CN110624579B - 一种定量检测水体中Cr(VI)的电化学方法 - Google Patents

一种定量检测水体中Cr(VI)的电化学方法 Download PDF

Info

Publication number
CN110624579B
CN110624579B CN201910922296.5A CN201910922296A CN110624579B CN 110624579 B CN110624579 B CN 110624579B CN 201910922296 A CN201910922296 A CN 201910922296A CN 110624579 B CN110624579 B CN 110624579B
Authority
CN
China
Prior art keywords
electrocatalyst
solution
water body
reaction kettle
pressure reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910922296.5A
Other languages
English (en)
Other versions
CN110624579A (zh
Inventor
韩占刚
辛兴
马媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Normal University
Original Assignee
Hebei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Normal University filed Critical Hebei Normal University
Priority to CN201910922296.5A priority Critical patent/CN110624579B/zh
Publication of CN110624579A publication Critical patent/CN110624579A/zh
Application granted granted Critical
Publication of CN110624579B publication Critical patent/CN110624579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J35/33
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Abstract

本发明公开了一种用于水体中定量检测Cr(VI)的电化学方法。钼磷酸盐电催化剂是采用Na2MoO4·2H2O,FeCl2·4H2O,1,3‑二(4‑吡啶基)丙烷(bpp),无水乙醇和H3PO4为原料水热反应制备;随后使用该电催化剂/碳粉修饰玻碳电极作为工作电极,采用循环伏安技术和计时电流技术进行水相中的Cr(VI)定量检测。本发明方法操作简单,成本低廉,无环境污染。所制备的电催化材料可以有效检测Cr(VI),其对Cr(VI)的检出限低至0.009ppm,且该手段具有较高的稳定性和选择性。与现行工艺相比,催化剂用量少且绿色高效,合成成本低廉,响应过程灵敏。

Description

一种定量检测水体中Cr(VI)的电化学方法
技术领域
本发明涉及一种用于定量检测水体中Cr(VI)的电化学方法,包含新型{M(P4Mo6)2}基磷钼酸盐电催化剂的制备方法,属于电分析化学技术领域。
背景技术
重金属离子对水生态环境具有严重的破坏性。由于重金属离子在生物体内的富集作用和无法自然降解的特性,对人体健康产生了严重威胁。铬元素具有丰富的氧化态:金属铬化学性质稳定,可电镀于金属表面以阻止腐蚀的发生,主要用于餐具、水管等方面;而离子状态会对人体表现出不同的生理活性:Cr(III)是人体必需的微量元素,能够参与人体的代谢,Cr(VI)却是一种可致癌的高毒性污染物,以Cr2O7 2-或CrO4 2-离子形式存在的Cr(VI)在水中具有较高的溶解度。根据WHO建议,饮用水中Cr(VI)的最大浓度为0.05ppm,我国要求工厂排放污水的Cr(VI)浓度应控制在0.5ppm及以下。
考虑到Cr(VI)在水中易扩散的特性和对生物体的高毒性,研究高效的分析方法来实现Cr(VI)的痕量级检测具有重要意义。现阶段水中Cr(VI)的分析检测方法主要包括:紫外可见分光光度法(UV-Vis)、电感耦合等离子体质谱法(ICP-MS)、原子吸收光谱(AAS)、原子发射光谱(AES)及电化学方法。相比于其他测试方法,电化学方法具有成本低、操作便捷、测试过程高效迅速等优点,得以广泛应用。
当今对Cr(VI)电检测催化剂的研究集中于贵金属与碳的复合材料上,如文献报道,金纳米粒子修饰的碳纳米管(AuNPs@CNT,J.App.Electrochem.,2019,49,195-205)、金纳米粒子修饰的丝网印刷碳电极(AuNPs@SPE,Sensors Actuat.B-Chem.,2018,272,582-588)、金/钯纳米粒子修饰的还原氧化石墨烯(Au/PtNPs@rGO,J.Electrochem.Soc.,2018,165,893-899),三者对Cr(VI)的检出限分别可达0.72μM、5.4ppb和0.013μM。贵金属材料具有较高的灵敏度和重现性,但其在地壳中的储量较低,使用成本高昂;而碳材料的合成水平和稳定性参差不齐,致使产品性能和稳定性较差。为此,研究由丰产元素构成的电催化剂,用于Cr(VI)的电化学检测具有重要的研究意义。本文研究的{M(P4Mo6)2}基磷钼酸盐催化剂具有清晰可调的分子结构,能够对Cr(VI)表现出高效高选择性的电化学响应,且其合成原料丰富低廉、产量稳定可观、化学性质稳定,为其作为Cr(VI)的电催化剂的潜在应用提供了保障。
发明内容
本发明的目的在于提供一种定量检测水体中Cr(VI)的电化学方法。
本发明解决其技术问题通过以下技术方案实现,一种用于定量检测水体中Cr(VI)的电化学方法,包括以下步骤:
(1)钼磷酸盐电催化剂的合成:室温条件下,将Na2MoO4·2H2O(240mg)、FeCl2·4H2O(80mg),1,3-二(4-吡啶基)丙烷(30mg)溶于10mL蒸馏水中,随后依次加入2mL无水乙醇和0.5mL浓磷酸,用4mol/L的NaOH溶液将混合溶液pH调至3.0附近;将混合溶液装入25mL高压反应釜,然后置于鼓风干燥箱内,以160℃恒温加热100~120h,最后每小时降低8℃的降温速率降至室温后,收集橙色晶状产品,即得成品。本发明中,反应物溶液的pH值和反应温度是催化剂制备成功的关键。
(2)水体中Cr(VI)检测的电化学方法:以该磷钼酸盐作为电检测催化剂,进行水体中Cr(VI)的定量检测。步骤如下:
①将钼磷酸盐电催化剂与碳粉混合于Nafion溶液,滴涂在玻碳电极表面制备工作电极,后在H2SO4溶液(pH≈0.3)中进行循环伏安测试,用以确定所用电位。
②选取电位最负还原峰的电位进行计时安培法测定。通过阶梯连续提高溶液浓度,以测试该催化剂对K2Cr2O7的电检测线性范围、灵敏度和检出限。
本发明取得的有益效果如下:
本发明利用钼磷酸盐作为电催化剂实现了水体中Cr(VI)的定量检测,
附图说明
图1:实施例1中,空白GCE和修饰电极(1-GCE)在含有不同浓度K2Cr2O7的H2SO4溶液中的循环伏安图。
图2:实施例1中,在恒定扫描电位和搅拌速度下,以60s间隔提高溶液中K2Cr2O7浓度所得的i-t响应图线。
图3:实施例1中,溶液中K2Cr2O7物质浓度与响应电流的线性拟合曲线。
图4:实施例1中,1-GCE的选择性电检测测试结果。
图5:实施例1中,1-GCE在不同水质溶液中的K2Cr2O7物质浓度与响应电流的线性拟合曲线。
具体实施方式
(1)催化剂的制备:利用分析天平分别称取240mg、80mg和30mg的Na2MoO4·2H2O,FeCl2·4H2O,1,3-二(4-吡啶基)丙烷分散于10mL蒸馏水中,随后依次向其中加入2mL的无水乙醇和0.5mL的H3PO4,室温下搅拌0.5h并调节pH。后将混合液装入25mL的高压反应釜中,在烘箱内以160℃加热5天,后缓慢降至室温,将固体物质洗涤后可得橙红色晶态化合物1。
(2)修饰电极的制备:将5mg化合物1与10mg碳粉混合于Nafion溶液(0.5mL,0.5%)中,混合液经2h超声分散后,将10μL上清液滴涂于玻碳电极表面,以得到化合物1/碳粉复合物修饰电极(简写为1-GCE)。
(3)Cr(VI)电化学测试条件的确定:将1-GCE作为工作电极,以铂丝为对电极、Ag/AgCl电极为参比电极组装为三电极法组装测试体系。首先在含有不同浓度K2Cr2O7的0.5M硫酸溶液(pH≈0.3)中进行循环伏安测试,测试条件为:扫描范围-0.2~0.8V,扫速50mV/s,结果如图1所示。
(4)Cr(VI)的电化学检测:选取图1的I’号还原峰对应电位进行计时安培法测定,测试参数为:施加电位-0.063V,取样测试间隔为1s,并于测试开始前测试300s以平衡电流,后通过连续提高溶液的K2Cr2O7浓度以得到响应电流。结果如图2-3所示,浓度与响应电流平均值的线性拟合显示,1-GCE对1-1305μM浓度内的K2Cr2O7溶液实现了良好的线性电化学响应(对应Cr(VI)质量浓度为0.1-135.7ppm),线性回归方程为:IR(μA)=-0.234C(μM)–3.597(R2=0.999,C为K2Cr2O7浓度,IR为响应电流平均值)。根据S/N=3原则计算(灵敏度(S)=234μA·mM-1、空白标准偏差(N)=6.81nA),可得其对Cr2O7 2-的检出限为87nM,即其对Cr(VI)的检出限低至0.009ppm。
(5)选择性测试:选择性测试的参数与计时安培法相同,在空白电流稳定后,间隔100s加入不同浓缩样品使溶液提高50μM相应浓度,结果如图4所示,可以看到除Cr2O7 2-外,1-GCE对K+、Cr3+、Na+、Cd2+、Pb2+、Co2+、Ni2+等金属离子均不表现出明显响应,表明其电检测过程具有高选择性。
(6)实际样品检测:实际样品选择自然湖水进行测试,在经过简单过滤以除去大颗粒固体杂质后,将其配置为0.5M的硫酸溶液作为电解液。后在相同体系和条件下进行计时安培法测试。根据上述方法拟合可得,1-GCE在自然湖水配置电解液中的响应线性方程为IR(μA)=-0.239C(μM)–3.67(R2=0.998)。与蒸馏水配置电解液中的响应线性方程相比,该浓度范围内的响应电流误差可维持在2.03%~2.14%的范围内,这表明本发明提供的电催化剂有望用于工厂废水、生活用水水质检测中Cr(VI)含量的准确测定。

Claims (1)

1.一种用于水体中定量检测Cr(VI)的电化学方法,其特征在于包括以下步骤:
(1)钼磷酸盐电催化剂的制备:室温条件下,将240mg Na2MoO4·2H2O、80mg FeCl2·4H2O、30mg 1,3-二(4-吡啶基)丙烷溶于10mL蒸馏水中,随后依次加入2mL无水乙醇和0.5mL浓磷酸,用4mol/L的NaOH溶液将混合溶液pH调至3.0;将混合溶液装入25mL高压反应釜,然后置于鼓风干燥箱内,以160℃恒温加热100~120h,最后以每小时降低8℃的降温速率降至室温,收集橙色晶状产品,即得电催化剂;
(2)将钼磷酸盐电催化剂与碳粉混合于Nafion溶液,滴涂在玻碳电极表面制备工作电极,然后在pH≈0.3的H2SO4溶液中进行循环伏安测试,用以确定所用电位,选取电位最负还原峰的电位进行计时安培法测定,通过阶梯连续提高溶液浓度,以测试该催化剂对K2Cr2O7的电检测线性范围、灵敏度和检出限。
CN201910922296.5A 2019-09-27 2019-09-27 一种定量检测水体中Cr(VI)的电化学方法 Active CN110624579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910922296.5A CN110624579B (zh) 2019-09-27 2019-09-27 一种定量检测水体中Cr(VI)的电化学方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910922296.5A CN110624579B (zh) 2019-09-27 2019-09-27 一种定量检测水体中Cr(VI)的电化学方法

Publications (2)

Publication Number Publication Date
CN110624579A CN110624579A (zh) 2019-12-31
CN110624579B true CN110624579B (zh) 2022-05-10

Family

ID=68973234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910922296.5A Active CN110624579B (zh) 2019-09-27 2019-09-27 一种定量检测水体中Cr(VI)的电化学方法

Country Status (1)

Country Link
CN (1) CN110624579B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773364B (zh) * 2022-04-22 2023-07-21 河北师范大学 一种镉基磷钼酸盐催化剂、光电传感器及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102218348A (zh) * 2011-04-27 2011-10-19 哈尔滨师范大学 取代型钼磷酸盐晶体催化剂的制备方法
CN104248978A (zh) * 2013-06-25 2014-12-31 佳木斯大学 一种磷钼酸盐晶体催化剂的制备方法
CN107884464A (zh) * 2017-10-30 2018-04-06 济南大学 一种多钼磷酸‑氮杂环盐超分子化合物修饰电极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102218348A (zh) * 2011-04-27 2011-10-19 哈尔滨师范大学 取代型钼磷酸盐晶体催化剂的制备方法
CN104248978A (zh) * 2013-06-25 2014-12-31 佳木斯大学 一种磷钼酸盐晶体催化剂的制备方法
CN107884464A (zh) * 2017-10-30 2018-04-06 济南大学 一种多钼磷酸‑氮杂环盐超分子化合物修饰电极的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Phosphomolybdate assembly as a low-cost catalyst for the reduction of toxic Cr(vi) in aqueous solution;Xiaoxiao Wang等;《Dalton Transactions》;20170531;第46卷(第24期);第2.2节 *
多酸阴离子在不同介质中的电化学和传感性质研究;崔杨;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20050815(第04期);全文 *

Also Published As

Publication number Publication date
CN110624579A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
Li et al. Simultaneous determination of ultratrace lead and cadmium by square wave stripping voltammetry with in situ depositing bismuth at Nafion-medical stone doped disposable electrode
Yildiz et al. Voltammetric determination of nitrite in meat products using polyvinylimidazole modified carbon paste electrode
Wen et al. Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes
Rounaghi et al. Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles
Tashkhourian et al. Simultaneous determination of tyrosine and tryptophan by mesoporous silica nanoparticles modified carbon paste electrode using H-point standard addition method
Saghatforoush et al. Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids
Gu et al. A sensitive hydrazine hydrate sensor based on a mercaptomethyl-terminated trinuclear Ni (II) complex modified gold electrode
Zhou et al. A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode
Ensafi et al. Highly sensitive voltammetric speciation and determination of inorganic arsenic in water and alloy samples using ammonium 2‐amino‐1‐cyclopentene‐1‐dithiocarboxylate
Hajian et al. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor
Cesarino et al. A novel graphite–polyurethane composite electrode modified with thiol-organofunctionalized silica for the determination of copper ions in ethanol fuel
Zare et al. Electrochemical behavior of nano-composite containing 4-hydroxy-2-(triphenylphosphonio) phenolate and multi-wall carbon nanotubes spiked in carbon paste and its application for electrocatalytic oxidation of hydrazine
Guha et al. Differential pulse anodic stripping voltammetric determination of Hg2+ at poly (Eriochrome Black T)-modified carbon paste electrode
Zare et al. Fabrication, electrochemical characteristics and electrocatalytic activity of 4-((2-hydroxyphenylimino) methyl) benzene-1, 2-diol electrodeposited on a carbon nanotube modified glassy carbon electrode as a hydrazine sensor
Amara et al. Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection
Chatraei et al. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination
Shoub et al. Gold Nanoparticles/Ionophore-Modified Screen-Printed Electrode for Detection of Pb (II) in River Water Using Linear Sweep Anodic Stripping Voltammetry.
CN110624579B (zh) 一种定量检测水体中Cr(VI)的电化学方法
Rabie et al. A Novel Electrochemical Sensor Based on Modified Carbon Paste Electrode with ZnO Nanorods for the Voltammetric Determination of Indole‐3‐acetic Acid in Plant Seed Extracts
Bebeselea et al. The electrochemical determination of phenolic derivates using multiple pulsed amperometry with graphite based electrodes
Hasanzadeh et al. A new kinetic‐mechanistic approach to elucidate formaldehyde electrooxidation on copper electrode
CN113030210B (zh) 一种碳点/铋膜修饰玻碳电极的制备及检测镉和铅离子的方法
Rahmadhani et al. Electropolymerized of aniline as a new molecularly imprinted polymer for determination of phenol: A study for phenol sensor
Huszal et al. Determination of platinum with thiosemicarbazide by catalytic adsorptive stripping voltammetry (AdSV)
Kadivar et al. A molecularly imprinted poly 2-aminophenol–gold nanoparticle–reduced graphene oxide composite for electrochemical determination of flutamide in environmental and biological samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant