CN110649853A - 一种无传感器的间歇式流体自动定量投加方法 - Google Patents

一种无传感器的间歇式流体自动定量投加方法 Download PDF

Info

Publication number
CN110649853A
CN110649853A CN201910920855.9A CN201910920855A CN110649853A CN 110649853 A CN110649853 A CN 110649853A CN 201910920855 A CN201910920855 A CN 201910920855A CN 110649853 A CN110649853 A CN 110649853A
Authority
CN
China
Prior art keywords
motor
volume
sensorless
turns
omega
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910920855.9A
Other languages
English (en)
Other versions
CN110649853B (zh
Inventor
余世明
何德峰
仇翔
宋秀兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910920855.9A priority Critical patent/CN110649853B/zh
Publication of CN110649853A publication Critical patent/CN110649853A/zh
Application granted granted Critical
Publication of CN110649853B publication Critical patent/CN110649853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/04Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being hot or corrosive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/09Motor speed determination based on the current and/or voltage without using a tachogenerator or a physical encoder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

本发明公开了一种无传感器的间歇式流体自动定量投加方法,针对石油、化工、水处理、食品、制药、环保等领域的流体间歇式自动投加要求,基于无传感器矢量控制估计驱动电机转子转角θ和角速度ω,在此基础上分两阶段确定进行标定,确定驱动电机每转一圈的体积Vr1、Vr2参数,然后根据定量投加体积VQ,确定所需电机圈数NQ,进而实现流体的无传感器间歇式自动定量投加。

Description

一种无传感器的间歇式流体自动定量投加方法
技术领域
本发明涉及一种流体的间歇式自动定量投加技术,特别是无传感器情况下流体的间歇式定量投加方法。
背景技术
流体的间歇式定量投加普遍存在于石油、化工、水处理、食品、制药、环保、液态施肥等领域。由于待投加流体一般为腐蚀性酸碱液,因此,实现这一过程的低层设备通常是往复式隔膜计量泵,为了降低成本通常采用三相异步电机驱动。如图1所示,驱动电机(三相异步电机)1的转轴通过蜗杆2与蜗轮3组成的减速机构减速换向,蜗轮3带动曲柄4同步旋转,曲柄4通过连杆5带动隔膜6做水平往复运动,一个冲程的容积变化量用图1中虚线包围的区域9表示。隔膜6右移,隔膜腔10容积增大,在负气压的作用下,入口阀7打开,出口阀11关闭,从而将待加流体从容器吸入隔膜腔;隔膜6左移,隔膜腔容积减小,在正气压的作用下,入口阀7关闭,出口阀11打开,从而将隔膜腔内的流体排出。
计量泵流量调节原理有如下有两种方式:
(一)调节隔膜行程
这种方式三相交流电的频率固定为50Hz,可通过安装在泵体上的调节手轮来调节隔膜行程。通过手轮调节曲柄半径r,可调节每个冲程隔膜腔容积变化量ΔV,而ΔV∝r,即
ΔV=f(r) (1)
设冲程频率正比于三相交流电的频率,设其为fr,则流量
Q=3600ΔV·fr (2)
(二)调节隔膜往复运动的频率
这种方式曲柄半径r固定,每个冲程隔膜腔容积变化量ΔV也固定,但三相交流电的频率可变,因此,隔膜往复运动的频率可变。通过工业计量泵专用数字变频控制器来改变三相交流的频率f来调节驱动电机转速,电机转速n与频率f具有如下关系:
Figure BDA0002216500880000021
式中p为磁极对数,δ为旋转磁场与定子之间的转差率,一般为1~3%。流量与转速有如下关系
式中,λ为传动比。
通过上述方法,可调节流量大小,只能实现连续投加。按上述两种方法,为了实现间歇式定量投加,只能根据不太准确的流量大小,大致估算一个时间,投加时间到了采用交流接触器切断交流电,使驱动电机停止运行。当需要投加时,重新启动电机。显然,这种手动启停方式无法满足现代生产过程中间歇式自动精确定量投加的工艺要求。
发明内容
为了解决现有技术中存在的上述技术问题,本发明提供了一种无传感器的间歇式流体自动定量投加方法,其特征在于:基于无传感器矢量控制估计转子转角θ和角速度ω,根据能否检测到反电动势,分两阶段进行标定,确定电机每转一圈的体积Vr1、Vr2参数,然后根据定量投加体积VQ,确定所需电机圈数NQ,实现定量投加;体积Vr1、Vr2参数分别是检测不到反电动势,或检测到反电动势,电机转动一圈的流量体积。
进一步的,按如下步骤进行标定:
步骤1
若ωe(l)≤ωth
若θe(l)<2π,则θe(l)=θe(l-1)+ωe(l)Ts
否则N=N+1,令θe(l)=θe(l)-2π,θe(0)=0,l=0,转步骤1;
否则
N=N+θe(l)/2π;
关电机,测量取样口取得的液体的体积VN
计算电机每转一圈的体积Vr1=VN/N,N=0;
步骤2
启动电机在数字变频控制器的控制下,让电机转M圈后并电机,M=N+Ne,其中Ne是ωe(l)>ωth以后电机转过的圈数,即可以检测到反电动势并正确估计θ,ω时的圈数;
关电机,测量取样口取得的液体的体积VM
计算电机每转一圈的体积Vr2=(VM-VN)/Ne
进一步的,根据标定系数Vr1、Vr2参数,根据如下规则确定定量投加体积VQ所需电机圈数NQ,实现定量投加;
若定量投加量VQ≤VN,则当NQ≥VQ/Vr1时,关电机
否则,当NQ≥VN+(VQ-VN)/Vr2时,关电机。
本发明基于无传感器矢量控制,估计驱动电机的转角和转速,在此基础上通过计量泵专用数字变频控制器实现间歇式精确定量投加。
附图说明
图1是工业隔膜计量泵工作原理示意图;
图2是矢量控制原理图;
附图标记含义:1——三相异步电机,2——蜗杆,3——蜗轮,4——曲柄,5——连杆,6——隔膜,7——入口阀,8——入口阀球,9——每个冲程隔膜腔容积变化量,10——隔膜腔,11——出口阀,12——出口阀球。
具体实施方式
下面结合附图对本发明作进一步。
首先简要介绍一下矢量控制的原理。如图2所示,ia,ib,ic为定子平面上三轴坐标下的三相定子电流,由于ia+ib+ic=0,通常只测其中两相。iα,iβ为经CLARK变换后定子平面上两轴坐标下的电流。id,iq为经PARK变换后转子平面上两轴坐标下的电流。Vd,Vq为经PI控制算法求得的转子平面上两轴坐标下的电压矢量。Vα,Vβ为经反PARK变换后定子平面上两轴坐标下的电压矢量。θ,ω分别为根据转子电流产生的反电势,利用iα,iβ,Vα,Vβ通过滑模控制器估计的电机转子转角和角速度,具体过程在相关矢量控制的文献中有详细描述,不再赘述。
无传感器矢量控制利用转子电流在定子绕阻中产生的反电动势来估计θ,ω。当电机转速比较低时,检测不到反电动势,因此,也就无法正确估计θ,ω。设能够正确估计θ,ω的临界转速为ωth,即当ω≥ωth时,可正确估计θ,ω。
由于ω小于ωth时,无法估计ω,也就无法判断何时满中ω≥ωth。假设旋转磁场的转速为ωe,转角为θe,数字变频控制器的采样周期为Ts,电速度从零加速到ωth所需的时间为Ta,则电加速度为
Figure BDA0002216500880000041
由(5)式有
Figure BDA0002216500880000042
第k个采样周期旋转磁场的转速和转角分别为
ωe(k)=ωe(k-1)+Δωe (7)
θe(l)=θe(l-1)+ωe(l)Ts (8)
当ωe≥ωth时,用滑模控制器估计的可θ,ω作为驱动电机转子的转角和转速。
在计量泵的出口处安装背压阀,将压力调节到大于外部压力,设N为驱动电机转过的圈数。按下列方法进行标定:
步骤1
若ωe(l)≤ωth
若θe(l)<2π,则θe(l)=θe(l-1)+ωe(l)Ts
否则N=N+1,令θe(l)=θe(l)-2π,θe(0)=0,l=0,转1步骤1;
否则
N=N+θe(l)/2π;
关电机,测量取样口取得的液体的体积VN
计算电机每转一圈的体积Vr1=VN/N,N=0。
步骤2
启动电机在数字变频控制器的控制下,让电机转M圈后关电机,M=N+Ne,其中Ne是ωe(l)>ωth以后电机转过的圈数,即可以检测到反电动势并正确估计θ,ω时的圈数。
关电机,测量取样口取得的液体的体积VM
计算电机每转一圈的体积Vr2=(VM-VN)/Ne
步骤3
若定量投加量VQ≤VN,则当NQ≥VQ/Vr1时,关电机;
否则,当NQ≥VN+(VQ-VN)/Vr2时,关电机。

Claims (3)

1.一种无传感器的间歇式流体自动定量投加方法,其特征在于:基于无传感器矢量控制估计转子转角θ和角速度ω,根据能否检测到反电动势,分两阶段进行标定,确定电机每转一圈的体积Vr1、Vr2参数,然后根据定量投加体积VQ,确定所需电机圈数NQ,实现定量投加;体积Vr1、Vr2参数分别是检测不到反电动势,或检测到反电动势,电机转动一圈的流量体积。
2.权利要求1所述的无传感器的间歇式流体自动定量投加方法,其特征在于按如下步骤进行标定:
步骤1
若ωe(l)≤ωth
若θe(l)<2π,则θe(l)=θe(l-1)+ωe(l)Ts
否则N=N+1,令θe(l)=θe(l)-2π,θe(0)=0,l=0,转步骤1;
否则
N=N+θe(l)/2π;
关电机,测量取样口取得的液体的体积VN
计算电机每转一圈的体积Vr1=VN/N,N=0;
步骤2
启动电机在数字变频控制器的控制下,让电机转M圈后并电机,M=N+Ne,其中Ne是ωe(l)>ωth以后电机转过的圈数,即可以检测到反电动势并正确估计θ,ω时的圈数;
关电机,测量取样口取得的液体的体积VM
计算电机每转一圈的体积Vr2=(VM-VN)/Ne
3.权利要求2所述的无传感器的间歇式流体自动定量投加方法,其特征在于:
根据标定系数Vr1、Vr2参数,根据如下规则确定定量投加体积VQ所需电机圈数NQ,实现定量投加;
若定量投加量VQ≤VN,则当NQ≥VQ/Vr1时,关电机
否则,当NQ≥VN+(VQ-VN)/Vr2时,关电机。
CN201910920855.9A 2019-09-26 2019-09-26 一种无传感器的间歇式流体自动定量投加方法 Active CN110649853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910920855.9A CN110649853B (zh) 2019-09-26 2019-09-26 一种无传感器的间歇式流体自动定量投加方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910920855.9A CN110649853B (zh) 2019-09-26 2019-09-26 一种无传感器的间歇式流体自动定量投加方法

Publications (2)

Publication Number Publication Date
CN110649853A true CN110649853A (zh) 2020-01-03
CN110649853B CN110649853B (zh) 2021-01-05

Family

ID=69011643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910920855.9A Active CN110649853B (zh) 2019-09-26 2019-09-26 一种无传感器的间歇式流体自动定量投加方法

Country Status (1)

Country Link
CN (1) CN110649853B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2562173Y (zh) * 2002-08-23 2003-07-23 陈美俊 流体计量控制装置
US7465375B2 (en) * 2002-11-13 2008-12-16 Deka Products Limited Partnership Liquid ring pumps with hermetically sealed motor rotors
CN106672278A (zh) * 2017-03-09 2017-05-17 泉州市泉港智源商贸有限公司 一种具有自动定量加料功能的灌装机
CN107002658A (zh) * 2014-12-01 2017-08-01 艺康美国股份有限公司 用于定量供给流体的隔膜泵及相应方法
US10268453B1 (en) * 2016-03-07 2019-04-23 United States Of America As Represented By The Administrator Of The Nasa Interfacing with one or more intelligent systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2562173Y (zh) * 2002-08-23 2003-07-23 陈美俊 流体计量控制装置
US7465375B2 (en) * 2002-11-13 2008-12-16 Deka Products Limited Partnership Liquid ring pumps with hermetically sealed motor rotors
CN107002658A (zh) * 2014-12-01 2017-08-01 艺康美国股份有限公司 用于定量供给流体的隔膜泵及相应方法
US10268453B1 (en) * 2016-03-07 2019-04-23 United States Of America As Represented By The Administrator Of The Nasa Interfacing with one or more intelligent systems
CN106672278A (zh) * 2017-03-09 2017-05-17 泉州市泉港智源商贸有限公司 一种具有自动定量加料功能的灌装机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICHOLAS P. CASTLEDINE等: "Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator", 《2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA)》 *
姚利民: "DMC130A控制器在双液定量灌注机系统中的应用", 《伺服控制》 *

Also Published As

Publication number Publication date
CN110649853B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US8058824B2 (en) Electric motor control
JP2011185190A (ja) 制御装置一体型モータポンプ
CN105790660B (zh) 超高速永磁同步电机转速自适应鲁棒控制系统及方法
CN104104301B (zh) 一种无速度传感器的内插式永磁同步电机无源控制方法
CN104767457B (zh) 直流变频压缩机运行过程中参数自适应的方法
CN112511059B (zh) 一种永磁同步电机高精度位置估算方法
CN106533282B (zh) 空调室外机的风机启动控制方法及装置
CN108988724A (zh) 一种霍尔位置传感器变权值复合型转子位置估算方法
CN110635738B (zh) 一种永磁同步电机定子电阻及电机温度的实时辨识方法
CN110649853B (zh) 一种无传感器的间歇式流体自动定量投加方法
WO2016067665A1 (ja) インバータ制御装置及びインバータ圧縮機
CN107404273A (zh) 一种永磁同步电机电流解耦控制方法
CN105071736B (zh) 一种风机用永磁同步电机无传感器转子位置检测方法
US20150064024A1 (en) Motor controller and turbo-molecular pump
CN106685300B (zh) 工业计量泵专用数字变频控制器的动态补偿方法
CN106533316A (zh) 转子角度估测方法
CN105790665B (zh) 电机转动惯量的测量方法、装置和电机控制系统
CN104767451A (zh) 电梯门机无位置传感器电机转子初始位置的检测方法
TW201350680A (zh) 用於在一幫浦中一機械活塞之位置控制之系統及方法
Rashed et al. A stable MRAS-based sensorless vector control induction motor drive at low speeds
CN109327174B (zh) 永磁同步电机旋转变压器零位自动识别方法
CN106849803B (zh) 基于均匀分布边缘粒子滤波永磁同步电动机转速估计方法
KR101137591B1 (ko) 모터 제어 방법 및 모터 제어 장치
Lee Adaptive sensorless control of high speed PMSM with back EMF constant variation
CN105915144B (zh) 一种永磁同步电机转速跟踪控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant