵气液分离装置、质量流量计、气泵,还包括向采样单元、高温反应单元、恒温检测单元输送吸收液和衍生液的溶液输送单元;该甲醛在线检测子系统通过特氟龙管与两级稀释子系统连接,对甲醛的捕集效率高于98%,测量检出限低于400pptv,最大测量范围为150ppbv,数据时间分辨率1s,响应时间≤3分钟,可实现对污染源甲醛排放浓度的快速响应和准确测量;
所述辅助参数检测子系统具体包括OBD解码器、差分GPS接收器、大气环境监测仪、行车记录仪,专门用于移动源测试,差分GPS接收器对地理位置信息的实时监控,行车记录仪实时视频记录道路车辆行驶的路况信息,大气环境监测仪实时监测大气温度、湿度和大气压信息;
所述数据采集与主控制子系统包括第一、第二、第三、第四数据采集与控制单元,第一数据采集与控制单元和加热采样子系统连接,控制其加热采样;第二数据采集与控制单元和两级稀释子系统连接,根据流量信号调节所述第一级流量控制器和第二级流量控制器分别为所述一级稀释器和二级稀释器提供恒定流量的零空气,控制其稀释,所述第二数据采集控制单元采集所述第一级流量控制器和第二级流量控制器传输的流量信号;第三数据采集与控制单元和甲醛在线检测子系统连接,控制其完成甲醛在线检测,采集采样单元、高温反应单元、溶液输送单元、恒温检测单元、质量流量计和气泵中传输的流量、温度和浓度信息,可调节流量和温度。具体包括移动设备、双电源输入接口和嵌入式软件系统,主要实现通过移动设备对软件系统以有线或者无线方式进行IP访问,从而实现对各模块的控制和数据采集传输,其电源输入接口采用电池或220V电源的模式供电。所述数据采集与主控制子系统的第四数据采集控制单元与辅助参数检测子系统连接,控制其检测大气温度、湿度和大气压信息,通过OBD解码器串口获得汽车实时行驶参数。
以固定源烟道测试为例,如图2所示,检测气体时低损失采样枪2、S型皮托管3、温湿度传感器4置于烟道内,低损失采样枪2的采样出口通过保温采样管6与两级稀释子系统7的气体入口连接,两级稀释子系统7的第二气体出口通过特氟龙采样管8与甲醛在线检测子系统9的气体入口连接。S型皮托管3和温湿度传感器4安装在气体流量测量仪5上,气体流量测量仪5与数据采集与主控制子系统连接。两级稀释子系统7和甲醛在线检测子系统9分别通过不同的数据串口和通讯线18与数据采集与主控制子系统10连接。使用220V电源17对装置进行供电,数据采集与主控制子系统10开机,在移动设备16对数据采集与主控制子系统10软件进行访问,选择固定源测试模式,此时自动识别连接上线的加热采样子系统的气体流量测量仪5、两级稀释子系统7和甲醛在线检测子系统9,并自动判断和显示各系统是否处于正常状态。处于正常状态时可进行预热;处于异常状态时需重新检查各子系统的连接。装置正常后,使用移动设备16对数据采集与主控制子系统10软件进行访问,选择预热模式,两级稀释子系统7和甲醛在线检测子系统9开始预热。预热完成后用移动设备16对数据采集与主控制子系统10软件进行访问选择标定模式,对上述两级稀释子系统7、甲醛在线检测子系统9进行标定工作。预热与标定工作完成选择测量模式可开始测试。烟道气体经过低损失采样枪2,并通过S型皮托管3对烟气获得烟道内气体压差信号,通过温湿度传感器4获得烟道内气体温湿度信号,再由保温采样管6进入两级稀释子系统7,使用零空气对烟气进行两级稀释,可通过移动设备16对数据采集与主控制子系统10软件调节稀释比,稀释之后的气体可定量由特氟龙采样管8进入甲醛在线检测子系统9进行浓度分析。气体在气泵26作用下进入甲醛在线检测子系统9的采样单元19,在吸收液作用下,气态甲醛被吸收转为液态甲醛。含有甲醛的溶液之后进入高温反应单元20与衍生液发生衍生化反应,形成有色的溶液,之后再进入恒温检测单元21检测得出光强,此时数据采集与主控制子系统10获取甲醛在线检测子系统9中的气体流量、吸收液流量和光强信号计算得到甲醛浓度。实时数据与浓度变化曲线可以即时在移动设备16上查看。
实施例3
如图2所示,一种适用于移动源实际道路甲醛排放在线测量系统,所述气体排放测试仪为尾气流量计,具体包括不锈钢管、S型皮托管、温度传感器,不锈钢管一端与尾气管连接,另一端与保温采样管连接。所述不锈钢管内表面为聚四氟材料涂层,可防止钢管对甲醛污染物吸附导致污染物的损失。其他组成结构与实施例2相同。
尾气流量计1与车辆尾气管连接,尾气流量计1的采样出口通过保温采样管6与两级稀释子系统7的气体入口连接,两级稀释子系统7的第二气体出口通过特氟龙采样管8与甲醛在线检测子系统9的气体入口连接。辅助参数检测子系统11的OBD解码器15与机动车的OBD接口连接。尾气流量计1和保温采样管6与数据采集与主控制子系统10连接进行数据输送,两级稀释子系统7、甲醛在线检测子系统9和辅助参数检测子系统11分别通过不同的数据串口和通讯线与数据采集与主控制子系统10连接。使用220V电源17对装置进行供电,数据采集与主控制子系统10开机,在移动设备16对数据采集与主控制子系统10软件进行访问,选择移动源测试模式,此时自动识别连接上线的加热采样系统、两级稀释子系统7、甲醛在线检测子系统9和辅助参数检测子系统11,并自动判断和显示是否处于正常状态。处于正常状态时可进行预热;处于异常状态时需重新检查各子系统的连接。装置正常后,使用移动设备16对数据采集与主控制子系统10软件进行访问,选择预热模式,两级稀释子系统7、甲醛在线检测子系统9和辅助参数检测子系统11开始预热。上电后,差分GPS接收器12自动接收地理位置信息,获取速度、经纬度和高程位置信息。预热完成后用移动设备16对数据采集与主控制子系统10软件进行访问选择标定模式,对两级稀释子系统7、甲醛在线检测子系统9进行标定工作。预热与标定工作完成可开始车载测试,需注意的是,需断开220V电源,使用电池供电,由于使用双通道电源输入,断开220V电源时不会使系统断电。在进行车载测试时,选择测量模式,机动车启动会自动激活OBD解码器15,能够对机动车速度、发动起转速、燃油消耗、发动机进气量等参数进行实时获取。机动车尾气全流经过尾气流量计1,通过皮托管流量计3和温湿度传感器4对尾气进行流量与温湿度进行检测,部分尾气由保温采样管6进入两级稀释子系统7,使用零空气对尾气进行两级稀释,可通过移动设备16对数据采集与主控制子系统10软件调节稀释比,稀释之后的样气可定量由特氟龙采样管8进入甲醛在线检测子系统9进行浓度分析。气体在气泵26作用下进入甲醛在线检测子系统9的采样单元19,在吸收液作用下,气态甲醛被吸收转为液态甲醛。含有甲醛的溶液之后进入高温反应单元20与衍生液发生衍生化反应,形成有色的溶液,之后再进入恒温检测单元21检测得出光强,此时数据采集与主控制子系统10获取甲醛在线检测子系统9中的气体流量、吸收液流量和光强信号计算得到甲醛浓度。加热采样子系统中的尾气流量计1和保温采样管6、两级稀释子系统7、甲醛在线检测子系统9和辅助参数检测子系统11可通过移动设备16对数据采集与主控制子系统10软件控制开启与关闭,并且移动设备16同步显示各项检测数据,实时数据与浓度变化曲线可以即时在移动设备16上查看。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种适用于多污染源的甲醛排放在线测量方法,其特征在于,包括以下步骤:
对待检测气体进行保温采样;
利用零气对待检测气体进行前处理,具体包括两级零气稀释;以防止冷凝后水汽凝结导致甲醛组分损失,同时使高浓度甲醛降到量程范围内;
结合湿化学法和吸光法,对稀释后的气体进行甲醛在线测量。
2.根据权利要求1所述的适用于多污染源的甲醛排放在线测量方法,其特征在于,所述对稀释后的气体进行甲醛在线测量的步骤具体包括:
在吸收液作用下,使气态甲醛被吸收转为液态甲醛;
使液态甲醛与衍生液发生衍生化反应,形成有色溶液;
检测有色溶液光强,采集稀释后气体流量、吸收液流量及光强信号;
根据光强信号,利用琅勃比尔定律即可计算得到甲醛浓度。
3.一种适用于多污染源的甲醛排放在线测量系统,该系统可实现权利要求1-2任一项的在线测量方法,其特征在于,包括加热采样子系统、两级稀释子系统、甲醛在线检测子系统和数据采集与主控制子系统;
所述加热采样子系统包括气体排放测试仪、皮托管流量计、温湿度传感器;所述气体排放测试仪接收待排放气体,其后端设有气体出口与保温采样管相连,在数据采集与主控制系统的控制下保持气体温度于恒温;所述皮托管流量计为S型皮托管,安装于气体排放测试仪中,用于计算排气流量;所述温湿度传感器安装于气体排放测试仪中,用于检测排气温度;
所述的两级稀释子系统包括一级稀释器、二级稀释器、第一级流量控制器、第二级流量控制器;一级稀释器气体入口与上述保温采样管相连,一级稀释器气体出口与二级稀释器气体入口相连;二级稀释器气体出口与甲醛在线检测系统相连;一级稀释器和二级稀释器皆设有零空气入口;所述第一级流量控制器与所述一级稀释器的零空气入口连接;所述第二级流量控制器与所述二级稀释器的零空气入口连接;
所述甲醛在线检测子系统,包括依次设置的基于螺旋管捕集阱的采样单元、高温反应单元、恒温检测单元、液体蠕动泵、气液分离装置、质量流量计、气泵,还包括向采样单元、高温反应单元、恒温检测单元输送吸收液和衍生液的溶液输送单元,该甲醛在线检测子系统通过特氟龙管与两级稀释子系统连接;
所述数据采集与主控制子系统包括第一、第二、第三数据采集与控制单元,第一数据采集与控制单元和加热采样子系统连接,控制其加热采样;第二数据采集与控制单元和两级稀释子系统连接,根据流量信号调节所述第一级流量控制器和第二级流量控制器分别为所述一级稀释器和二级稀释器提供恒定流量的零空气,控制其稀释,所述第二数据采集控制单元采集所述第一级流量控制器和第二级流量控制器传输的流量信号;第三数据采集与控制单元和甲醛在线检测子系统连接,控制其完成甲醛在线检测并采集相应的数据。
4.根据权利要求3所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,当用于固定源烟道排放测试时,所述气体排放测试仪包括低损失采样枪和气体流量测量仪,S型皮托管、温湿度传感器安装在气体流量测量仪上,测试时S型皮托管和低损失采样枪入口端位于固定源烟道内,低损失采样枪出口端与保温采样管连接,S型皮托管监测烟道气体的压差,计算烟道内排气流量。
5.根据权利要求4所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,所述低损失采样枪内表面采用聚四氟材料涂层,枪头为L型。
6.根据权利要求3所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,当用于移动源尾气排放测试时,所述气体排放测试仪为尾气流量计,具体包括不锈钢管,不锈钢管一端与尾气管连接,另一端与加热保温采样管连接。
7.根据权利要求6所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,所述不锈钢管内表面为聚四氟材料涂层。
8.根据权利要求3所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,所述适用于多污染源的甲醛排放在线测量系统还包括辅助参数检测子系统,具体包括OBD解码器、差分GPS接收器、大气环境监测仪、行车记录仪,差分GPS接收器对地理位置信息的实时监控,行车记录仪实时视频记录道路车辆行驶的路况信息,大气环境监测仪实时监测大气温度、湿度和大气压信息;所述数据采集与主控制子系统包括第四数据采集控制单元,与辅助参数检测子系统连接,控制其检测大气温度、湿度和大气压信息,通过OBD解码器串口获得汽车实时行驶参数。
9.根据权利要求3所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,所述数据采集与主控制子系统,具体包括移动设备、双电源输入接口和嵌入式软件系统用于对各模块的控制和数据采集传输。
10.根据权利要求9所述的适用于多污染源的甲醛排放在线测量系统,其特征在于,所述数据采集与主控制子系统中的双电源输入接口采用电池或220V电源的模式供电。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910942075.4A CN110658141A (zh) | 2019-09-30 | 2019-09-30 | 一种适用于多污染源的甲醛排放在线测量方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910942075.4A CN110658141A (zh) | 2019-09-30 | 2019-09-30 | 一种适用于多污染源的甲醛排放在线测量方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110658141A true CN110658141A (zh) | 2020-01-07 |
Family
ID=69038720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910942075.4A Pending CN110658141A (zh) | 2019-09-30 | 2019-09-30 | 一种适用于多污染源的甲醛排放在线测量方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110658141A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111175093A (zh) * | 2020-01-22 | 2020-05-19 | 暨南大学 | 一种基于膜吸附的便携式空气二噁英取样装置及方法 |
CN113295826A (zh) * | 2021-05-24 | 2021-08-24 | 暨南大学 | 一种基于车联网的机动车尾气排放测试管理系统及智能诊断方法 |
CN113552289A (zh) * | 2021-07-14 | 2021-10-26 | 清华苏州环境创新研究院 | 一种基于高斯模式的大气污染溯源方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202770834U (zh) * | 2012-07-23 | 2013-03-06 | 上海出入境检验检疫局工业品与原材料检测技术中心 | 甲醛释放量检测装置 |
CN109459401A (zh) * | 2019-01-02 | 2019-03-12 | 北京大学 | 环境空气中甲醛含量的在线监测方法及装置 |
CN109655317A (zh) * | 2019-01-18 | 2019-04-19 | 北京大学 | 基于动态稀释法的机动车尾气车载测试平台及采样方法 |
-
2019
- 2019-09-30 CN CN201910942075.4A patent/CN110658141A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202770834U (zh) * | 2012-07-23 | 2013-03-06 | 上海出入境检验检疫局工业品与原材料检测技术中心 | 甲醛释放量检测装置 |
CN109459401A (zh) * | 2019-01-02 | 2019-03-12 | 北京大学 | 环境空气中甲醛含量的在线监测方法及装置 |
CN109655317A (zh) * | 2019-01-18 | 2019-04-19 | 北京大学 | 基于动态稀释法的机动车尾气车载测试平台及采样方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111175093A (zh) * | 2020-01-22 | 2020-05-19 | 暨南大学 | 一种基于膜吸附的便携式空气二噁英取样装置及方法 |
CN113295826A (zh) * | 2021-05-24 | 2021-08-24 | 暨南大学 | 一种基于车联网的机动车尾气排放测试管理系统及智能诊断方法 |
CN113295826B (zh) * | 2021-05-24 | 2023-06-27 | 暨南大学 | 一种基于车联网的机动车尾气排放测试管理系统及智能诊断方法 |
CN113552289A (zh) * | 2021-07-14 | 2021-10-26 | 清华苏州环境创新研究院 | 一种基于高斯模式的大气污染溯源方法 |
CN113552289B (zh) * | 2021-07-14 | 2024-01-23 | 清华苏州环境创新研究院 | 一种基于高斯模式的大气污染溯源方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110658141A (zh) | 一种适用于多污染源的甲醛排放在线测量方法和系统 | |
US7454950B2 (en) | Vehicle exhaust gas analyzer | |
CN108007699B (zh) | 一种模块化的机动车尾气污染物车载排放测试平台 | |
CN102749378B (zh) | 模拟尾气排放的汽油车简易瞬态工况排放检测标准装置 | |
CN108181432A (zh) | 机动车尾气污染物全组分排放测试方法 | |
CN108226387B (zh) | 车载型排气分析系统及其检查方法、存储介质、检查系统 | |
CN110531036A (zh) | 机动车尾气实时检测系统 | |
CN112147280A (zh) | 环境空气监测的传感器远程校准方法及环境空气质量监测装置 | |
JP2000314684A (ja) | 車両用質量排出量測定 | |
CN109655317B (zh) | 基于动态稀释法的机动车尾气车载测试平台及采样方法 | |
JP2000510231A (ja) | 空気汚染物質モニター装置 | |
US6516656B1 (en) | System for vehicle emission sampling and measurement | |
Lao et al. | A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO) | |
CN101221114B (zh) | 气-气或液-液扩散系数的快速测定系统及测定方法 | |
US7087434B2 (en) | Automatic portable formaldehyde analyzer | |
CN114184744A (zh) | 一种基于压力差进样方式的移动监测设备的定量校准方法 | |
CN204479552U (zh) | 环境在线监测系统 | |
CN205484057U (zh) | 一种二氧化硫分析仪 | |
CN110579379B (zh) | 一种机动车尾气柔性采样系统及采样方法 | |
Fukami et al. | Improvement in PEMS performance for RDE testing at high and varying altitudes | |
CN209264552U (zh) | 臭氧浓度测定装置 | |
CN103398973B (zh) | 一种多波长复合光谱类比法移动式气体检测报警装置 | |
CN112611795A (zh) | 一种基于tvoc监测仪的tvoc监测方法 | |
CN112213447A (zh) | 一种用于非道路机械的排放测试系统和方法 | |
Butler et al. | A system for on-line measurement of multicomponent emissions and engine operating parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200107 |