CN110639029A - 晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用 - Google Patents

晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用 Download PDF

Info

Publication number
CN110639029A
CN110639029A CN201910768224.XA CN201910768224A CN110639029A CN 110639029 A CN110639029 A CN 110639029A CN 201910768224 A CN201910768224 A CN 201910768224A CN 110639029 A CN110639029 A CN 110639029A
Authority
CN
China
Prior art keywords
core
amorphous
crystalline
nano particle
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910768224.XA
Other languages
English (en)
Inventor
杨仕平
刘冬琳
李娇娇
田启威
安璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201910768224.XA priority Critical patent/CN110639029A/zh
Publication of CN110639029A publication Critical patent/CN110639029A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子及其制法和应用,合成的超小Fe@Fe3O4纳米粒子,Fe核无晶形,而表面氧化形成的Fe3O4外壳在高温处理下具有晶形,使得整个纳米粒子有适中的磁性强度,且无晶形Fe核相比有晶形Fe核更易通过热解形成超小粒径,小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度,从而可以有利地抑制T2效应,使T1对比度效应最大化,以此实现T1‑T2双模态成像,通过互补的T1‑T2双模态加权MRI图像以提高诊断的准确性。

Description

晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法 和应用
技术领域
本发明涉及磁性纳米材料领域,尤其是涉及一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子及其制法和应用。
背景技术
核磁共振成像(MRI)可检测人体内氢核的纵向弛豫时间(T1)和横向弛豫时间(T2),主要应用于生物医学诊断,具有穿透性强、空间分辨率高、无损伤、无辐射、无侵害性,且能够追踪三维动态成像等诸多优点,使医疗诊断变得更方便、更有效。然而,临床中其灵敏度相对较低,无法准确区分一些正常生理组织和病变组织,因此需要借助静脉注射或口服药物,即造影剂(CAs)来增强正常组织与病变部位的对比度。
目前常用的造影剂主要为Fe,Gd,Mn三类造影剂,Fe纳米材料相对于Gd,Mn纳米材料,具有生物相容性好、在体内易降解的特点,因此被广泛应用于临床医学研究。氧化铁由于具有较高的磁矩,而被广泛应用于T2加权MRI造影剂中。然而,T2加权成像的暗信号不仅与出血、钙化或金属沉积物的信号混淆而造成临床诊断的误导,并且T2造影剂易诱发局部的扰动磁场,引起所谓的“晕染效应”,造成标记区域的夸大和图像模糊。
文献J.Am.Chem.Soc.2006,128,10676-10677公开了一种Fe@Fe3O4合成方法,其特征是采用高温热解Fe(CO)5的方法来制备Fe纳米粒子。根据文献,Fe(CO)5在180℃加热条件下裂解并部分氧化后形成核壳均无晶形的Fe@Fe3O4,继续在惰性气体Ar保护下300℃退火2h或加入氧化三甲胺(CH3)3NO后可使表面的Fe3O4壳具有晶形,但只有在Ar下400℃退火1h才能使Fe核同时具有晶形。
文献Nano Lett.2011,11,1641-1645,其特征是采用高温热解的方法,加入盐酸十六胺作为晶化剂制备了一种具有核壳结构的Fe@Fe3O4纳米粒子,其粒径约为15nm,Fe核和Fe3O4壳层均具有晶相,仅仅具有T2造影功能。
