CN110618302A - 局部放电efpi光纤传感器法珀腔探头的制造方法 - Google Patents

局部放电efpi光纤传感器法珀腔探头的制造方法 Download PDF

Info

Publication number
CN110618302A
CN110618302A CN201911048969.5A CN201911048969A CN110618302A CN 110618302 A CN110618302 A CN 110618302A CN 201911048969 A CN201911048969 A CN 201911048969A CN 110618302 A CN110618302 A CN 110618302A
Authority
CN
China
Prior art keywords
fabry
optical fiber
perot cavity
partial discharge
efpi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911048969.5A
Other languages
English (en)
Inventor
司文荣
吴旭涛
傅晨钊
李秀广
陆启宇
黄兴德
黄华
虞益挺
贺林
高凯
何宁辉
袁鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Mao Rong Electric Equipment Co Ltd
Northwestern Polytechnical University
State Grid Shanghai Electric Power Co Ltd
Northwest University of Technology
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Original Assignee
Xi'an Mao Rong Electric Equipment Co Ltd
State Grid Shanghai Electric Power Co Ltd
Northwest University of Technology
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Mao Rong Electric Equipment Co Ltd, State Grid Shanghai Electric Power Co Ltd, Northwest University of Technology, Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd filed Critical Xi'an Mao Rong Electric Equipment Co Ltd
Priority to CN201911048969.5A priority Critical patent/CN110618302A/zh
Publication of CN110618302A publication Critical patent/CN110618302A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1218Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明涉及一种局部放电EFPI光纤传感器法珀腔探头的制造方法,包括以下步骤:步骤1)局部放电EFPI光纤传感器法珀腔探头敏感膜片结构及辅助定位结构加工;步骤2)小孔即法珀腔加工;步骤3)大孔即光纤安装定位阶梯孔加工;步骤4)法珀腔敏感膜片内表面镀膜;步骤5)法珀腔探头光纤装配。与现有技术相比,本发明具有利用SOI片实现了μm级敏感膜片法珀腔探头的大批量加工制备等优点。

Description

局部放电EFPI光纤传感器法珀腔探头的制造方法
技术领域
本发明涉及一种局部放电设备的制造技术,尤其是涉及一种局部放电EFPI光纤传感器法珀腔探头的制造方法。
背景技术
非本征型法珀干涉仪(Extrinsic Fabry-Perot Interferometer,EFPI)光纤传感器是一套使用敏感膜片结构将超声波转换为机械振动,再利用法珀干涉技术将机械振动转化为光学参量变化,最终被光电探测器等相关仪器转化、采集、解调的高性能声超波检测系统,目前已被用来检测大型电力变压器内部油纸绝缘缺陷产生局部放电的超声波信号。如图1所示,该传感器法珀腔探头一般由含光纤的芯体、圆形套筒和敏感膜片(超声波耦合振动元件)组成;主要工作参数有:振动膜片厚度为h、振动膜片有效直径2a、法珀腔腔长l以及法珀腔两个反射端面反射率R1和R2。根据多光束干涉原理经法珀腔的反射光强I、依据弹性力学原理四周完全约束圆形膜片的一阶固有频率f(谐振频率)以及在超声波信号产生的压强P之下膜片振动其中心产生的位移y即灵敏度S,如下所示:
式中:I0(λ)是入射光波长;n是法珀腔内介质折射率;R1和R2是图1所示两个反射端面1和2的反射率;C为常数;a为敏感膜片有效半径;D为抗弯刚度;g为重力加速度;h为敏感膜片厚度;ρ为膜片材料密度;E为膜片材料弹性模量;μ为膜片材料泊松比。
根据式(1)~(3),可以得出在材料选定,EFPI光纤传感器工作性能主要参数I、f和y由敏感膜片厚度h、半径a、法珀腔腔长l和法珀腔的两个反射端面反射率R1、R2决定。敏感膜片的固有频率f与其厚度h成正比,与膜片的有效半径a的二次方成反比;在保持膜片固有频率f不变时,振动膜片的厚度h越薄,膜片的灵敏度S越大。
目前,常用于变压器等电力设备局部放电超声波信号检测的EFPI光纤传感器法珀腔探头加工制备方法如图2所示,采用石英作为敏感振动膜片,利用粘结剂与石英管进行联接;光纤利用粘结剂与光纤准直器进行固定联接;最后利用粘结剂将石英管与光纤准直器进行固定联接,从而形成了具有敏感膜片厚度h、有效半径a和法珀腔腔长l的法珀腔探头。该方法在制作过程中容易出现端面损坏、污染等问题,仅适用于实验室初级阶段研制和试验用,需加工多种尺寸结构传感器且数量不多时具有容易实现、成本较低的优势,但由于是人工手动拼接,在局部放电超声波信号检测的谐振固有频率高达十数kHz,即法珀腔探头的主要结构参数如敏感膜片厚度h为微米级时,传感器结构参数重复性差,且无法实现大批量加工制备。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种局部放电EFPI光纤传感器法珀腔探头的制造方法。
本发明的目的可以通过以下技术方案来实现:
一种局部放电EFPI光纤传感器法珀腔探头的制造方法,包括以下步骤:
步骤1)局部放电EFPI光纤传感器法珀腔探头敏感膜片结构及辅助定位结构加工;
步骤2)小孔即法珀腔加工;
步骤3)大孔即光纤安装定位阶梯孔加工;
步骤4)法珀腔敏感膜片内表面镀膜;
步骤5)法珀腔探头光纤装配。
优选地,所述的敏感膜片结构及辅助定位结构加工具体过程如下:
由Si材料的器件层A、SiO2间隔层B及Si材料的衬底层C组成的SOI片作为加工对象;SOI片经HF溶液去除表面氧化物后,采用感应耦合的离子干法刻蚀工艺得到敏感膜片结构及辅助定位结构,器件层A决定了敏感膜片的厚度h。
优选地,所述的辅助定位结构为在敏感膜片结构外围环绕一个圆环凸台,凸台厚度为珐珀腔长l,圆环凸台直径为用于装配的光纤直径。
优选地,所述的凸台厚度可通过镀膜工艺调节;所述的凸台外围由圆环凹槽和四个定位箭头组成,装配时圆环凹槽作为固定光纤时的滴胶槽以防止胶体流入敏感膜片表面,并观察箭头以确定光纤外径与圆环凸台外径重合,从而实现较好的同轴度。
优选地,所述的小孔即法珀腔加工具体为:
在步骤1)得到敏感膜片结构及辅助定位结构后,根据敏感膜片有效半径a对SOI片进行反面套刻,形成小孔即法珀腔。
优选地,所述的大孔即光纤安装定位阶梯孔加工具体为:
根据法珀腔腔长l和光纤外径2b刻蚀大孔,形成光纤安装定位阶梯孔并准确控制法珀腔腔长l以及法珀腔与光纤的同轴度。
优选地,所述的法珀腔敏感膜片内表面镀膜具体为:
在步骤3)刻蚀结束后,采用电子束蒸镀仪镀金反射膜提高膜片反射率,并对敏感膜片内侧进行反射率端面反射率R1与光纤端面反射率R2进行优化配对。
优选地,所述的法珀腔探头光纤装配具体为:
选用的光纤利用步骤1形成的辅助定位结构加工与步骤4后形成的法珀腔探头进行装配,在光纤护套上涂覆密封胶水,基于安装定位阶梯孔实现牢固联接。
与现有技术相比,本发明具有以下有益效果:
1、EFPI传感器工作性能主要参数由敏感膜片厚度h、膜片工作半径a、法珀腔腔长l和法珀腔的两个反射端面反射率R1、R2决定,本发明法珀腔探头加工制备工艺可以实现敏感膜片厚度h、膜片工作半径a、反射端面反射率R2的精准控制,利用SOI片实现了μm级敏感膜片法珀腔探头的大批量加工制备。
2、采用辅助定位结构及阶梯孔,保证了光纤芯径和膜片中心反射区域的同轴度和法珀腔腔长l的精准控制,确保了法珀腔按设计腔长长度l处于稳定工作点。
附图说明
图1为光纤EFPI超声波传感器法珀腔探头结构和参数示意图;
图2为现有的局部放电EFPI光纤传感器法珀腔探头加工制备方法;
图3为本发明所示的局部放电EFPI光纤传感器法珀腔探头加工制备工艺。
图4为采用本发明所示工艺加工的显微镜下的阶梯孔支撑梁臂式敏感膜片。
图5为采用本发明所示工艺加工的局部放电EFPI光纤传感器检测超声波信号示例。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
一种局部放电EFPI光纤传感器法珀腔探头制造方法,如图2所示,包括局部放电EFPI光纤传感器法珀腔探头敏感膜片结构及辅助定位结构加工、小孔即法珀腔加工、大孔即光纤安装定位阶梯孔加工、法珀腔敏感膜片内表面镀膜和光纤装配5个步骤组成。
所述的步骤1:敏感膜片结构及辅助定位结构加工。采用各层厚度可以制定的,由Si材料的器件层A、SiO2间隔层B及Si材料的衬底层C组成的SOI片作为加工对象;SOI片经HF溶液去除表面氧化物后,采用感应耦合等离子干法刻蚀工艺得到敏感膜片结构及辅助定位结构,器件层A决定了敏感膜片的厚度h。该辅助定位结构,在敏感膜片结构外围环绕一个圆环凸台,凸台厚度为珐珀腔长l,可通过镀膜工艺调节,圆环凸台直径为用于装配的光纤直径;凸台外围由圆环凹槽和四个定位箭头组成,装配时圆环凹槽作为固定光纤时的滴胶槽以防止胶体流入敏感膜片表面,并观察箭头以确定光纤外径与圆环凸台外径重合,从而实现较好的同轴度。
所述的步骤2:小孔即法珀腔加工。在步骤1基础上,得到敏感膜片结构及辅助定位结构后,对SOI片进行反面套刻,根据敏感膜片有效半径a,形成小孔即法珀腔。
所述的步骤3:大孔即光纤安装定位阶梯孔加工。在步骤2的基础上,根据法珀腔腔长l和光纤外径2b刻蚀大孔,形成光纤安装定位阶梯孔并可以准确控制法珀腔腔长l以及法珀腔与光纤的同轴度。
所述的步骤4:敏感膜片内表面镀膜。刻蚀结束后,采用电子束蒸镀仪镀金反射膜提高膜片反射率,改善珐珀腔光学性能,增强反射光强变化,提高传感器信噪比。即根据(1)对敏感膜片内侧进行反射率端面反射率R1与光纤端面反射率R2进行优化配对,实现法珀腔在选定光源下稳定工作。
所述的步骤5:法珀腔探头光纤装配。选用的光纤利用步骤1形成的辅助定位结构加工与步骤4后形成的法珀腔探头进行装配,在光纤护套上涂覆专用密封胶水,基于安装定位阶梯孔实现牢固联接。
采用本发明加工制备工艺的实施案例:形成的法珀腔探头端部尺寸为3×3mm,略大于光纤直径2.5mm,敏感膜片固有频率覆盖局部放电超声波频带20kHz-200kHz,一张4英寸SOI片上可一次加工出500多个法珀腔探头。图4所示为显微镜下的阶梯孔支撑梁臂式敏感膜片,支撑梁臂的长度L=142μm、截面宽度w=15μm,中心敏感单元的有效半径a=79μm,膜片厚度h=5μm。图5为本发明所示工艺加工的局部放电EFPI光纤传感器检测超声波信号示例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (8)

1.一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,包括以下步骤:
步骤1)局部放电EFPI光纤传感器法珀腔探头敏感膜片结构及辅助定位结构加工;
步骤2)小孔即法珀腔加工;
步骤3)大孔即光纤安装定位阶梯孔加工;
步骤4)法珀腔敏感膜片内表面镀膜;
步骤5)法珀腔探头光纤装配。
2.根据权利要求1所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的敏感膜片结构及辅助定位结构加工具体过程如下:
由Si材料的器件层A、SiO2间隔层B及Si材料的衬底层C组成的SOI片作为加工对象;SOI片经HF溶液去除表面氧化物后,采用感应耦合的离子干法刻蚀工艺得到敏感膜片结构及辅助定位结构,器件层A决定了敏感膜片的厚度h。
3.根据权利要求2所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的辅助定位结构为在敏感膜片结构外围环绕一个圆环凸台,凸台厚度为珐珀腔长l,圆环凸台直径为用于装配的光纤直径。
4.根据权利要求3所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的凸台厚度可通过镀膜工艺调节;所述的凸台外围由圆环凹槽和四个定位箭头组成,装配时圆环凹槽作为固定光纤时的滴胶槽以防止胶体流入敏感膜片表面,并观察箭头以确定光纤外径与圆环凸台外径重合,从而实现较好的同轴度。
5.根据权利要求1所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的小孔即法珀腔加工具体为:
在步骤1)得到敏感膜片结构及辅助定位结构后,根据敏感膜片有效半径a对SOI片进行反面套刻,形成小孔即法珀腔。
6.根据权利要求1所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的大孔即光纤安装定位阶梯孔加工具体为:
根据法珀腔腔长l和光纤外径2b刻蚀大孔,形成光纤安装定位阶梯孔并准确控制法珀腔腔长l以及法珀腔与光纤的同轴度。
7.根据权利要求1所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的法珀腔敏感膜片内表面镀膜具体为:
在步骤3)刻蚀结束后,采用电子束蒸镀仪镀金反射膜提高膜片反射率,并对敏感膜片内侧进行反射率端面反射率R1与光纤端面反射率R2进行优化配对。
8.根据权利要求1所述的一种局部放电EFPI光纤传感器法珀腔探头的制造方法,其特征在于,所述的法珀腔探头光纤装配具体为:
选用的光纤利用步骤1形成的辅助定位结构加工与步骤4后形成的法珀腔探头进行装配,在光纤护套上涂覆密封胶水,基于安装定位阶梯孔实现牢固联接。
CN201911048969.5A 2019-10-31 2019-10-31 局部放电efpi光纤传感器法珀腔探头的制造方法 Pending CN110618302A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911048969.5A CN110618302A (zh) 2019-10-31 2019-10-31 局部放电efpi光纤传感器法珀腔探头的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911048969.5A CN110618302A (zh) 2019-10-31 2019-10-31 局部放电efpi光纤传感器法珀腔探头的制造方法

Publications (1)

Publication Number Publication Date
CN110618302A true CN110618302A (zh) 2019-12-27

Family

ID=68927257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911048969.5A Pending CN110618302A (zh) 2019-10-31 2019-10-31 局部放电efpi光纤传感器法珀腔探头的制造方法

Country Status (1)

Country Link
CN (1) CN110618302A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345894A (zh) * 2020-09-30 2021-02-09 陈梦滢 一种适用液体环境局部放电超声检测f-p传感器及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655353A (zh) * 2009-06-26 2010-02-24 南京师范大学 微型非本征法布里-珀罗型光纤压力传感器及其制作方法
US20130311095A1 (en) * 2010-01-12 2013-11-21 Baker Hughes Incorporated Multi-gap interferometric sensors
US8764678B2 (en) * 2010-02-01 2014-07-01 University Of Limerick Pressure sensor with an interferometric sensor and an in-fiber bragg grating reference sensor
CN105509940A (zh) * 2016-01-19 2016-04-20 莆田学院 一种光纤传感探头及制备方法
CN106197782A (zh) * 2015-05-31 2016-12-07 成都凯天电子股份有限公司 微型非本征光纤法珀压力传感器
CN107664548A (zh) * 2017-11-03 2018-02-06 中国航空工业集团公司北京长城计量测试技术研究所 一种efpi光纤压力传感器及其制作方法
CN108709572A (zh) * 2018-07-13 2018-10-26 华南理工大学 一种一体式微位移光纤传感探头
CN109870255A (zh) * 2017-12-05 2019-06-11 北京佰为深科技发展有限公司 法珀传感器及其制造方法
CN109945965A (zh) * 2019-03-27 2019-06-28 国网上海市电力公司 光纤efpi超声波传感器用支撑梁臂式敏感膜片

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655353A (zh) * 2009-06-26 2010-02-24 南京师范大学 微型非本征法布里-珀罗型光纤压力传感器及其制作方法
US20130311095A1 (en) * 2010-01-12 2013-11-21 Baker Hughes Incorporated Multi-gap interferometric sensors
US8764678B2 (en) * 2010-02-01 2014-07-01 University Of Limerick Pressure sensor with an interferometric sensor and an in-fiber bragg grating reference sensor
CN106197782A (zh) * 2015-05-31 2016-12-07 成都凯天电子股份有限公司 微型非本征光纤法珀压力传感器
CN105509940A (zh) * 2016-01-19 2016-04-20 莆田学院 一种光纤传感探头及制备方法
CN107664548A (zh) * 2017-11-03 2018-02-06 中国航空工业集团公司北京长城计量测试技术研究所 一种efpi光纤压力传感器及其制作方法
CN109870255A (zh) * 2017-12-05 2019-06-11 北京佰为深科技发展有限公司 法珀传感器及其制造方法
CN108709572A (zh) * 2018-07-13 2018-10-26 华南理工大学 一种一体式微位移光纤传感探头
CN109945965A (zh) * 2019-03-27 2019-06-28 国网上海市电力公司 光纤efpi超声波传感器用支撑梁臂式敏感膜片

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAOYONG LI: "Low-Cost, High-Performance Fiber Optic Fabry–Perot Sensor for UltrasonicWave Detection", 《SENSORS》 *
WEN-RONG SI: "Research On The Fiber Optic Efpi Sensor With a Beam-Supported Membrane Structure For Pd Acoustic Detection", 《2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS)》 *
柳珊: "高温光纤压力传感器的制作及其特性研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
王付印: "基于F_P干涉仪的微型化光纤水声传感关键技术研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345894A (zh) * 2020-09-30 2021-02-09 陈梦滢 一种适用液体环境局部放电超声检测f-p传感器及制备方法
CN112345894B (zh) * 2020-09-30 2023-12-15 陈梦滢 一种适用液体环境局部放电超声检测f-p传感器及制备方法

Similar Documents

Publication Publication Date Title
US7149374B2 (en) Fiber optic pressure sensor
US9074957B2 (en) High stable fiber fabry-perot pressure sensor with glue-free packing and its fabrication method
CA2793452C (en) Optical-fiber-compatible acoustic sensor
CN110487454B (zh) 一种微型膜片式光纤端部fp压力传感器、制作方法及应用
US7054011B2 (en) Optical fiber pressure and acceleration sensor fabricated on a fiber endface
US20220082413A1 (en) Diaphragm-based fiber acoustic sensor
CN110360935B (zh) 一种基于简化光学纳米谐振腔的面内位移传感单元及方法
US8174703B2 (en) Method for fabricating a sensor, a sensor, and a method for sensing
CN110186548A (zh) 基于光纤微结构膜片的光纤f-p声传感器及其制作方法
Liu et al. MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber
CN107300437B (zh) 一种基于微椭球空气腔的光纤压力传感器及其制造方法
CN109374109B (zh) 一种共光路结构的微型光纤非本征型迈克尔逊声压传感器
CN111256808A (zh) 复合膜结构的光纤微光机电系统超声传感器及其制作方法
CN115808191A (zh) 一种高温自补偿光纤f-p腔mems振动传感器及其制造方法
CN112888918B (zh) 用于声学感测的聚合物涂布的高折射率波导
CN110618302A (zh) 局部放电efpi光纤传感器法珀腔探头的制造方法
CN114486019A (zh) 一种消除第三腔干扰的光纤法珀压力传感器及mems制造方法
CN212134870U (zh) 一种局部放电检测用光纤双法珀腔超声波传感器
JP2003130722A (ja) 光干渉型マイクロ・ハイドロホン
CN108982913B (zh) 一种共光路结构的微型光纤非本征型迈克尔逊加速度传感器
CN108132093B (zh) 一种悬膜光纤声波传感器及其制备方法
CN115524040A (zh) 一种基于光纤的超灵敏应力传感器结构及系统
CN109655635A (zh) 基于迈克尔逊干涉仪的微型偏轴光纤迈克尔逊非本征型加速度计
CN219087309U (zh) 一种一体式光纤mems麦克风探头及光纤mems麦克风
CN214843307U (zh) 低成本可重复生产的光纤非封闭法布里-珀罗传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191227