CN110632139B - 一种阴极光电化学检测玉米赤霉烯酮的方法 - Google Patents

一种阴极光电化学检测玉米赤霉烯酮的方法 Download PDF

Info

Publication number
CN110632139B
CN110632139B CN201911098658.XA CN201911098658A CN110632139B CN 110632139 B CN110632139 B CN 110632139B CN 201911098658 A CN201911098658 A CN 201911098658A CN 110632139 B CN110632139 B CN 110632139B
Authority
CN
China
Prior art keywords
zearalenone
probe
electrode
solution
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911098658.XA
Other languages
English (en)
Other versions
CN110632139A (zh
Inventor
王光丽
顾萌萌
刘田利
李在均
孙冬雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201911098658.XA priority Critical patent/CN110632139B/zh
Publication of CN110632139A publication Critical patent/CN110632139A/zh
Application granted granted Critical
Publication of CN110632139B publication Critical patent/CN110632139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基于Bi4O5I2的均相阴极光电化学检测玉米赤霉烯酮的新方法,属于分析检测领域。用Bi4O5I2修饰的ITO电极作为工作电极,利用玉米赤霉烯酮与核酸适配体的识别反应所释放的阿霉素(Dox)或道诺霉素(DM)作为信号分子,进一步结合核酸链置换反应(SDA)以实现信号放大,构建了一种无酶、非固定、非标记的均相阴极光电化学检测方法。该方法检测原理新颖、操作简便、灵敏度高、选择性好,可以成功用于玉米赤霉烯酮的检测,线性范围为1.0×10‑5‑30nmol/L,检测限为3.03fmol/L。

Description

一种阴极光电化学检测玉米赤霉烯酮的方法
技术领域
本发明涉及一种分析检测技术,属于分析检测技术领域。
背景技术
描述与本发明最接近的现有技术的状况和存在的问题。
目前,食品安全已然成为世界范围内的重要问题[Wu,L.;Ding,F.;Yin,W.;Ma,J.;Wang,B.;Nie,A.;H,H.Y.Anal.Chem.2017,89,7578-7585]。霉菌毒素是一种有毒的二次毒素,广泛存在于食品当中[Wang,S.;Zhang,Y.J.;Pang,G.S.;Zhang,Y.W.;Guo,S.J.Anal.Chem.2017,89,1704-1709;Wu,L.;Ding,F.;Yin,W.;Ma,J.;Wang,B.;Nie,A.;H,H.Y.Anal.Chem.2017,89,7578-7585],对人类健康存有潜在的影响,研究霉菌毒素迫在眉睫。玉米赤霉烯酮(ZEN)广泛存在于玉米,小麦等其他谷物和乳制品中[Zinedine,A.;Soriano,J.M.;Molto,J.C.;Manes,J.Food Chem.Toxicol.2007,45,1-18.],属于镰刀菌次级代谢产物,被认作为世界范围内广泛分布的镰刀菌毒素,属于III类致癌物[Ji,X.;Yu,C.;Wen,Y.;Chen,J.;Yu,Y.;Zhang,C.;Gao,R.;Mu,X.;He,J.Biosens.Bioelectron.2019,129,139-146.]。考虑到ZEN对人类健康的影响,中国已将60微克/千克设置为小麦和玉米中的ZEN最大残留量(MRL)。因而,寻找快捷、灵敏的检测ZEN的分析方法则显得尤为必要。
常见的检测ZEN的方法有气-质联用、高效液相色谱以及液-质联用等[Jestoi,M.;Ritieni,A.;Rizzo,A.J.Agric.Food Chem.2004,52,1464-1469;Kinani,S.;Bouchonnet,S.;Bourcier,S.;Porcher,J.M.;Ait-Aissa,S.J.Chromatogr A 2008,1190,307-315;Blesa,J.;Molto,J.C.;El Akhdari,S.;Manes,J.;Zinedine,A.Food Control 2014,46,1-5;Ok,H.E.;Choi,S.W.;Kim,M.;Chun,H.S.Food Chem.2014,163,252-257.],虽然这些方法灵敏度高且特异性强,但却存有耗时、仪器昂贵等缺点。作为一种新型的分析技术,光电化学法因可用于多种生物分子的检测而受到越来越多的关注[Zhang,L.;Shi,X.M.;Xu,Y.T.;Fan,G.C.Liang,Y.Y.;Wang,C.S.;Zhao,W.W.Anal.Chem.2019,91,6403-6407;Zhao,W.-W.;Xu,J.-J.;Chen,H.-Y.Chem.Soc.Rev.2015,44,729-741;Kang,Q.;Yang,L.;Chen,Y.;Luo,S.;Wen,L.;Cai,Q.;Yao,S.Anal.Chem.2010,82,9749-9754]。与传统检测方法相比较,光电化学法具有较低的背景信号和较高的灵敏度等优势[Dai,H.;Zhang,S.;Hong,Z.S.;Lin,Y.Y.Anal.Chem.2016,88,9532-9538]。与研究广泛的阳极光电化学生物分析相比较而言,阴极光电化学生物分析因其对生物样品中的还原性物质具有极高的抗干扰能力,因而在未来的发展过程中具有更大的发展前景[Gu,T.T.;Gu,M.M.;Liu,Y.L.;Dong,Y.M.;Zhu,L.B.;Li,Z.J.;Wang,G.L.;Zhao,W.W.Chem.Commun.2019,55,10072-10075]。阴极光电化学应用于ZEN检测的研究鲜有报道。对于阴极光电化学传感器来说,探索新型的光活性材料以及信号分子则显得尤为迫切。Bi4O5I2属于碘氧化铋类化合物,而碘氧化铋类化合物属于主族V-VI-VII三元半导体层状结构,在此结构中,带正电荷的BixOy n+主体层和带负电荷的碘离子层交替形成层状结构,促进了光生电子-空穴对的分离,最终使得光生载流子的利用率得到大大的提高[Liu,Q.C.;Ma,D.K.;Hu,Y.Y.;Zeng,Y.W.;Huang,S.M.ACSAppl.Mater.Interfaces 2013,522,11927-11934]。截止到目前为止,将Bi4O5I2应用于光电化学生物传感器的研究尚未发现。据相关文献报道,阿霉素(Dox)和道诺霉素(DM)经常作为电化学和荧光检测方法的信号分子[Gill.R.;Patolsky,F.;Katz,E.;Willner,I.Angew.Chem.Int.Ed.2005,44:4554-4557;Raichlin,S.;Sharon,E.;Freeman,R.;Tzfati,Y.;Willner,I.Biosens.Bioelectron.2011,26:4681-4689;Liu.T.;Barton.J.K.J.Am.Chem.Soc.2005,127:10160-10161],但是未发现将Dox或DM作为信号分子用于阴极光电化学生物分析的报道。
发明内容
技术问题:本发明要解决的技术问题,要达到的目标。
目前,阴极光电化学应用于玉米赤霉烯酮检测的研究鲜有文献报道。该新型阴极光电化学检测方法的优势在于很好地解决了以下两点问题:(1)无需使用价格较为昂贵的天然酶进行信号放大,也无需对生物分子进行标记,成本更低;(2)不需要将生物分子固定在电极表面,生物反应在均相溶液中进行,不仅避免了繁琐的生物分子固定步骤,而且避免了固定的生物分子的活性降低现象。
由于Bi4O5I2的导带电位比Dox或DM的还原电位更负,因而光源激发Bi4O5I2所产生的电子容易转移到信号分子Dox或DM上,抑制电子-空穴对的复合,增强了Bi4O5I2的阴极光电流。本方法探索利用Bi4O5I2作为光电极,以目标结合反应所释放的Dox或DM作为信号分子,将玉米赤霉烯酮与适配体的识别反应和链置换反应(SDA)相结合,构建了一种基于新原理的新型阴极光电化学适配体传感体系,实现了对玉米赤霉烯酮的简便、高效、超灵敏检测。
技术方案:本发明完整的技术手段和方法。
本发明的目的可通过如下技术措施来实现:
a、Bi4O5I2片状半导体材料的制备:首先,将0.8mmol的硝酸铋溶解于40mL的丙三醇中,搅拌至充分溶解;然后与2mL 0.8mmol的KI溶液混合后转移至反应釜中,一定的温度下反应一段时间;取出,离心洗涤并烘干备用;
b、Bi4O5I2修饰ITO电极的制备:将所制得的Bi4O5I2固体粉末配成1mg/mL的溶液,滴到经过预处理的ITO导电玻璃表面,经自然晾干后,可得到Bi4O5I2修饰的ITO电极;
c、玉米赤霉烯酮的测定:将不同浓度的目标物玉米赤霉烯酮以及30μL 20μmol/L玉米赤霉烯酮适配体探针P1与含有MgCl2,pH 7.4的10mmol/L tris-HCl缓冲溶液混合;然后加入30μL 20μmol/L的辅助探针P2,孵育1.5h;与此同时,将15μL45μmol/L辅助探针HP3和15μL 135μmol/L的信号分子与160μL含有MgCl2,pH 7.4的10mmol/Ltris-HCl缓冲溶液混合,室温下孵育0.5h;接下来,将上述两种反应溶液混合,继续反应1h;之后,将30μL 22.5μmol/L辅助探针HP4加入到上述混合液,进一步孵育2h;最后,用Bi4O5I2修饰的ITO电极作为工作电极,Ag/AgCl电极以及铂丝分别作为参比电极和对电极,在含有MgCl2,pH=7.4的0.1mol/LTris-HCl缓冲溶液中,电压相对于Ag/AgCl参比电极为-0.1V条件下实现光电流的测定。
本发明的目的还可通过如下技术措施来实现:
所述的合成Bi4O5I2阴极片状半导体材料的反应温度为100-150℃,反应时间为10-16h;所述的通过光电化学法所测的目标物为玉米赤霉烯酮,用到的核酸探针序列为:适配体探针P1:3′-AAT TAC TTC ATC TAT CTA TGG TAC ATT ACT ATC TGT AAT GTG ATA TGTTTT TTT TTT TTT TTT TTT TTT TTT TTT TTA CTT GA-5′;辅助探针P2:3′-TCAAGTAAAATCATT TGTAAT CTTAGATGAAGTAAT T-5′;辅助探针HP3:3′-CGACGT GCC GTCAAC TTC ATCTAAGAT TACAAATGATTT TAC TTGATC CAT TCG GCACGT CG-5′;辅助探针HP4:3′-TAG ACTGAA TGG ATC AAG TAA AAT CAT TTG TAA TCT TAG ATG AAG TTG ACG TCTA-5′;所述的玉米赤霉烯酮测定时所用到的信号分子为阿霉素或道诺霉素。
有益效果:本发明所带来的好处,所达到的指标。
目前报道的以阿霉素和道诺霉素为信号分子的生物检测体系,大多采用电化学和荧光检测方法来进行检测,不仅灵敏度低且仪器设备昂贵。该发明探索将阿霉素和道诺霉素为阴极光电化学检测的信号分子,与链置换反应(作为信号放大反应)相结合,构建了无酶、非固定、非标记的均相检测,该方法简便、低成本、快捷地实现了对玉米赤霉烯酮的超灵敏检测。
附图说明
说明各附图所表示的含义
图1(A)为发明制备的Bi4O5I2阴极片状半导体材料的线性扫描图来确定其导带;图1(B)为Dox的循环伏安图。
图2为发明制备的Bi4O5I2修饰的ITO电极在存在有不同浓度Dox的条件下所产生的光电流图,曲线a→f依次表示Dox的浓度为1.0×10-8,5.0×10-8,1.0×10-7,1.0×10-6,1.0×10-5,1.0×10-4mol/L。
图3(A)为不同浓度的玉米赤霉烯酮所产生的光电流图,曲线a→i依次表示ZEN的浓度为0,1.0×10-5,1.0×10-4,1.0×10-3,1.0×10-2,0.1,1,10和30nmol/L;图3(B)为ZEN的浓度与I/I0之间的关系图。
图4为相同的测定条件下,干扰目标物对Bi4O5I2修饰的ITO电极所产生的光电流的影响。
具体实施方式
根据权利要求所包含的内容举例说明
实施例1:
a、Bi4O5I2片状半导体材料的制备:首先,将0.8mmol的硝酸铋溶解于40mL的丙三醇中,搅拌至充分溶解;然后与2mL 0.8mmol的KI溶液混合后转移至反应釜中,在120℃的条件下反应13h;取出,离心洗涤并烘干备用;
b、Bi4O5I2修饰ITO电极的制备:将所制得的Bi4O5I2固体粉末配成1mg/mL的溶液,滴到经过预处理的ITO导电玻璃表面,经自然晾干后,可得到Bi4O5I2修饰的ITO电极;
c、玉米赤霉烯酮的测定:将不同浓度的目标物玉米赤霉烯酮以及30μL 20μmol/L玉米赤霉烯酮适配体探针P1与含有MgCl2,pH 7.4的10mmol/L tris-HCl缓冲溶液混合;然后加入30μL 20μmol/L的辅助探针P2,孵育1.5h;与此同时,将15μL45μmol/L辅助探针HP3和15μL 135μmol/L的阿霉素与160μL含有MgCl2,pH 7.4的10mmol/Ltris-HCl缓冲溶液混合,室温下孵育0.5h;接下来,将上述两种反应溶液混合,继续反应1h;之后,将30μL 22.5μmol/L辅助探针HP4加入到上述混合液,进一步孵育2h;最后,用Bi4O5I2修饰的ITO电极作为工作电极,Ag/AgCl电极以及铂丝分别作为参比电极和对电极,在含有MgCl2,pH=7.4的0.1mol/LTris-HCl缓冲溶液中,电压相对于Ag/AgCl参比电极为-0.1V条件下实现光电流的测定。
实施例2:
a、Bi4O5I2片状半导体材料的制备:首先,将0.8mmol的硝酸铋溶解于40mL的丙三醇中,搅拌至充分溶解;然后与2mL 0.8mmol的KI溶液混合后转移至反应釜中,在130℃的条件下反应12h;取出,离心洗涤并烘干备用;
b、Bi4O5I2修饰ITO电极的制备:将所制得的Bi4O5I2固体粉末配成1mg/mL的溶液,滴到经过预处理的ITO导电玻璃表面,经自然晾干后,可得到Bi4O5I2修饰的ITO电极;
c、玉米赤霉烯酮的测定:将不同浓度的目标物玉米赤霉烯酮以及30μL 20μmol/L玉米赤霉烯酮适配体探针P1与含有MgCl2,pH 7.4的10mmol/Ltris-HCl缓冲溶液混合;然后加入30μL 20μmol/L的辅助探针P2,孵育1.5h;与此同时,将15μL45μmol/L辅助探针HP3和15μL 135μmol/L的道诺霉素与160μL含有MgCl2,pH 7.4的10mmol/Ltris-HCl缓冲溶液混合,室温下孵育0.5h;接下来,将上述两种反应溶液混合,继续反应1h;之后,将30μL22.5μmol/L辅助探针HP4加入到上述混合液,进一步孵育2h;最后,用Bi4O5I2修饰的ITO电极作为工作电极,Ag/AgCl电极以及铂丝分别作为参比电极和对电极,在含有MgCl2,pH=7.4的0.1mol/LTris-HCl缓冲溶液中,电压相对于Ag/AgCl参比电极为-0.1V条件下实现光电流的测定。

Claims (3)

1.一种阴极光电化学检测玉米赤霉烯酮的方法,其特征在于:
a、Bi4O5I2片状半导体材料的制备:首先,将0.8 mmol的硝酸铋溶解于40 mL的丙三醇中,搅拌至充分溶解;然后与2 mL 0.8 mmol的KI溶液混合后转移至反应釜中,一定的温度下反应一段时间;取出,离心洗涤并烘干备用;
b、Bi4O5I2修饰ITO电极的制备:将所制得的Bi4O5I2固体粉末配成1 mg/mL的溶液,滴到经过预处理的ITO导电玻璃表面,经自然晾干后,可得到Bi4O5I2修饰的ITO电极;
c、玉米赤霉烯酮的测定:将不同浓度的目标物玉米赤霉烯酮以及30 μL 20 μmol/L玉米赤霉烯酮适配体探针P1与含有MgCl2,pH 7.4的10 mmol/L Tris-HCl缓冲溶液混合;然后加入30 μL 20 μmol/L的辅助探针P2,孵育1.5 h;与此同时,将15 μL 45 μmol/L 辅助探针HP3和15 μL 135 μmol/L的阿霉素或道诺霉素作为信号分子与160 μL含有MgCl2,pH 7.4的10 mmol/L Tris-HCl缓冲溶液混合,室温下孵育0.5 h;接下来,将两种反应溶液混合,继续反应1 h;之后,将30 μL 22.5 μmol/L 辅助探针HP4加入到混合液,进一步孵育2 h;最后,用Bi4O5I2修饰的ITO电极作为工作电极,Ag/AgCl电极以及铂丝分别作为参比电极和对电极,在含有MgCl2,pH = 7.4的0.1 mol/L Tris−HCl缓冲溶液中,电压相对于Ag/AgCl参比电极为-0.1 V条件下实现光电流的测定。
2.根据权利要求1所述的一种阴极光电化学检测玉米赤霉烯酮的方法,其特征在于合成Bi4O5I2片状半导体材料时的反应温度为100−150℃,反应时间为10−16 h。
3. 根据权利要求1所述的一种阴极光电化学检测玉米赤霉烯酮的方法,其特征在于该方法检测的目标物是玉米赤霉烯酮,用到的核酸探针序列为:适配体探针P1:3′-AAT TACTGT TGG GCA CGT GTT GTC TCT CTG TGT CTC GTG CCC TTC GCT AGG CCC ACT TGA-5′;辅助探针P2:3′-TCA AGT GGG ATC ATT TGT AAT CTT ACC CAA CAG TAA TT-5′;辅助探针HP3:3′-CGA CGT GCC GTC AAC TGT TGG GTA AGA TTA CAA ATG ATC CCA CTT GAT CCATTC GGC ACG TCG-5′;辅助探针HP4:3′-TAG ACT GAA TGG ATC AAG TGG GAT CAT TTG TAATCT TAC CCA ACA GTT GAC GTC TA-5′。
CN201911098658.XA 2019-11-12 2019-11-12 一种阴极光电化学检测玉米赤霉烯酮的方法 Active CN110632139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911098658.XA CN110632139B (zh) 2019-11-12 2019-11-12 一种阴极光电化学检测玉米赤霉烯酮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911098658.XA CN110632139B (zh) 2019-11-12 2019-11-12 一种阴极光电化学检测玉米赤霉烯酮的方法

Publications (2)

Publication Number Publication Date
CN110632139A CN110632139A (zh) 2019-12-31
CN110632139B true CN110632139B (zh) 2021-06-15

Family

ID=68979458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911098658.XA Active CN110632139B (zh) 2019-11-12 2019-11-12 一种阴极光电化学检测玉米赤霉烯酮的方法

Country Status (1)

Country Link
CN (1) CN110632139B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199970B (zh) * 2021-12-15 2022-11-04 江南大学 T4多聚核苷酸激酶的阴极光电化学检测模型及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735735A (zh) * 2012-06-29 2012-10-17 华中师范大学 功能化碘氧化铋纳米片状阵列光电有机磷农药生物传感器及制备
CN104880495A (zh) * 2015-06-09 2015-09-02 华中师范大学 新型空间位阻调控型可见光光电化学检测pfoa传感器研制及其应用
CN108120750A (zh) * 2017-12-14 2018-06-05 山东理工大学 一种玉米赤霉醇光电化学传感器的制备方法及应用
CN109975375A (zh) * 2019-04-11 2019-07-05 福建师范大学 一种基于信号增强型多聚体功能化金红石相二氧化钛介晶的玉米赤霉烯酮检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170175276A1 (en) * 2015-12-18 2017-06-22 Board Of Regents, The University Of Texas System Nanostructured electrodes and methods of making and use thereof
CN110308187B (zh) * 2019-07-09 2021-05-28 济南大学 一种基于锌和钴掺杂的多孔纳米钒酸铋/硫化铋的光电化学适配体传感器的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735735A (zh) * 2012-06-29 2012-10-17 华中师范大学 功能化碘氧化铋纳米片状阵列光电有机磷农药生物传感器及制备
CN104880495A (zh) * 2015-06-09 2015-09-02 华中师范大学 新型空间位阻调控型可见光光电化学检测pfoa传感器研制及其应用
CN108120750A (zh) * 2017-12-14 2018-06-05 山东理工大学 一种玉米赤霉醇光电化学传感器的制备方法及应用
CN109975375A (zh) * 2019-04-11 2019-07-05 福建师范大学 一种基于信号增强型多聚体功能化金红石相二氧化钛介晶的玉米赤霉烯酮检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ultrasensitive photoelectrochemical microRNA biosensor based on doxorubicin sensitized graphitic carbon nitride assisted by a target-activated enzyme-free DNA walker;Wang Yanlin等;《CHEMICAL COMMUNICATIONS》;20191008;第55卷(第87期);第13082-13084页 *
光电化学传感材料的制备及应用进展;党蓝图等;《分析科学学报》;20180802(第04期);第553-559页 *

Also Published As

Publication number Publication date
CN110632139A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN109187693B (zh) 基于纳米复合物修饰电极的香草醛比率电化学适体传感器的制备方法
Jin et al. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors
CN110736779B (zh) 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法
Gan et al. One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine
Wang et al. A silver–palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol
He et al. Construction of electrochemical aptasensors with Ag (I) metal− organic frameworks toward high-efficient detection of ultra-trace penicillin
Liu et al. Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol
Lin et al. Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes
CN110208343B (zh) 一种检测黄曲霉毒素b1的比率电化学生物传感器的制备方法
CN109735328B (zh) 一种检测细胞内硫化氢的荧光探针及其制备方法和应用
Li et al. Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier
Lu et al. One-step grain pretreatment for ochratoxin A detection based on bipolar electrode-electrochemiluminescence biosensor
CN102175736A (zh) 一种检测杂色曲霉素的酶电极及其制备与用途
Wang et al. Dual-mode sensor based on the synergy of magnetic separation and functionalized probes for the ultrasensitive detection of Clostridium perfringens
Xing et al. A probe-free electrochemical immunosensor for methyl jasmonate based on ferrocene functionalized-carboxylated graphene-multi-walled carbon nanotube nanocomposites
Yang et al. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of sunset yellow and tartrazine
Yu et al. Electrochemical immunosensor based on carboxylated single‐walled carbon nanotube‐chitosan functional layer for the detection of cephalexin
CN110632139B (zh) 一种阴极光电化学检测玉米赤霉烯酮的方法
CN114636746A (zh) 一种检测Pb2+的羧基配体诱导的湮灭型比率电化学发光适配体传感方法
CN109682877B (zh) 一种用于检测葡萄糖的电化学传感器
CN108760861B (zh) 一种用于检测尿酸的Ni-MOF基电化学传感器
Du et al. An electrochemiluminescence aptasensor based on Ti3C2 QDs-1T/2H MoS2 nano-hybrid material for the highly sensitive detection of lincomycin
Cao et al. Hairpin DNAs conformational changes inducing opposite-polarity photoelectric signals recovery for simultaneous monitoring of dual microRNAs
Hegarty et al. Disposable solid state pH sensor based on flavin polymer-ferrocyanide redox couples
CN103439319A (zh) 碳纳米粒子修饰电极电化学发光测定博来霉素的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant