CN110624116A - 一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用 - Google Patents

一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用 Download PDF

Info

Publication number
CN110624116A
CN110624116A CN201910882304.8A CN201910882304A CN110624116A CN 110624116 A CN110624116 A CN 110624116A CN 201910882304 A CN201910882304 A CN 201910882304A CN 110624116 A CN110624116 A CN 110624116A
Authority
CN
China
Prior art keywords
rare earth
graphene
conversion
solution
conversion composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910882304.8A
Other languages
English (en)
Other versions
CN110624116B (zh
Inventor
李瑞怡
李在均
刘玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910882304.8A priority Critical patent/CN110624116B/zh
Publication of CN110624116A publication Critical patent/CN110624116A/zh
Application granted granted Critical
Publication of CN110624116B publication Critical patent/CN110624116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • A61K49/0067Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle quantum dots, fluorescent nanocrystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Materials Engineering (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种石墨烯‑稀土上转换复合纳米微球的制备方法及其应用,属于纳米载药材料技术领域。其首先制备组氨酸功能化石墨烯量子点,然后制备石墨烯量子点‑稀土氟化物上转换复合物;对药物进行装载,最后与光热剂金纳米颗粒复合,制得石墨烯‑稀土上转换复合纳米微球。本发明利用组氨酸与稀土离子强的配位能力,实现了对稀土UCNP尺寸和形貌的有效调控;利用纳米石墨烯吸收红外光能力强及能与稀土UCNP间进行高效的能量转移,提高了稀土UCNP材料的上转换发光效率;利用纳米金对上转换发光中可见光部分的吸收产生热,实现药物的光控释放。

Description

一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用
技术领域
本发明涉及一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用,属于纳米载药材料技术领域。
背景技术
镧系元素掺杂的上转换纳米粒子(UCNP)能够将近红外激发光转换为波长更短的可见光或紫外光发射。镧系元素掺杂的UCNP具有背景荧光小、光稳定性好、反斯托克斯位移大和可忽略的生物毒性,已显示出在生物医学及相关领域应用的巨大优势。然而,镧系掺杂的UCNP受到在水介质中稳定性差、功能修饰困难和上转换发光效率不高的限制。目前,广泛采用的溶剂热法所制备的镧系元素UCNP是油溶性材料,通常需要经过“脱去羧基”、“亲水性材料包覆”和“功能修饰”等环节才能用于生物医学领域的研究。材料制备过程复杂,难以规模化生产,而且载药能力十分有限,直接影响到治疗效果。由于光子上转换过程是通过辐射跃迁方式实现的,这些跃迁总是需要很长的辐射寿命,而大多数输入的能量将通过更快的非辐射衰变途径消失。为克服以上不足,研究人员对镧系元素掺杂UCNP材料制备、改性与应用进行了大量基础性研究,并取得一些突破性进展,但提高镧系元素掺杂UCNP材料的上转换发光效率和在水介质中的稳定性和载药能力仍面临极大地担战。
目前,石墨烯功能化方法主要是将石墨烯与功能材料进行简单物理混合而成。石墨烯与功能材料之间并未实现深度的融合,因此不同材料间的协同效应难以得到充分体现。为了解决以上问题,尝试一种将石墨烯和稀土材料通过共价键结合的新功能化途径。
发明内容
本发明的目的是克服上述不足之处,提供一种石墨烯-稀土上转换复合纳米微球的制备方法。
本发明设计合成组氨酸和十八胺共功能化纳米石墨烯,建立一种石墨烯-稀土凝胶纳米微球的制备方法,将其作为抗癌药物载体应用于肿瘤靶向治疗。
石墨烯的功能化是实现其广泛应用的重要前堤和基础性工作。
作为本发明的一个目的,一种石墨烯-稀土上转换复合纳米微球的制备方法,首先制备组氨酸功能化石墨烯量子点,然后制备石墨烯量子点-稀土氟化物上转换复合物;对药物进行装载,最后与光热剂金纳米颗粒复合,制得石墨烯-稀土上转换复合纳米微球。
进一步地,步骤如下:
(1)制备组氨酸功能化石墨烯量子点:将柠檬酸、组氨酸叶酸和十八胺混合物按照摩尔比1:0.5-1.5:0.001-0.01:0.001-0.01在150-220℃下水热反应1-10h,制得组氨酸功能化石墨烯量子点;
(2)制备石墨烯-稀土凝胶纳米微球:
a、采用Y或Gd作为基质,采用Yb或Nd作为敏化剂,采用Er、Tm或Ho作为激活剂进行反应;其中基质:敏化剂的摩尔比为1:2~4;敏化剂:激活剂的摩尔比为1:3~5;
首先将上述稀土混合物溶解于超纯水中,随后滴加His/FA/OA-NG的水溶液进行反应,洗涤后得到石墨烯-稀土配合物;所述稀土混合物:His-OA-NG的质量比为1:3-10;
b、将石墨烯-稀土配合物分散在超纯水中,加入NaF水溶液,使得稀土元素:F离子摩尔比为1:4;继续搅拌50-70min,然后转移到压力反应器中,在150-250℃下加热反应3-24h,冷却至室温,过滤,收集上清液;
c、对步骤b所得上清液以10000-30000rpm离心10-60min;将收集到的沉淀物水洗涤1-10次,得到石墨烯-稀土凝胶纳米微球固体样品,然后重新分散在超纯水中形成1.8-2.2mgmL-1溶液,并储存在4℃的冰箱中备用;
(3)装载药物:将1mg.mL-1多柔比星DOX溶液加入到步骤(3)所得的石墨烯-稀土凝胶纳米微球中,其中石墨烯-稀土凝胶纳米微球:DOX溶液的质量比为1:1-10;室温搅拌过夜,离心、缓冲溶液洗涤,以除去过量的非特异性结合的DOX,得到的复合物再分散于缓冲溶液中;
(4)与光热剂金纳米颗粒复合:
a、将12μL的80%四羟甲基氯化鏻THPC和0.25 mL的2mol L-1 NaOH加入到45mL水中;将混合物剧烈搅拌5分钟,然后快速注入2.0mL质量浓度为1%的HAuCl4,观察到颜色立即变为深棕色,将该溶液储存在遮光的容器中搅拌过夜,得到备用的金纳米粒子溶液;
b、将金纳米粒子溶液与装载DOX的石墨烯-稀土凝胶纳米微球在缓冲溶液中混合,其金纳米粒子溶液:石墨烯-稀土凝胶纳米微球的质量比为1:2-10;在36-38℃下反应75-85min,离心分离,得到石墨烯-稀土凝胶纳米微球复合物固体;
c、将得到的石墨烯-稀土凝胶纳米微球复合物固体重新分散在200μL含有5 mmol L-1MgCl2和50 mmol L-1 NaCl的缓冲溶液中,即得到石墨烯-稀土上转换复合纳米微球。
(5)包裹入癌细胞膜中
从癌细胞中获得所需癌细胞膜作为外壳。将癌细胞在0-10℃下用高渗透Tris缓冲液(pH=7.4)进行处理,用均质机在20,000-30,000rpm下使其彻底破碎,并以400-600×g离心10分钟去除细胞内物质。将上清液以10,000×g离心10分钟并以100,000×g离心1小时以获得细胞膜沉淀。用PBS洗涤沉淀,并在超声清洗机中超声处理5秒。最后通过200-400nm聚碳酸酯膜进行最后筛选。
将步骤(4)中所得石墨烯-稀土上转换复合纳米微球与癌细胞膜混合,形成囊泡结构。
进一步地,步骤(1)a中,以Y作为基质, Yb作为敏化剂, Er作为激活剂进行反应具体过程如下:将YCl3、YbCl3和ErCl3溶解在10mL超纯水中,保证Y:Yb摩尔比为1:2.0-4.0,Yb:Er摩尔比为1:3-5;滴加50mg.mL-1 His/FA/OA-NG的水溶液,其中稀土总质量:His-OA-NG质量比为1:3-10;收集产生的沉淀物,超纯水洗涤二次去除游离的His/FA/OA-NG,得到石墨烯-稀土配合物。
进一步地,步骤(3)所述缓冲液为含有0.2 mol L-1 NaCl的10mmol L-1 的Tris-HCl缓冲溶液;
步骤(4)中步骤b所述缓冲液具体为含有5 mmol L-1 MgCl2, 50 mmol L-1 NaCl的pH7.4、20mmol L-1 Tris-HCl缓冲溶液;
步骤(4)中步骤c中的缓冲液为pH 7.4、20 mmol L-1的Tris-HCl缓冲溶液。
步骤(5)中的癌细胞为目标癌症所对应的癌细胞。
作为本发明的另一个目的,石墨烯-稀土上转换复合纳米微球的应用,将其应用于成像中。
进一步地,将石墨烯-稀土上转换复合纳米微球注射入待检测部位,使用配备有980 nm光纤耦合激光的体内成像系统成像;在曝光时间为30秒的成像期间,激光功率密度为290-300mW/cm2,应用790/40nm带通发射滤光器以防止激发光对CCD相机的干扰。
进一步地,将其应用于体内药物光控释放中。
进一步地,将石墨烯-稀土上转换复合纳米微球注射入待检测部位,使用配备有980 nm光纤耦合激光照射,持续5分钟,照射1分钟后间隔1分钟。
本发明的有益效果:本发明利用纳米石墨烯良好的水溶性,提高稀土UCNP材料在水介质中的稳定性;利用纳米石墨烯片大的比面积,增加稀土UCNP材料的载药量;利用组氨酸与稀土离子强的配位能力,实现对稀土UCNP尺寸和形貌的有效调控;利用纳米石墨烯吸收红外光能力强及能与稀土UCNP间进行高效的能量转移,提高稀土UCNP材料的上转换发光效率。
附图说明
图1是石墨烯-稀土上转换复合纳米微球的材料表征图。
a、SEM图;b、多个微球TEM图;c、单个微球TEM图;d、STEM图;e、高分辨TEM图像;
图2-a元素含量分析图。
图2-b元素含量柱状图。
图3药物负载量-载物药量比关系图。
图4相关物质紫外吸收光谱。
图5复合物的光致发光响应曲线。
图6激光共聚焦显微镜图;左图为明场光学图,右图为荧光图像。
图7小鼠成像图。
图8药物释放率-时间曲线。
图9为药物释放量和荧光关系示意图。
图10为负载了DOX的纳米复合物瘤内注射到小鼠肿瘤部位示意图。
具体实施方式
实施例1
(1)制备组氨酸功能化石墨烯量子点:
组氨酸和功能化石墨烯量子点通过将柠檬酸、组氨酸和十八胺混合物在180°C下水热反应4小时制得。
(2)制备石墨烯量子点-稀土氟化物上转换复合物:
将YCl3(7.5 mmol)、YbCl3(2.0 mmol)和ErCl3(0.5 mmol)溶解在超纯水(10 mL)中,滴加His/FA/OA-NG水溶液(50 mg mL-1,100 mL),收集产生的沉淀物,超纯水洗涤二次去除游离的His/FA/OA-NG,得到石墨烯-稀土配合物。将此石墨烯-稀土配合物分散在超纯水(10mL)中,加入NaF水溶液(1.0 mol L-1,120 mL),继续搅拌60分钟,然后转移到压力反应器中,在180°C下加热反应4小时,冷却至室温。
为了获得石墨烯-稀土凝胶纳米微球(His/FA/OA-NG-NaYF4:Yb,Er),将收集到的上清液以15000 rpm离心分离20分钟。将收集到的沉淀物水洗涤3次,得到His/FA/OA-NG-NaYF4:Yb,Er固体样品,然后重新分散在超纯水中形成2.0 mg mL-1溶液,并储存在4°C的冰箱中备用。
如图1(a-e)和图2(a-b)所示,通过场发射扫描电子显微镜和球差校正高分辨透射电镜对材料形貌和元素分布进行表征。所获石墨烯-稀土凝胶纳米微球呈现球状结构,且均匀的分散,平均直径为约57.2 nm,中间呈现出多孔网络结构。元素分析图表明出C,N,Y和Yb均匀分布,具有高结晶度,层间距为0.22 nm归因于石墨烯的(100)晶格间距。
(3)装载药物:
将50 μL多柔比星(DOX)溶液(1 mg mL-1)加入到His/FA/OA-NG-NaYF4:Yb,Er溶液中,室温搅拌过夜,然后离心15分钟,用缓冲溶液(0.2 mol L-1 NaCl,10 mmol L-1 Tris-HCl)洗涤以除去过量的非特异性结合的DOX,得到的复合物再分散于含有0.2 mol L-1 NaCl的10mmol L-1 Tris-HCl缓冲溶液。
将His/FA/OA-NG-NaYF4:Yb,Er复合物与DOX以一定的质量比(从上到下:0、0.02、0.04、0.1、0.2、0.4和1)分散在超纯水中并充分混合搅拌使它们充分接触。搅拌过夜后,离心(15000 rpm,10 min)收集沉淀并洗涤提纯。将上层清液与初始浓度的DOX溶液进行紫外检测,得到图3(双光束紫外可见分光光度计TU-1901)。在480 nm处所得峰来自于DOX的响应,其峰值的变化可以说明未负载的DOX含量的变化。当复合物与DOX的质量比为1:1时,紫外峰值最低可以说明其负载量最高。
为了证明DOX和Au确实成功负载进His/FA/OA-NG-NaYF4:Yb,Er复合物中,而不是仅仅混合在沉淀中,将His/FA/OA-NG-NaYF4:Yb,Er、DOX、Au和His/FA/OA-NG-NaYF4:Yb,Er@DOX@Au配成相同摩尔浓度的水溶液,利用紫外吸收光谱测定它们的特征吸收。如图4所示(双光束紫外可见分光光度计TU-1901),His/FA/OA-NG-NaYF4:Yb,Er的特征峰位于298 nm,DOX的特征峰位于490 nm。而His/FA/OA-NG-NaYF4:Yb,Er@DOX@Au的光谱中也可发现这两个特征峰,这可以推论DOX已被成功负载进入His/FA/OA-NG-NaYF4:Yb,Er复合物中。
(4)与光敏金纳米颗粒复合:
将12 μL的80%四羟甲基氯化鏻(THPC)和0.25 mL的2 mol L-1 NaOH加入到45 mL水中。将混合物剧烈搅拌5分钟,然后快速注入2.0 mL的1% HAuCl4。观察到颜色立即变为深棕色。将该溶液储存在遮光的容器中搅拌过夜。将Au纳米颗粒溶液(100 μL)与装载DOX的His/FA/OA-NG-NaYF4:Yb,Er溶液(40 μL)在20 mmol L-1 Tris-HCl缓冲溶液(pH 7.4, 5mmol L-1 MgCl2, 50 mmol L-1 NaCl)中混合,总体积为200 μL。在37°C下反应80分钟,离心分离,得到His/FA/OA-NG-NaYF4:Yb,Er@DOX复合物固体。将得到的固体样重新分散在200 μL含有5 mmol L-1 MgCl2和50 mmol L-1 NaCl的Tris-HCl缓冲溶液(pH 7.4, 20 mmol L-1)中。
图5所示,纳米复合物在紫外-可见范围内的发射强度随着Au含量的增加呈下降趋势(荧光分光光度计CARY Eclipse)。当Au与Y的摩尔比超过1.4时,发射峰几乎都完全消失。在紫外-可见区域中上转换发射的猝灭,可能通过局部光热效应导致Au纳米颗粒的表面温度增加。由此,Au纳米颗粒吸收的光将以热量释放。
通过图6激光共聚焦显微镜图(激光共聚焦显微镜LSM710),在加金和不加金后,2小时所得的明场光学图像和荧光图像也可说明金纳米颗粒对荧光有猝灭作用。
(5)包裹入癌细胞膜中
将HepG2肝癌细胞在4℃下用高渗透Tris缓冲液(pH=7.4)进行处理,用均质机在22000rpm下使其彻底破碎,并以500×g离心10分钟去除细胞内物质。将上清液以10000×g离心10分钟并以100,000×g离心1小时以获得细胞膜沉淀。用PBS洗涤沉淀,并在超声清洗机中超声处理5秒。最后通过400nm和200nm聚碳酸酯膜进行最后筛选。
将步骤(4)中所得石墨烯-稀土上转换复合纳米微球与A549癌细胞膜混合,形成囊泡结构。
应用实施例1 小鼠成像
将含有His-GQD-OA-NaYF4:Yb,Er@DOX@Au纳米复合物的缓冲溶液(60 μL,0.2 mol L-1NaCl,10 mmol L-1 Tris-HCl)皮下注射进裸鼠的肿瘤部位。使用配备有980 nm光纤耦合激光的体内成像系统对小鼠成像。在曝光时间为30秒的成像期间,激光功率密度约为299.9mW/cm2(电流4.2 A,功率为212 mW)。应用790/40 nm带通发射滤光器以防止激发光对CCD相机的干扰。
图7是激光照射一小时内的肿瘤成像结果,可以看出荧光信号随着照射时间推移而增强,尤其是被激光束照射的肿瘤中心位置荧光强度最强。结果说明此纳米石墨烯/稀土复合物药物载体可被应用于生物成像。
应用实施例2 HepG2细胞内药物光控释放
通过980 nm激光(3 W/cm-1)照射负载DOX的复合物溶液10分钟,离心分离,收集含有释放DOX分子的上清液,然后在荧光光度计上测定DOX的特征荧光发射,以此计算药物释放率。
图8中与时间相关的光致发光研究表明,当光照时间超过60分钟后,药物的释放趋于缓慢,最大释放含量大约为80%。
将HepG2细胞接种在培养皿(35mm)中,并在DMEM培养基中培养1天(5%CO2, 37°C)。随后,用含有100 μLCGYAu复合物、DOX和CGYAu-DOX的新鲜1mL DMEM培养基替换之前的培养基。孵育3小时(5%CO2, 37℃)后,用1mL PBS洗涤细胞两次,并用Hoechst 33342对细胞核进行染色。其中CGYAu-DOX为两份,一份用980nm激光照射15分钟,一份不用激光照射。曝光后,用配备有激发滤光片(535nm/50nm)和发射滤光片(610 nm/75 nm)的共聚焦荧光显微镜(Nikon,Eclipse TE2000-E)获得荧光成像。
图9A中显示CGYAu-DOX+NIR具有最大的药物释放量,说明复合物有助于药物传递,并且在激光照射后效果显著,证明可实现对癌细胞的光热控制药物释放。图9B中对荧光密度进行分析,可得随时间增加释放量增加。
应用实施例2 小鼠体内药物光控释放
携带HepG2肿瘤的Balb/c裸鼠(年龄4-6周,体重18 g),首先通过腹膜内注射氯胺酮麻醉(150 mg/kg)/甲苯噻嗪(10 mg/kg)。将含瘤小鼠随机分为4组(每组n≥6)。对于治疗组,在肿瘤部位向含瘤小鼠注射负载DOX的纳米复合物,然后用980 nm激光照射(500 mW/cm2,持续5分钟,照射1分钟后间隔1分钟)。三组小鼠用作对照。
对照1,仅激光照射(500 mW/cm2持续5分钟,照射1分钟后间隔1分钟);
对照2,没有激光照射和纳米缀合物的处理;
对照3,处理负载DOX的纳米缀合物(50 μL)但没有激光照射。
每2天使用游标卡尺测量肿瘤大小。根据公式V = L×W2/2计算肿瘤体积(V),其中L和W分别是肿瘤的长度和宽度。
图10将负载了DOX的纳米复合物瘤内注射到小鼠肿瘤部位,然后进行980 nm激光照射,治疗后每3天测量肿瘤大小。经过药物注射和近红外激光照射后肿瘤的大小逐渐减小,表明药物成功释放到肿瘤部位。

Claims (8)

1.一种石墨烯-稀土上转换复合纳米微球的制备方法,其特征是:首先制备组氨酸功能化石墨烯量子点,然后制备石墨烯量子点-稀土氟化物上转换复合物;对药物进行装载,最后与光热剂金纳米颗粒复合,制得石墨烯-稀土上转换复合纳米微球。
2.如权利要求1所述石墨烯-稀土上转换复合纳米微球的制备方法,其特征是步骤如下:
(1)制备组氨酸功能化石墨烯量子点:将柠檬酸、组氨酸、叶酸和十八胺混合物按照摩尔比1:0.5-1.5:0.001-0.01:0.001-0.01在150-220℃下水热反应1-10h,制得组氨酸功能化石墨烯量子点;
(2)制备石墨烯-稀土凝胶纳米微球:
a、采用Y或Gd作为基质,采用Yb或Nd作为敏化剂,采用Er、Tm或Ho作为激活剂进行反应;其中基质:敏化剂的摩尔比为1:2-4;敏化剂:激活剂的摩尔比为1:3-5;
首先将上述稀土混合物溶解于超纯水中,随后滴加His/FA/OA-NG的水溶液进行反应,洗涤后得到石墨烯-稀土配合物;所述稀土混合物:His-OA-NG的质量比为1:3-10;
b、将石墨烯-稀土配合物分散在超纯水中,加入NaF水溶液,使得稀土元素:F离子摩尔比为1:4;继续搅拌50-70min,然后转移到压力反应器中,在150-250℃下加热反应3-24h,冷却至室温,过滤,收集上清液;
c、对步骤b所得上清液以10000-30000rpm离心10-60min;将收集到的沉淀物水洗涤1-10次,得到石墨烯-稀土凝胶纳米微球固体样品,然后重新分散在超纯水中形成1.8-2.2mgmL-1溶液,并储存在4℃的冰箱中备用;
(3)装载药物:将1mg.mL-1多柔比星DOX溶液加入到步骤(3)所得的石墨烯-稀土凝胶纳米微球中,其中石墨烯-稀土凝胶纳米微球:DOX溶液的质量比为1:1-10;室温搅拌过夜,离心、缓冲溶液洗涤,以除去过量的非特异性结合的DOX,得到的复合物再分散于缓冲溶液中;
(4)与光热剂金纳米颗粒复合:
a、将12μL的80%四羟甲基氯化鏻THPC和0.25 mL的2mol L-1 NaOH加入到45mL水中;将混合物剧烈搅拌5分钟,然后快速注入2.0mL质量浓度为1%的HAuCl4,观察到颜色立即变为深棕色,将该溶液储存在遮光的容器中搅拌过夜,得到备用的金纳米粒子溶液;
b、将金纳米粒子溶液与装载DOX的石墨烯-稀土凝胶纳米微球在缓冲溶液中混合,其金纳米粒子溶液:石墨烯-稀土凝胶纳米微球的质量比为1:2-10;在36-38℃下反应75-85min,离心分离,得到石墨烯-稀土凝胶纳米微球复合物固体;
c、将得到的石墨烯-稀土凝胶纳米微球复合物固体重新分散在200μL含有5 mmol L-1MgCl2和50 mmol L-1 NaCl的缓冲溶液中,即得到石墨烯-稀土上转换复合纳米微球;
(5)包裹入癌细胞膜中:从癌细胞中获得所需癌细胞膜作为外壳,将癌细胞在0-10℃下用pH=7.4的高渗透Tris缓冲液进行处理,用均质机在20000-30000rpm下使其彻底破碎,并以400-600×g离心10分钟去除细胞内物质;将上清液以10000×g离心10分钟并以100000×g离心1小时以获得细胞膜沉淀;用PBS洗涤沉淀,并在超声清洗机中超声处理5秒,最后通过200-400nm聚碳酸酯膜进行最后筛选;将步骤(4)中所得石墨烯-稀土上转换复合纳米微球与癌细胞膜混合,形成囊泡结构。
3.如权利要求2所述石墨烯-稀土上转换复合纳米微球的制备方法,其特征是步骤(1)a中,以Y作为基质, Yb作为敏化剂, Er作为激活剂进行反应具体过程如下:将YCl3、YbCl3和ErCl3溶解在10mL超纯水中,保证Y:Yb摩尔比为1:2.0-4.0,Yb:Er摩尔比为1:3-5;滴加50mg.mL-1 His/FA/OA-NG的水溶液,其中稀土总质量:His-OA-NG质量比为1:3-10;收集产生的沉淀物,超纯水洗涤二次去除游离的His/FA/OA-NG,得到石墨烯-稀土配合物。
4.如权利要求2所述石墨烯-稀土上转换复合纳米微球的制备方法,其特征是:步骤(3)所述缓冲液为含有0.2 mol L-1 NaCl的10mmol L-1 的Tris-HCl缓冲溶液;
步骤(4)中步骤b所述缓冲液具体为含有5 mmol L-1 MgCl2, 50 mmol L-1 NaCl的pH7.4、20mmol L-1 Tris-HCl缓冲溶液;
步骤(4)中步骤c中的缓冲液为pH 7.4、20 mmol L-1的Tris-HCl缓冲溶液;
步骤(5)中的癌细胞为目标癌症所对应的癌细胞。
5.石墨烯-稀土上转换复合纳米微球的应用,其特征是:将其应用于成像中。
6.如权利要求4所述石墨烯-稀土上转换复合纳米微球的应用,其特征是:将石墨烯-稀土上转换复合纳米微球注射入待检测部位,使用配备有980 nm光纤耦合激光的体内成像系统成像;在曝光时间为30秒的成像期间,激光功率密度为290-300mW/cm2,应用790/40nm带通发射滤光器以防止激发光对CCD相机的干扰。
7.石墨烯-稀土上转换复合纳米微球的应用,其特征是:将其应用于体内药物光控释放中。
8.如权利要求7所述石墨烯-稀土上转换复合纳米微球的应用,其特征是:将石墨烯-稀土上转换复合纳米微球注射入待检测部位,使用配备有980 nm光纤耦合激光照射,持续5分钟,照射1分钟后间隔1分钟。
CN201910882304.8A 2019-09-18 2019-09-18 一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用 Active CN110624116B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910882304.8A CN110624116B (zh) 2019-09-18 2019-09-18 一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910882304.8A CN110624116B (zh) 2019-09-18 2019-09-18 一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110624116A true CN110624116A (zh) 2019-12-31
CN110624116B CN110624116B (zh) 2021-11-12

Family

ID=68971180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910882304.8A Active CN110624116B (zh) 2019-09-18 2019-09-18 一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110624116B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701029A (zh) * 2020-07-10 2020-09-25 济南康硕生物技术有限公司 一种上转换仿生复合体及制备方法和弱紫外转换的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107137723A (zh) * 2017-05-04 2017-09-08 上海大学 一种用于多模态诊疗一体化的纳米体系及其制备方法与应用
CN108410465A (zh) * 2018-03-16 2018-08-17 江南大学 荧光增强型石墨烯量子点-下转换稀土氟化物复合材料
CN109468128A (zh) * 2018-12-18 2019-03-15 江南大学 一种石墨烯量子点-稀土上转换纳米复合材料及其制备方法和应用
WO2019071258A1 (en) * 2017-10-06 2019-04-11 The Regents Of The University Of California SELF-ASSEMBLED MICROCAPSULES FOR ENCAPSULATION AND OPTICALLY CONTROLLED CARGO DELIVERY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107137723A (zh) * 2017-05-04 2017-09-08 上海大学 一种用于多模态诊疗一体化的纳米体系及其制备方法与应用
WO2019071258A1 (en) * 2017-10-06 2019-04-11 The Regents Of The University Of California SELF-ASSEMBLED MICROCAPSULES FOR ENCAPSULATION AND OPTICALLY CONTROLLED CARGO DELIVERY
CN108410465A (zh) * 2018-03-16 2018-08-17 江南大学 荧光增强型石墨烯量子点-下转换稀土氟化物复合材料
CN109468128A (zh) * 2018-12-18 2019-03-15 江南大学 一种石墨烯量子点-稀土上转换纳米复合材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI RUIYI ET AL: "Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics", 《CHEMICAL ENGINEERING JOURNAL》 *
LIN CUI ET AL: "Advances in the integration of quantum dots with various nanomaterials for biomedical and environmental applications", 《ANALYST》 *
刘玲 等: "His.CDs@NaTbF4的合成及其在组氨酸检测和肿瘤细胞成像中的应用", 《无机化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701029A (zh) * 2020-07-10 2020-09-25 济南康硕生物技术有限公司 一种上转换仿生复合体及制备方法和弱紫外转换的应用
CN111701029B (zh) * 2020-07-10 2022-08-16 济南康硕生物技术有限公司 一种上转换仿生复合体及制备方法和弱紫外转换的应用

Also Published As

Publication number Publication date
CN110624116B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
Chen et al. Current advances in lanthanide‐doped upconversion nanostructures for detection and bioapplication
Du et al. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications
Li et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature
Fan et al. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures
Shen et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri‐doped upconversion colloidal nanoparticles at 800 nm
Chen et al. Light upconverting core–shell nanostructures: nanophotonic control for emerging applications
Li et al. Highly efficient lanthanide upconverting nanomaterials: progresses and challenges
Zhang Photon upconversion nanomaterials
Li et al. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure
Shen et al. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy
Xiao et al. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells
Rostami et al. Breakthroughs in medicine and bioimaging with up-conversion nanoparticles
Ju et al. An upconversion nanoprobe operating in the first biological window
Chien et al. NIR‐responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: a perspective
Wang et al. Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging
Huang et al. 915 nm light‐triggered photodynamic therapy and MR/CT dual‐modal imaging of tumor based on the nonstoichiometric Na0. 52YbF3. 52: Er upconversion nanoprobes
Chan et al. Advanced sensing, imaging, and therapy nanoplatforms based on Nd 3+-doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light
CN108130069B (zh) 稀土上转换纳米诊疗剂及其制备方法
Venkatachalam et al. Er 3+‐Doped Y 2 O 3 Nanophosphors for Near‐Infrared Fluorescence Bioimaging Applications
Li et al. Highly controllable synthesis of near-infrared persistent luminescence SiO 2/CaMgSi 2 O 6 composite nanospheres for imaging in vivo
Pu et al. Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals
Peng et al. Synthesis strategies and biomedical applications for doped inorganic semiconductor nanocrystals
Chhetri et al. Recent advancements in Ln‐ion‐based upconverting nanomaterials and their biological applications
CN110408377B (zh) 一种稀土掺杂NaCeF4近红外荧光纳米探针及其制备方法和生物应用
CN110624116B (zh) 一种石墨烯-稀土上转换复合纳米微球的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant