CN110606184A - Piston propeller and piston propelling equipment - Google Patents

Piston propeller and piston propelling equipment Download PDF

Info

Publication number
CN110606184A
CN110606184A CN201910949139.3A CN201910949139A CN110606184A CN 110606184 A CN110606184 A CN 110606184A CN 201910949139 A CN201910949139 A CN 201910949139A CN 110606184 A CN110606184 A CN 110606184A
Authority
CN
China
Prior art keywords
flexible
piece
piston
water
traction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910949139.3A
Other languages
Chinese (zh)
Inventor
孙立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201910949139.3A priority Critical patent/CN110606184A/en
Publication of CN110606184A publication Critical patent/CN110606184A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/107Direction control of propulsive fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H2011/004Marine propulsion by water jets using the eductor or injector pump principle, e.g. jets with by-pass fluid paths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Actuator (AREA)

Abstract

The application relates to the field of thrusters and discloses a piston thruster, which comprises a water pressing bin with a water outlet, a flexible water guide piece, a flexible traction piece and a direction changer, wherein the flexible water guide piece is provided with a butt joint end communicated with the water outlet and a free end for spraying water; one end of the flexible traction piece is connected with the flexible water guide piece, and the other end of the flexible traction piece is connected with the direction changer; a direction changer configured to bend the flexible water guide in an arbitrary direction by driving the flexible traction member. The flexible water guide piece is driven to bend by the flexible traction piece, so that the water spraying direction can be controlled, and driving forces in different directions can be provided. The present application further discloses a piston advancing apparatus.

Description

Piston propeller and piston propelling equipment
Technical Field
The application relates to the technical field of jet propellers, for example to a piston propeller and piston propelling equipment.
Background
At present, most of underwater equipment propellers are of propeller structures, and the structure has the defects of high noise, easiness in abrasion, inconvenience for keeping the posture of a robot and the like, so that part of underwater equipment is replaced by a water-spraying propeller instead of the original propeller. The direction of the water jet propeller is controlled mainly by changing the direction of water jet by changing the orientation of the propeller, so that driving force in different directions is provided.
In the process of implementing the embodiments of the present disclosure, it is found that at least the following problems exist in the related art:
the existing water-spraying type propeller cannot flexibly control the water spraying direction.
Disclosure of Invention
The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosed embodiments. This summary is not an extensive overview nor is intended to identify key/critical elements or to delineate the scope of such embodiments but rather as a prelude to the more detailed description that is presented later.
The embodiment of the disclosure provides a piston propeller to solve the technical problem that the existing water-spraying propeller cannot flexibly control the water spraying direction.
In some embodiments, the piston thruster comprises a water pressing bin provided with a water outlet, a flexible water guide piece, a flexible traction piece and a direction changer; the flexible water guide piece is provided with a butt joint end communicated with the water outlet and a free end for spraying water; one end of the flexible traction piece is connected with the flexible water guide piece, and the other end of the flexible traction piece is connected with the direction changer; a direction changer configured to bend the flexible water guide in an arbitrary direction by driving the flexible traction member.
The piston propeller provided by the embodiment of the disclosure can realize the following technical effects: the flexible traction piece is driven by the direction changer to drive the flexible water guide piece to bend, so that the water spraying direction is changed. Because the water guide piece is flexible, the water guide piece can be bent in any direction under the action of the direction changer, the water spraying direction can be changed in any direction, and the control is more flexible.
The foregoing general description and the following description are exemplary and explanatory only and are not restrictive of the application.
Drawings
One or more embodiments are illustrated by way of example in the accompanying drawings, which correspond to the accompanying drawings and not in limitation thereof, in which elements having the same reference numeral designations are shown as like elements and not in limitation thereof, and wherein:
fig. 1 is a schematic view of an overall structure of a piston thruster provided by an embodiment of the present disclosure;
FIG. 2 is a schematic diagram of a partial structure of a piston thruster provided by an embodiment of the present disclosure;
FIG. 3 is a schematic diagram of a partial structure of a piston thruster provided by an embodiment of the present disclosure;
fig. 4 is a schematic view of an overall structure of a piston thruster provided by an embodiment of the disclosure
Reference numerals:
1: a water pressing bin; 2: a flexible water guide; 3: a flexible traction member; 4: a direction changer; 5: a linkage member; 6: an axial traction mechanism; 61: a winch; 62: and a second power device.
Detailed Description
So that the manner in which the features and elements of the disclosed embodiments can be understood in detail, a more particular description of the disclosed embodiments, briefly summarized above, may be had by reference to the embodiments, some of which are illustrated in the appended drawings. In the following description of the technology, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the disclosed embodiments. However, one or more embodiments may be practiced without these details. In other instances, well-known structures and devices may be shown in simplified form in order to simplify the drawing.
In one aspect of the present invention, as shown in fig. 1, the disclosed embodiment provides a piston propeller, which includes a pressurized water chamber 1 provided with a water outlet, and further includes a flexible water guiding member 2, a flexible traction member 3 and a direction changer 4, wherein the flexible water guiding member 2 has a butt joint end communicated with the water outlet and a free end for spraying water; one end of the flexible traction piece 3 is connected with the flexible water guide piece 2, and the other end of the flexible traction piece is connected with the direction changer 4; and a direction changer 4 configured to bend the flexible water guide 2 in an arbitrary direction by driving the flexible traction member 3.
The pressurized water bin 1 can be cylindrical, and is provided with a cylindrical cavity allowing a piston to reciprocate along the axis of the pressurized water bin 1, one end of the pressurized water bin is a water outlet end connected with a water guide piece, and the other end of the pressurized water bin is an open end.
Optionally, the piston and the water outlet end are provided with one-way valves, when the piston moves towards the water outlet end, the one-way valve of the piston is closed, the one-way valve of the water outlet end is opened, and the piston presses out the water in the water pressing bin 1 from the water outlet end; when the piston moves towards the opening end, the check valve of the piston is opened, the check valve of the water outlet end is closed, and water flows into the pressurized water bin 1 from the check valve of the piston under the action of negative pressure in the cylindrical cavity. Therefore, water always enters from the open end of the water pressing bin 1 and flows out from the water outlet end, so that the piston propeller keeps one direction by the reaction force of the water, and the propelling force generated by the piston propeller is smoother.
Optionally, a tubular water inlet auxiliary part is arranged parallel to the axis of the pressurized water bin 1, one end of the water inlet auxiliary part is close to the water outlet of the water guide part, and the other end of the water inlet auxiliary part exceeds the open end of the pressurized water bin 1. When the piston moves towards the water outlet end, the piston presses out the water in the water pressing bin 1 from the water outlet end; when the piston moves to the open end, negative pressure is generated in the cylindrical cavity, and at the moment, water at the open end flows into the water outlet of the water guide piece through the water inlet auxiliary piece under the action of the water inlet auxiliary piece, and then flows into the water pressing bin 1 through the water guide piece. Therefore, most of water enters the pressurized water bin 1 from the open end of the pressurized water bin 1 and flows out from the water outlet end, so that the piston propeller keeps a direction by the reaction force of the water, and the propelling force generated by the piston propeller is smoother.
The flexible water guide 2 is a tubular structure capable of flexibly bending in any direction, and may be a pipe made of a flexible material (e.g., a rubber pipe) or a bendable structure made of a hard material (e.g., a corrugated pipe made of a metal material). When water is sprayed out along the free end of the flexible water guide 2, the flexible water guide 2 is also subjected to the reaction force (propelling force) of the water, and the direction of the force is the same as the spraying direction of the water, so that the flexible water guide 2 can be bent in any direction, and the propelling force in any direction can be generated.
The bending of the flexible water guide 2 may be accomplished under the traction of the flexible traction member 3. The flexible traction element 3 may be any elongated flexible element capable of transmitting traction force, such as a wire, a chain, a steel cable, etc., and one end of the flexible traction element is connected to the flexible water guiding element 2 to pull the flexible water guiding element 2 to bend. Wherein, in order to guarantee the precision of pulling, the flexible piece 3 that pulls can be rigid connection with flexible water guide 2's connection, and like this, the traction force that the flexible piece 3 was pulled is directly exerted on flexible water guide 2 to the action volume that the flexible piece 3 was pulled also directly reacts on flexible water guide 2, makes the degree of curvature of flexible water guide 2 foreseeable, and control is more accurate. Meanwhile, the flexible traction piece 3 and the flexible water guide piece 2 can be connected in an elastic mode, so that when the flexible traction piece 3 and the flexible water guide piece 2 are clamped, the elastic connection can play a buffering role, and the flexible traction piece 3 or the flexible water guide piece 2 is prevented from being damaged.
Optionally, the connection point of the flexible traction element 3 and the flexible water guide element 2 is arranged at the free end of the flexible water guide element 2, and the orientation of the propelling force is directly determined by the orientation of the free end of the flexible water guide element 2, so that the connection point is arranged at the free end of the flexible water guide element 2, the orientation of the connection point can be directly controlled, and the control is more accurate.
Optionally, the number of the flexible traction members 3 is more than two, and the more than two flexible traction members 3 are sequentially connected with the flexible water guide member 2 along the axis of the flexible water guide member 2. The flexible water guide 2 is ideally curved such that the axis of the flexible water guide 2 is curved in a smooth arc, so that the energy loss of water flowing in the flexible water guide 2 is small. In order to bend the axis of the flexible water guide 2 into a smooth arc, the flexible water guide 2 needs to be pulled at multiple points at the same time, and the more pulling points, the smoother the arc, so that a plurality of flexible pulling members 3 need to be arranged along the axis of the flexible water guide 2.
Optionally, the connection points of more than two flexible traction members 3 and the flexible water guide member 2 are connected in sequence to form a straight line. In this way, the storage and the arrangement of the flexible traction piece 3 are facilitated. Furthermore, a containing ring can be arranged on the surface of the flexible water guide piece 2, and all the flexible traction pieces 3 penetrate through the containing ring to pull the flexible water guide piece 2, so that the different flexible traction pieces 3 are prevented from interfering with each other.
In some embodiments, further comprising: the linkage piece 5 is arranged on the surface of the flexible water guide piece 2, is movably connected with the flexible traction piece 3 connected between the linkage piece 5 and the free end of the flexible water guide piece 2, and is configured to move under the driving of the flexible traction piece 3 so as to pull the flexible water guide piece 2 to bend. In this way, the number of flexible traction members 3 can be reduced while ensuring that the axis of the flexible water guide 2 is bent in a smooth arc. The flexible traction piece 3 passes through the linkage piece 5, and when the flexible traction piece 3 is subjected to traction force, the linkage piece 5 can be driven to move, so that the flexible traction piece 3 is bent.
The linkage piece 5 can be a circular ring arranged on the surface of the flexible water guide piece 2, the flexible traction piece 3 penetrates through the circular ring, and when the flexible water guide piece 2 is bent, the flexible traction piece 3 is bent by taking the circular ring as a fulcrum, and at the moment, if traction force is applied to the flexible traction piece 3, part of force is applied to the linkage piece 5 through the fulcrum, so that the flexible water guide piece 2 connected with the linkage piece is driven to bend.
The movement of the free end of the flexible water guide 2 can be decomposed into bending movement of the axis of the flexible water guide and rotating movement around the axis of the water pressing bin 1, and the movement of the flexible water guide 2 in any direction can be realized.
In some embodiments, to achieve a rotational movement of the free end of the flexible water deflector 2 around the axis of the pressurized water tank 1, the optional deflector 4 comprises: the circumferential traction mechanism is positioned at the water outlet end of the water pressing bin 1, is movably connected with the flexible traction piece 3, and is configured to change the bending direction of the flexible water guide piece 2 during bending by drawing the flexible traction piece 3 to rotate along the circumferential direction of the water outlet. The circumferential traction mechanism is coaxially arranged with the pressurized water bin 1 and can rotate around the axis of the pressurized water bin 1, an opening is arranged on the circumference of the circumferential traction mechanism, and the flexible traction piece 3 is connected with the flexible water guide piece 2 through the opening. Thus, as the circumferential traction mechanism rotates, the angle of the opening relative to the surge tank 1 changes, and the angle of the flexible traction member 3 passing through the opening relative to the surge tank 1 also changes. Because the flexible water guide 2 is bent under the traction action of the flexible traction piece 3, the bending direction of the flexible water guide 2 always faces the flexible traction piece 3, and thus, the rotation of the circumferential traction mechanism changes the angle of the flexible water guide 2 to the pressurized water bin 1, and the bending direction of the flexible water guide 2 is also changed.
Wherein, the periphery of the circumferential traction mechanism can be provided with an opening or an annular structure, and all the structures which can realize the reciprocating motion and allow the flexible traction piece 3 to pass through can be realized.
In some embodiments, the circumferential traction mechanism comprises: the rotating device is coaxially arranged at the water outlet end of the water pressing bin 1 and can rotate around the axis of the water outlet, the flexible traction piece 3 is movably connected to the outer periphery of the rotating device, and when the rotating device rotates, the position of a movable connection point arranged on the outer periphery is changed; and the first power device is in transmission connection with the rotating device and is configured to drive the rotating device to rotate.
The first power device can be a power unit capable of realizing rotary motion, such as a hydraulic motor, an electric motor and the like, and can be in a belt transmission mode, a gear transmission mode and the like with the rotating device to drive the rotating device to rotate; the first power device may be a power unit capable of realizing reciprocating motion, such as a cylinder, an electromagnetic relay device, and the like, and the rotating device may be connected to the first power device through a link mechanism to convert the reciprocating motion of the power unit into the rotating motion of the rotating device. Therefore, the first power device drives the rotating device to rotate, so that the response time is shorter and the control is more flexible.
In some embodiments, the deviator 4 comprises: and the axial traction mechanism is connected with the other end of the flexible traction piece 3 and is configured to change the bending degree of the flexible water guide piece 2 by drawing the flexible traction piece 3 to move.
The bending of the axis of the flexible water guide piece 2 is realized by the tightening or loosening of the flexible traction piece 3, and when the flexible traction piece 3 is tightened, the flexible water guide piece 2 is driven to bend; when the flexible traction member 3 is relaxed, the flexible water guide 2 is restored from the bent state. The axial traction mechanism is connected with the flexible traction member 3 to provide traction force and change the loosening or tightening state of the flexible traction member 3.
Wherein, the axial traction mechanism can be a connecting rod mechanism for realizing reciprocating motion and is provided with a connecting rod connected with the flexible traction piece 3, and the connecting rod reciprocates to drive the flexible traction piece 3 connected with the connecting rod to reciprocate, thereby realizing the tightening or loosening of the flexible traction piece 3.
In some embodiments, the axial traction mechanism comprises: a winch 61 connected to the other end of the flexible traction member 3, the flexible traction member 3 being driven by rotation of the winch 61 to change the degree of bending of the flexible water guide 2; and a second power device 62, which is in transmission connection with the winch 61 and is configured to drive the winch 61 to rotate.
The second power device 62 may be a power unit capable of realizing a revolving motion, such as a hydraulic motor, an electric motor, etc., and the winch 61 may be in a belt transmission, a gear transmission, etc., to drive the winch 61 to rotate; the second power unit 62 may be a power unit capable of performing a reciprocating motion, such as an air cylinder or an electromagnetic relay device, and the winch 61 may convert the reciprocating motion of the power unit into a rotational motion of the winch 61 through a link mechanism. In this way, the capstan 61 is driven to rotate by the second power device 62, so that the response time is shorter and the control is more flexible.
The connection point is provided on the periphery of the winch 61 to be connected with the flexible traction member 3, so that the flexible traction member 3 can be wound on the connection point when the winch 61 rotates in the forward direction, thereby tightening the flexible traction member 3 and forcing the flexible water guide member 2 connected thereto to be bent, and the flexible traction member 3 reduces the part wound on the connection point when the winch 61 rotates in the reverse direction, thereby loosening the flexible water guide member 2, and the flexible water guide member 2 is partially or completely restored from the bent state.
In another aspect of the invention, a piston propulsion device is provided, comprising more than two piston propellers as described above.
The piston propulsion device is formed by more than two piston propellers, the driving force can be increased, different piston propellers can generate the propulsion force in different directions, and the combination of the propulsion force in different directions can enable the piston propulsion device to generate different motion modes. For example, when one of the piston pushers generates a leftward thrust and the other pusher generates a rightward thrust that is not collinear with the thrust, the piston propulsion device generates a torsional force that causes the piston propulsion device to rotate.
Wherein, the pressurized-water bins 1 of different piston propellers are arranged in parallel, and the water outlet ends are uniformly arranged on the same side.
In some embodiments, when the piston pusher comprises an axial traction mechanism, different piston pushers share one axial traction mechanism. For simplifying piston propulsion equipment, different piston propellers can share the same axial traction mechanism, a flexible traction piece 3 storage plate is arranged, and all flexible traction pieces 3 are stored and then connected to the axial traction mechanism.
The above description and drawings sufficiently illustrate embodiments of the disclosure to enable those skilled in the art to practice them. Portions and features of some embodiments may be included in or substituted for those of others. Each embodiment may be described with emphasis on differences from other embodiments, and like parts may be referred to each other between the respective embodiments. As used in this application, although the terms "first," "second," etc. may be used in this application to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, unless the meaning of the description changes, so long as all occurrences of the first element are renamed consistently and all occurrences of the second element are renamed consistently. The first and second elements are both elements, but may not be the same element.

Claims (10)

1. A piston propeller comprises a water pressing bin provided with a water outlet, and is characterized by also comprising a flexible water guide piece, a flexible traction piece and a direction changer,
the flexible water guide piece is provided with a butt joint end communicated with the water outlet and a free end for spraying water;
one end of the flexible traction piece is connected with the flexible water guide piece, and the other end of the flexible traction piece is connected with the direction changer;
the direction changer is configured to bend the flexible water guide in any direction by driving the flexible traction member.
2. The piston pusher according to claim 1, characterized in that said deviator comprises:
the circumferential traction mechanism is positioned at the water outlet end of the water pressing bin, is movably connected with the flexible traction piece, and is configured to change the bending direction of the flexible water guide piece during bending by drawing the flexible traction piece to rotate along the circumferential direction of the water outlet.
3. The piston pusher of claim 2, wherein said circumferential traction mechanism comprises:
the rotating device is coaxially arranged at the water outlet end of the water pressing bin and can rotate around the axis of the water outlet, the flexible traction piece is movably connected to the outer periphery of the rotating device, and when the rotating device rotates, the position of the movable connection point arranged on the outer periphery is changed;
the first power device is in transmission connection with the rotating device and is configured to drive the rotating device to rotate.
4. The piston pusher according to claim 1, characterized in that said deviator comprises:
an axial traction mechanism connected with the other end of the flexible traction member and configured to change the bending degree of the flexible water guide member by traction movement of the flexible traction member.
5. The piston pusher of claim 4, wherein said axial traction mechanism comprises:
a winch connected to the other end of the flexible traction member, the flexible traction member being driven by rotation of the winch to change a degree of bending of the flexible water guide member;
and the second power device is in transmission connection with the winch and is configured to drive the winch to rotate.
6. The piston thruster of claim 1, wherein the number of the flexible traction members is two or more, and the two or more flexible traction members are sequentially connected with the flexible water guiding member along the axis of the flexible water guiding member.
7. The piston thruster of claim 6, wherein the connection points of two or more flexible traction members and the flexible water guiding member are connected in sequence to form a straight line.
8. The piston pusher of claim 7, further comprising:
the linkage piece is arranged on the surface of the flexible water guide piece, is movably connected with the flexible traction piece connected between the linkage piece and the free end of the flexible water guide piece, and is configured to move under the driving of the flexible traction piece so as to pull the flexible water guide piece to bend.
9. Piston propulsion device, characterized in that it comprises two or more piston propellers according to any of claims 1 to 8.
10. Piston propulsion arrangement according to claim 9, characterised in that when the piston pusher comprises an axial traction mechanism, different piston pushers share one axial traction mechanism.
CN201910949139.3A 2019-10-08 2019-10-08 Piston propeller and piston propelling equipment Pending CN110606184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910949139.3A CN110606184A (en) 2019-10-08 2019-10-08 Piston propeller and piston propelling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910949139.3A CN110606184A (en) 2019-10-08 2019-10-08 Piston propeller and piston propelling equipment

Publications (1)

Publication Number Publication Date
CN110606184A true CN110606184A (en) 2019-12-24

Family

ID=68894389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910949139.3A Pending CN110606184A (en) 2019-10-08 2019-10-08 Piston propeller and piston propelling equipment

Country Status (1)

Country Link
CN (1) CN110606184A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052156A1 (en) * 2000-10-26 2002-05-02 Burg Donald E. Marine vehicle propulsion system
TW200718605A (en) * 2005-11-15 2007-05-16 Han-Chieh Chiu Novel propeller for on-the-water and underwater carrier
CN102975837A (en) * 2012-12-12 2013-03-20 深圳市中科莲花净水科技有限公司 Line-driven multi-joint underwater vector propulsion device and bionic body thereof
CN203450363U (en) * 2013-01-11 2014-02-26 黄圭鹏 Water spraying type propulsion boat and marine self-priming pump water-spraying propulsion outer motor thereof
US20140103165A1 (en) * 2012-10-09 2014-04-17 Personal Water Craft Product Maneuvering and Stability Control System for Jet-Pack
CN204399456U (en) * 2014-12-04 2015-06-17 陈细香 A kind of overwater flight device being easy to operate
CN105339259A (en) * 2013-03-15 2016-02-17 S·布洛诺斯基 Marine ducted propeller jet propulsion system
CN108688784A (en) * 2018-06-20 2018-10-23 王万道 A kind of operating method of marine propuision system electric hydaulic water spray unit
CN110206811A (en) * 2019-06-18 2019-09-06 扬州哈工科创机器人研究院有限公司 Universal bending flexible apparatus and control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052156A1 (en) * 2000-10-26 2002-05-02 Burg Donald E. Marine vehicle propulsion system
TW200718605A (en) * 2005-11-15 2007-05-16 Han-Chieh Chiu Novel propeller for on-the-water and underwater carrier
US20140103165A1 (en) * 2012-10-09 2014-04-17 Personal Water Craft Product Maneuvering and Stability Control System for Jet-Pack
CN102975837A (en) * 2012-12-12 2013-03-20 深圳市中科莲花净水科技有限公司 Line-driven multi-joint underwater vector propulsion device and bionic body thereof
CN203450363U (en) * 2013-01-11 2014-02-26 黄圭鹏 Water spraying type propulsion boat and marine self-priming pump water-spraying propulsion outer motor thereof
CN105339259A (en) * 2013-03-15 2016-02-17 S·布洛诺斯基 Marine ducted propeller jet propulsion system
CN204399456U (en) * 2014-12-04 2015-06-17 陈细香 A kind of overwater flight device being easy to operate
CN108688784A (en) * 2018-06-20 2018-10-23 王万道 A kind of operating method of marine propuision system electric hydaulic water spray unit
CN110206811A (en) * 2019-06-18 2019-09-06 扬州哈工科创机器人研究院有限公司 Universal bending flexible apparatus and control method

Similar Documents

Publication Publication Date Title
US4214544A (en) Boat thruster
CN107208714B (en) Cable drive system with magnetorheological fluid clutch apparatus
CN108312160A (en) A kind of flexible robot for narrow space detection
WO1986001751A1 (en) Pipeline pig
US5165323A (en) Pneumatic actuators for manipulators
CN110606184A (en) Piston propeller and piston propelling equipment
US5671722A (en) Projectile launcher
KR20010024471A (en) Variable pitch marine propeller
AU2005281907A1 (en) Water craft comprising a kite-type element
WO1994009949A1 (en) Industrial robot having joints using a hollow reduction gear
CN109572970B (en) Vector propeller of underwater robot
JP2017043195A (en) Steering apparatus and sailing body
KR101194938B1 (en) The Water Jet device of the amtrac
EP2732936A1 (en) Gripper with remote cable drive
CN113021327A (en) Humanoid electro-hydraulic underwater manipulator
US5934952A (en) Marine propulsion unit
Nakagawa et al. Improvement of pipe holding mechanism for pipe inspection robot using flexible pneumatic cylinder
KR20210060765A (en) Apparatus for launching weapon using rope
US5466996A (en) Electromechanical remote-control device
JP2019155526A (en) robot
DK3243737T3 (en) ELECTRIC BOAT DRIVE MECHANISM
EP2242945B1 (en) Valve actuator
CN217864656U (en) Guiding device and underwater robot
RU2783719C1 (en) Propulsion and propulsion installation of underwater vehicle
JP2001138985A (en) Blade angle holding device for marine vessel propulsion device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191224