专利申请201310214554.7依据文献J.Am.Chem.Soc.2006,128,10676-10677的基础,公开了一种具有光热功能的Fe@Fe3O4纳米粒子及其制备方法和应用,该专利采用上述文献所用方法制备出分散性好的Fe纳米材料,然后通过配体交换使连接有聚乙二醇单羧酸的多巴胺与所述纳米粒子的表层结合,改善材料的水溶性从而用于肿瘤光热治疗。该材料粒径约为13.4nm,Fe核和Fe3O4壳层均具有晶相,遗憾的是,该材料成像仅具有T2造影功能。本发明在上述文献合成方法上进行改进,逐步升温,裂解后加入油酸使粒子表面氧化形成Fe3O4壳,形成无晶形的Fe@Fe3O4后,再采用260℃高温晶化的方法,使Fe3O4壳具有晶形,而Fe核依旧为无晶形,无晶形的铁核使得整个纳米粒子有适中的磁性强度,且无晶形Fe核相比有晶形Fe核更易通过热解形成超小粒径,小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度,从而可以有利地抑制T2效应,使T1对比度效应最大化,以此实现T1-T2双模态成像,通过互补的T1-T2双模态加权MRI图像以提高诊断的准确性。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可以有利地抑制T2效应,使T1对比度效应最大化,以此实现T1-T2双模态成像,通过互补的T1-T2双模态加权MRI图像以提高诊断的准确性的晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子及其制法和应用。
本发明的目的可以通过以下技术方案来实现:
一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的制备方法,该方法包括以下步骤:
(1)将十八烯和油胺置于反应器中,通氮气保护;
(2)继续通氮气保护,将温度升至120℃,目的排水,保持1-120min;
(3)将温度升高至150-220℃,保持1-30min,加入Fe(CO)5,热解反应5-60min;
(4)加入油酸,反应1-40min;
(5)将温度升至240-300℃,维持5-120min,目的使壳层晶化,得到悬浊液;
(6)降至室温,加入异丙醇,离心,得到晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
进一步地,步骤(1)中所述的十八烯和油胺的质量比例为70-100:1。
进一步地,步骤(3)中所述的Fe(CO)5与油胺的质量比为10:(1-3)。
进一步地,步骤(4)中所述的油胺和油酸的质量比例为1:(0.5-2)。
进一步地,步骤(6)中所述的异丙醇与步骤5所得悬浊液的体积比为1:(1-2)。
一种如上所述的制备方法制得的晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的应用,该纳米粒子应用在T1-T2双模态成像上。
与现有技术相比,本发明具有以下优点:
(1)本发明通过在氮气条件下,利用十八烯做溶剂,油胺为表面活性剂和稳定剂,将Fe(CO)5作为铁源,通过分布逐渐升温的高温热解制备出无晶形的Fe纳米粒子,在油酸的作用下,生成无晶形的Fe纳米粒子表面氧化成Fe3O4,再通过加热到240-300℃高温晶化Fe3O4壳层,使Fe3O4壳具有晶形,Fe核依然为无晶形,从而得到晶态Fe3O4包覆非晶态Fe的核壳结构的超小Fe@Fe3O4纳米材料,该纳米材料粒径均一,形貌可控。
(2)本发明合成的为晶态Fe3O4包覆非晶态Fe核壳结构的超小T1-T2双模态造影剂纳米粒子,为了控制粒径同时保持非晶态的Fe核,不加入盐酸十六胺等晶化剂,合成的材料粒径超小且均一,具有T1-T2双模态成像功能;
(3)本发明合成的粒径介于2-10nm的超小Fe@Fe3O4纳米粒子,该纳米材料为晶态Fe3O4包覆非晶态Fe的核壳结构,通过高温晶化实现了Fe3O4壳层晶化,小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度,从而可以有利地抑制T2效应,使T1对比度效应最大化,以此实现T1-T2双模态成像,通过互补的T1-T2双模态加权MRI图像以提高诊断的准确性。
附图说明
图1a为实施例1中制备得到的粒径8nm Fe@Fe3O4纳米粒子的不同分辨率的TEM图;
图1b为实施例2中制备得到的粒径4nm Fe@Fe3O4纳米粒子的不同分辨率的TEM图;
图2为实施例1-2制备得到的粒径4和8nm Fe@Fe3O4纳米粒子的XRD图谱;
图3为实施例1-2制备得到的粒径4和8nm Fe@Fe3O4纳米粒子的磁滞回线;
图4a为实施例1制备得到的粒径8nm Fe@Fe3O4纳米粒子的弛豫率拟合图;
图4b为实施例2制备得到的粒径4nm Fe@Fe3O4纳米粒子的弛豫率拟合图;
图5a为实施例1制备得到的粒径8nm Fe@Fe3O4纳米粒子的MRI造影效果图;
图5b为实施例2制备得到的粒径4nm Fe@Fe3O4纳米粒子的MRI造影效果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
(1)首先量取15mL的十八烯于三颈瓶中,加入0.3mL的油胺;
(2)随后边加热边搅拌,并向三颈瓶内通氮气排空气,将温度升高至185-190℃,换氮气球保护;
(3)向其中加入0.7mL的铁源溶液(即五羰基合铁),反应28min;
(4)加入0.3mL油酸,反应10min,继续升温至260℃,晶化40min后,降温,离心,反应结束,得到晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
如图1a所示,制备而成的8nm Fe@Fe3O4纳米粒子的粒径超小且均一,分散性好,无团聚现象。
如图2所示,与粉末衍射标准联合委员会(JCPDS)卡片序号1-111的Fe3O4相对应,没有明显Fe峰的出现,表明Fe核为无定型,最外层的Fe3O4壳呈现晶型,表明8nm材料壳的晶化成功,材料合成成功。
如图3所示,所得8nm的材料具有超顺磁性的特点,并且磁化饱和强度为30.6emu/g。
如图4a所示,粒径为8nm的r1为8.03mM-1S-1,r2为41.0mM-1S-1,比值为5.1,呈现较好的双模态效果;
如图5a所示,该方法制备的8nm粒子,具有非常好的T1-T2造影效果。
实施例2
(1)首先量取15mL的十八烯于三颈瓶中,加入0.2mL的油胺;
(2)随后边加热边搅拌,并向三颈瓶内通氮气排空气,将温度升高至180-185℃,换氮气球保护;
(3)向其中加入0.7mL的铁源溶液(即五羰基合铁),反应22min;
(4)加入0.2mL油酸,反应10min,继续升温至260℃,晶化40min后,降温,离心,反应结束,得到晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
如图1b所示,制备而成的4nm Fe@Fe3O4纳米粒子的粒径超小且均一,分散性好,无团聚现象。
如图2所示,与粉末衍射标准联合委员会(JCPDS)卡片序号1-111的Fe3O4相对应,没有明显Fe峰的出现,表明Fe核为无定型,最外层的Fe3O4壳呈现晶型,表明4nm材料壳的晶化成功,材料合成成功。
如图3所示,所得的4nm纳米材料具有超顺磁性的特点,并且磁化饱和强度为19.3emu/g。
如图4b所示,粒径为4nm的r1为1.98mM-1S-1,r2为3.93mM-1S-1,比值为1.98,呈现较好的双模态效果。
如图5b所示,该方法制备的4nm粒子,具有非常好的T1-T2造影效果。
实施例3:
(1)首先量取20mL的十八烯于三颈瓶中,加入0.3mL的油胺;
(2)随后边加热边搅拌,并向三颈瓶内通氮气排空气,将温度升高至186-190℃,换氮气球保护;
(3)向其中加入0.7mL的铁源溶液(即五羰基合铁),反应25min;
(4)加入0.3mL油酸,反应10min,降温,离心,反应结束,晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
实施例4:
(1)首先量取20mL的十八烯于三颈瓶中,加入0.3mL的油胺;
(2)随后边加热边搅拌,并向三颈瓶内通氮气排空气,将温度升高至186-190℃,换氮气球保护;
(3)向其中加入0.7mL的铁源溶液(即五羰基合铁),反应15min;
(4)加入0.3mL油酸,反应10min,降温,离心,反应结束,晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
实施例5:
(1)首先量取20mL的十八烯于三颈瓶中,加入0.3mL的油胺;
(2)随后边加热边搅拌,并向三颈瓶内通氮气排空气,将温度升高至180-185℃,换氮气球保护;
(3)向其中加入0.7mL的铁源溶液(即五羰基合铁),反应25min;
(4)加入0.3mL油酸,反应10min,降温,离心,反应结束,晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
实施例6:
(1)首先量取20mL的十八烯于三颈瓶中,加入0.3mL的油胺;
(2)随后边加热边搅拌,并向三颈瓶内通氮气排空气,将温度升高至180-185℃,换氮气球保护;
(3)向其中加入1.0mL的铁源溶液(即五羰基合铁),反应25min;
(4)加入0.3mL油酸,反应10min,降温,离心,反应结束,晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
实施例7
(1)将质量比例为70:1的十八烯和油胺置于三颈瓶中,通氮气保护;
(2)继续通氮气保护,将温度升至120℃,目的排水,保持1min;
(3)将温度升高至150℃,保持30min,加入Fe(CO)5,使Fe(CO)5与油胺质量比为7:1,在180℃下热解反应5min;
(4)加入油酸,使油胺和油酸的质量比例为1:0.5,反应1min;
(5)将温度升至240℃,维持120min,目的使壳层晶化;
(6)降至室温,加入异丙醇,每次加入的异丙醇与原溶液的体积比为1:2,离心,得到晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
实施例8
(1)将质量比例为100:1的十八烯和油胺置于三颈瓶中,通氮气保护;
(2)继续通氮气保护,将温度升至120℃,目的排水,保持120min;
(3)将温度升高至220℃,保持1min,加入Fe(CO)5,使Fe(CO)5与油胺质量比为10:1,在196℃下热解反应60min;
(4)加入油酸,使油胺和油酸的质量比例为1:2,反应40min;
(5)将温度升至300℃,维持5min,目的使壳层晶化;
(6)降至室温,加入异丙醇,每次加入的异丙醇与原溶液的体积比为1:1,离心,得到晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
以上实施例仅用于说明本发明技术方案,并非是对本发明的限制,本技术领域的普通技术人员在本发明的实质范围内所做的改变、替代、修饰、简化均为等效的变换,都不脱离本发明的宗旨,也应属于本发明的权利要求保护范围。

Claims (7)

1.一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的制备方法,其特征在于,该方法包括以下步骤:
(1)将十八烯和油胺置于反应器中,通氮气保护;
(2)继续通氮气保护,将温度升至120℃,保持1-120min;
(3)将温度升高至150-220℃,保持1-30min,加入Fe(CO)5,热解反应5-60min;
(4)加入油酸,反应1-40min;
(5)将温度升至240-300℃,维持5-120min,得到悬浊液;
(6)降至室温,加入异丙醇,离心,得到晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
2.根据权利要求1所述的一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的制备方法,其特征在于,步骤(1)中所述的十八烯和油胺的质量比例为70-100:1。
3.根据权利要求1所述的一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的制备方法,其特征在于,步骤(3)中所述的Fe(CO)5与油胺的质量比为10:(1-3)。
4.根据权利要求1所述的一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的制备方法,其特征在于,步骤(4)中所述的油胺和油酸的质量比例为1:(0.5-2)。
5.根据权利要求1所述的一种晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的制备方法,其特征在于,步骤(6)中所述的异丙醇与悬浊液的体积比为1:(1-2)。
6.一种如权利要求1-5任一所述的制备方法制得的晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子。
7.一种权利要求1所述晶态Fe3O4包覆非晶态Fe核壳结构的纳米粒子的应用,其特征在于,该纳米粒子应用在T1-T2双模态成像上。
CN201910768224.XA 2019-08-20 2019-08-20 晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用 Pending CN110639029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910768224.XA CN110639029A (zh) 2019-08-20 2019-08-20 晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910768224.XA CN110639029A (zh) 2019-08-20 2019-08-20 晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用

Publications (1)

Publication Number Publication Date
CN110639029A true CN110639029A (zh) 2020-01-03

Family

ID=68990224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910768224.XA Pending CN110639029A (zh) 2019-08-20 2019-08-20 晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用

Country Status (1)

Country Link
CN (1) CN110639029A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111607792A (zh) * 2020-06-15 2020-09-01 武汉科技大学 一种磁性Fe@Fe3O4核壳结构纳米线的制备方法
CN113230418A (zh) * 2021-05-12 2021-08-10 中国药科大学 一种超小核壳结构铁纳米颗粒的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENGQIN HU等: "Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging", 《NANOTECHNOLOGY》 *
李娇娇: "超小Fe@Fe3O4纳米粒子在靶向MRI上的研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111607792A (zh) * 2020-06-15 2020-09-01 武汉科技大学 一种磁性Fe@Fe3O4核壳结构纳米线的制备方法
CN113230418A (zh) * 2021-05-12 2021-08-10 中国药科大学 一种超小核壳结构铁纳米颗粒的制备方法及应用

Similar Documents

Publication Publication Date Title
US11219698B2 (en) Metal oxide nanoparticle-based T1-T2 dual-mode magnetic resonance imaging contrast agent
US11324841B2 (en) Metal oxide nanoparticle-based magnetic resonance imaging contrast agent with a central cavity
Zhou et al. A synergistically enhanced T1–T2 dual-modal contrast agent
JP5723978B2 (ja) 極小かつ均一な大きさの酸化鉄系常磁性ナノ粒子の製造方法及びこれを用いるmrit1造影剤
Liu et al. Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging
Amiri et al. Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent
CN108030933B (zh) 一种高灵敏度双模态磁共振造影剂及其制备方法
Si et al. Nanostructure-enhanced water interaction to increase the dual-mode MR contrast performance of gadolinium-doped iron oxide nanoclusters
CN110639029A (zh) 晶态四氧化三铁包覆非晶态Fe核壳结构的纳米粒子及其制法和应用
KR101729554B1 (ko) 매우 작고 균일한 크기의 산화철계 상자성 나노입자의 제조방법 및 이를 이용하는 mri t1 조영제
Zhang et al. Optimization of the composition of bimetallic core/shell Fe 2 O 3/Au nanoparticles for MRI/CT dual-mode imaging
CN110436529B (zh) 一种可用于磁热疗的Fe3O4纳米棒材料的制备方法
Lin et al. Size and morphological effect of Au–Fe 3 O 4 heterostructures on magnetic resonance imaging
Souza et al. Multifunctional luminomagnetic FePt@ Fe 3 O 4/SiO 2/Rhodamine B/SiO 2 nanoparticles with high magnetic emanation for biomedical applications
CN109399727B (zh) 含金属原子簇的磁性氧化铁纳米颗粒及其制备和应用
Kaman et al. Mn–Zn ferrite nanoparticles with silica and titania coatings: Synthesis, transverse relaxivity, and cytotoxicity
Torkashvand et al. Polymerized graphene oxide/MnCe0. 5Fe1. 5O4 nanoferrofluid as a T2-and T2*-weighted contrast agent for magnetic resonance imaging
KR101779283B1 (ko) Tl 및 T2 이중 기능의 자기공명영상 조영제
Qi et al. Synthesis and characterization of water-soluble magnetite nanocrystals via one-step sol-gel pathway
CN114344489B (zh) 一种多模态FePt@Fe3O4纳米造影剂及其制备方法和应用
Jirák et al. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties
KR20090098929A (ko) 사산화삼망간 나노입자를 포함하는 자기공명영상 티1조영제 및 그 제조 방법
Ehi-Eromosele et al. Silica functionalized magnesium ferrite nanocomposites for potential biomedical applications: Preparation, characterization and enhanced colloidal stability studies
CN112168983B (zh) 一种诊疗一体的中空碳纳米复合材料及其制备方法和应用
Gharehaghaji et al. Utilization of Innovative Hydroxyapatite-Coated Gd 2 O 3@ Bi 2 O 3 Nanocomposite as a Bifunctional Material for Magnetic Resonance Imaging and Computed Tomography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200103