CN110601246A - 基于径向基神经网络预测的直流微电网均流方法 - Google Patents

基于径向基神经网络预测的直流微电网均流方法 Download PDF

Info

Publication number
CN110601246A
CN110601246A CN201910747866.1A CN201910747866A CN110601246A CN 110601246 A CN110601246 A CN 110601246A CN 201910747866 A CN201910747866 A CN 201910747866A CN 110601246 A CN110601246 A CN 110601246A
Authority
CN
China
Prior art keywords
current
output
grid
voltage
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910747866.1A
Other languages
English (en)
Other versions
CN110601246B (zh
Inventor
赵晋斌
高明明
蒋伟明
屈克庆
毛玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN201910747866.1A priority Critical patent/CN110601246B/zh
Publication of CN110601246A publication Critical patent/CN110601246A/zh
Application granted granted Critical
Publication of CN110601246B publication Critical patent/CN110601246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种基于径向基神经网络预测的直流微电网均流方法,结合直流微电网传统下垂控制与RBF神经预测网络。首先,通过传统的下垂控制实现初始近似功率分配,然后通过母线侧的电压传感器采集母线电压。各单元变换器采集本地电压和电流信息,使用神经网络模型预测其它单元的输出电流,本地控制器计算预测值和本地测量值以获得本单元的平均电流。电压偏差和电流偏差分别通过相应的电压调节器和电流调节器得到电压补偿量和电流补偿量,各单元输出电流与平均电流趋于一致,提高了均流效果。只需利用本地控制器和电压、电流传感器,控制简单,经济性高;可以实现系统功率的自动分配,改善电能质量;各单元间通过预测网络实现了虚拟互联。

Description

基于径向基神经网络预测的直流微电网均流方法
技术领域
本发明涉及一种微电网控制方法,特别涉及一种基于径向基神经网络预测的直流微电网均流方法。
背景技术
微电网作为一种新型的发电系统,可以充分利用风、光等新能源生产电能,在一定程度上缓解了传统能源短缺和环境污染的压力。在多种微电网结构中,直流微电网能够更高效的接纳风、光、储及直流负荷。直流微电网有分布式电源、直流母线、储能系统和负荷组成。其运行模式可分为并网运行和孤岛运行两种。并网模式下,直流微电网通过DC/AC并网逆变器与大电网互联,由大电网维持直流母线电压的平稳。孤岛模式下,直流微电网独立为一个小的发电系统,并在系统内实现“自给自足”,由分布式电源向负载供电。系统中各个单元都分别由电力电子变换器与直流母线相连。其中,光伏和风力发电单元作为单纯的发电源,通过单向变换器连接到直流母线上;储能系统即可作为吸收功率的负荷,又可作为发出功率的发电源,因此通过可实现功率双向流动的DC/DC变换器与直流母线连接,参与功率分配和母线电压的调节,起到消峰填谷的作用;负荷通过单向功率变换器与母线相连,分为紧急负荷和非紧急负荷,在系统能量供不应求的情况下可优先切除非紧急负荷以保证电能质量和系统的稳定性。当微电网内单元众多时,一般通过加设通讯线交换各单元间的信息提高系统的稳定性,但随着单元数的增加,通讯压力也会随之增大,一旦某单元发生故障极易影响到全局的控制效果。而不依靠通讯完全实现自治的控制方式,抗干扰能力不足,特别是微电网容量较大时,稳定性会变得脆弱,只适合于小型的微电网。在采用下垂控制直流微电网中,线路阻抗的存在会影响到分率分配精度和电能质量。
发明内容
本发明是针对线路阻抗的存在会影响到分率分配精度和电能质量的问题,提出了一种基于径向基神经网络预测的直流微电网均流方法,通过径向基(RBF)神经网络对直流变换器进行动态建模,只需要本地单元的信息便可预测其它单元的输出,在所提出的控制策略里,各个单元之间无需通信,便可实现虚拟互联,获取全局信息,自动实现均流,可以减少通讯线和传感器的使用。
本发明的技术方案为:一种基于径向基神经网络预测的直流微电网均流方法,有n个发电单元并联组成直流微电网,通过各自变换器并入交流电网,实时采集本地单个发电单元的输出并网电流i01,发电单元输出并网电压u01和发电单元输出线路上电感电流iL1数据送入训练后RBF神经网络预测模型,预测得到直流微电网中其余n-1个并联单元的输出平均电流值由i01计算出本地单个发电单元应该输出并网电流的平均值 与本地实时输出电流值差值输入到电流调节器进行电流调节,输出均流控制的控制变量δio1进入本地下垂控制进行电流补偿;直流微电网中每个发电单元均用前述预测方式进行本地调控,克服线路阻抗导致的电流波动,达到均流控制。
所述RBF神经网络预测模型分输入层、隐含层和输出层:
X=[i01 u01 iL1]T (2)
其中X、Y分别为网络输入和输出;j=1,2,3,…,m,m为隐含层的个数;hj为隐含层第j个单元的训练得到的高斯基函数;cj为基函数中心;bj为基函数的宽度;yi为第i组训练数据输入对应的神经元输出值;ωij表示第i组训练数据输出神经元与隐含层第j个单元之间的连接权值。
所述输出均流控制的控制变量δio1进入本地下垂控制进行电流补偿的关系式如下:
Uo1=Uref-Rd1io1-δio1+δu (6)
δu=Gpiv(Ubus-Uref) (7)
式中:Uo1为本地发电单元变换器输出端口电压;Uref为直流母线基准电压;Rd1为本地发电单元变换器本地控制下垂系数;k1为本地发电单元变换器的功率分配比例;δu为电压控制的控制变量;Ubus为直流母线电压;Gpiv为电压调节器的传递环数;Gpic为电流调节器的传递函数。
本发明的有益效果在于:本发明基于径向基神经网络预测的直流微电网均流方法,只需利用本地控制器和电压、电流传感器,控制简单,经济性高;控制过程中无需通信,可以减少通信线的使用,提高系统的稳定性;可以有效实现电流均分的目标,可以实现系统功率的自动分配,改善电能质量;各单元间通过预测网络实现了虚拟互联。
附图说明
图1为直流微电网结构等效模型图;
图2为RBF预测模型结构示意图;
图3为本发明RBF神经网络预测模型与下垂控制相结合示意图;
图4为本发明基于径向基神经网络预测的直流微电网均流方法流程图;
图5为本发明RBF预测结果对比
图6为本发明在线路阻抗变化时所提方法控制下变换器输出电流图;
图7为本发明在线路阻抗变化时所提方法控制下母线电压图;
图8为本发明模拟了公共负荷跳变所提方法控制下变换器输出电流图;
图9为本发明模拟了公共负荷跳变所提方法控制下母线电压图。
具体实施方式
本发明提出的方法,结合直流微电网传统下垂控制与RBF神经预测网络。首先,通过传统的下垂控制实现初始近似功率分配,然后通过母线侧的电压传感器采集母线电压。各单元变换器采集本地电压和电流信息,使用神经网络模型预测其它单元的输出电流,本地控制器计算预测值和本地测量值以获得本单元的平均电流。电压偏差和电流偏差分别通过相应的电压调节器和电流调节器得到电压补偿量和电流补偿量,用以调整电压基准值。经过PI控制器的调节,能够减小母线电压与设定值之间的偏差,同时各单元输出电流与平均电流趋于一致,提高了均流效果。
在孤立直流微电网内部,各节点的输出电压、电流不仅仅与本单元的功率和线路阻抗有关,同时由其相邻并联单元的输出共同决定。如图1所示,Dgi表示n个发电单元中的任意选择的第i个发电单元,Dg1到Dgn表示与Dgi并联的n-1个发电单元。为了简化分析和计算,可以将Dg1到Dgn的n-1个发电单元并联等效为一个发电单元DG2,称为第二发电单元,将Dgi单元设为DG1,称为第一发电单元,那DG2上的电流为:
其中kj表示并联等效的第j个发电单元的电流分配比例,ij表示并联等效的第j个发电单元的电流值。这样,将直流微电网等效为两个发电单元DG1、DG2与公共负载并联的结构对系统进行建模。
如图2所示RBF预测模型结构示意图,模型分输入层、隐含层和输出层,RBF预测模型的建立首先要确定其网络结构,经过多次重复试验,最后选定DG1发电单元输出并网电流i01,发电单元输出并网电压u01和发电单元输出线路上电感电流iL1三个较能表征系统特性的量作为RBF预测模型输入,输入节点取3。依据下垂控制策略的实际需求,选定其余并联单元的输出平均电流值作为预测输出,输出节点取1。
X=[i01 u01 iL1]T (2)
其中X、Y分别为网络输入和输出;j=1,2,3,…,m,m为隐含层的个数;hj为隐含层第j个单元的训练得到的高斯基函数;cj为基函数中心;bj为基函数的宽度;yi为第i组训练数据输入对应的神经元输出值;ωij表示第i组训练数据输出神经元与隐含层第j个单元之间的连接权值。
本发明将RBF神经网络预测模型与下垂控制相结合,将本地的Dgi发电单元设为DG1,将实时采集的数据送入训练后RBF神经网络预测模型,预测得到其余并联单元的输出平均电流值计算DG1应该输出并网电流的平均值 与实时输出电流值差值输入电流调节器进行电流调节,输出均流控制的控制变量δio1进入本地下垂控制进行电流调节,每个发电单元均用预测方式进行本地调控,可实时克服线路阻抗导致的电流波动,达到均流控制目的。也就是用RBF神经网络预测模型取代单元间的通信,具体如图3所示RBF神经网络预测模型与下垂控制相结合示意图(图3中两组发电单元的RBF神经网络预测模型与下垂控制相结合示意图)。
Uo1=Uref-Rd1io1-δio1+δu (6)
δu=Gpiv(Ubus-Uref) (7)
式中:Uo1为DG1变换器输出端口电压;Uref为直流母线基准电压;Rd1为DG1变换器本地控制下垂系数;io1是DG1经过变换器输出到并网PCC点的实时电流;为本地控制器计算的DG1变换器应该输出的电流平均值;k1为DG1变换器的功率分配比例,本文取ki=1;δio1为均流控制的控制变量;δu为电压控制的控制变量;Ubus为直流母线电压;Gpiv为电压调节器的传递环数;Gpic为电流调节器的传递函数;io2 *为RBF神经网络预测的其余并联单元输出平均电流值。
本发明中提出的神经网络因其自身特点,不易受到其控制目标内部结构的复杂的影响,各单元间虽不需要通信,但依然实现了虚拟互联并非相互独立。更适合于结构复杂、单元数目众多的中大型的微电网。
为了验证网络模型的有效性,依据图1搭建仿真模型,并将训练好的神经网络模型接入到仿真中,比较RBF网络模型预测结果和实际输出如图5所示。
仿真1:测试在线路阻抗变化时所提方法控制下变换器的性能。如图6、7所示变换器输出电流图和母线电压图,母线电压额定400V,公共负载RL=50Ω,在负荷不变的情况下模拟了线路电阻的变化。初始线路电阻r1=r2=2Ω,在2s时r2突变为1Ω。在4s时,r1突变为0.4Ω。
仿真2:系统的额定功率为3000W,母线电压额定400V。仿真2模拟了公共负荷跳变的情况下,所提方法控制下如图8、9所示变换器输出电流图和母线电压图。初始的公共负荷为2000W;在1s时,公共负荷突增为4000W;2s时,公共负荷恢复到2650W。

Claims (3)

1.一种基于径向基神经网络预测的直流微电网均流方法,有n个发电单元并联组成直流微电网,通过各自变换器并入交流电网,其特征在于,实时采集本地单个发电单元的输出并网电流i01,发电单元输出并网电压u01和发电单元输出线路上电感电流iL1数据送入训练后RBF神经网络预测模型,预测得到直流微电网中其余n-1个并联单元的输出平均电流值由i01计算出本地单个发电单元应该输出并网电流的平均值 与本地实时输出电流值差值输入到电流调节器进行电流调节,输出均流控制的控制变量δio1进入本地下垂控制进行电流补偿;直流微电网中每个发电单元均用前述预测方式进行本地调控,克服线路阻抗导致的电流波动,达到均流控制。
2.根据权利要求1所述基于径向基神经网络预测的直流微电网均流方法,其特征在于,所述RBF神经网络预测模型分输入层、隐含层和输出层:
X=[i01 u01 iL1]T(2)
其中X、Y分别为网络输入和输出;j=1,2,3,…,m,m为隐含层的个数;hj为隐含层第j个单元的训练得到的高斯基函数;cj为基函数中心;bj为基函数的宽度;yi为第i组训练数据输入对应的神经元输出值;ωij表示第i组训练数据输出神经元与隐含层第j个单元之间的连接权值。
3.根据权利要求1或2所述基于径向基神经网络预测的直流微电网均流方法,其特征在于,所述输出均流控制的控制变量δio1进入本地下垂控制进行电流补偿的关系式如下:
Uo1=Uref-Rd1io1-δio1+δu (6)
δu=Gpiv(Ubus-Uref) (7)
式中:Uo1为本地发电单元变换器输出端口电压;Uref为直流母线基准电压;Rd1为本地发电单元变换器本地控制下垂系数;k1为本地发电单元变换器的功率分配比例;δu为电压控制的控制变量;Ubus为直流母线电压;Gpiv为电压调节器的传递环数;Gpic为电流调节器的传递函数。
CN201910747866.1A 2019-08-14 2019-08-14 基于径向基神经网络预测的直流微电网均流方法 Active CN110601246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910747866.1A CN110601246B (zh) 2019-08-14 2019-08-14 基于径向基神经网络预测的直流微电网均流方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910747866.1A CN110601246B (zh) 2019-08-14 2019-08-14 基于径向基神经网络预测的直流微电网均流方法

Publications (2)

Publication Number Publication Date
CN110601246A true CN110601246A (zh) 2019-12-20
CN110601246B CN110601246B (zh) 2022-12-06

Family

ID=68854059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910747866.1A Active CN110601246B (zh) 2019-08-14 2019-08-14 基于径向基神经网络预测的直流微电网均流方法

Country Status (1)

Country Link
CN (1) CN110601246B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751400A (zh) * 2020-12-28 2021-05-04 漳州科华技术有限责任公司 电源并机系统均流控制方法及终端设备
CN114244117A (zh) * 2021-12-23 2022-03-25 河北科技大学 低纹波开关电源的控制方法及控制装置
CN114629102A (zh) * 2022-03-07 2022-06-14 西北工业大学 一种基于bp神经网络的多电飞机直流供电系统功率分配控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135760A (zh) * 2010-12-16 2011-07-27 天津工业大学 微网用神经网络能量协调控制器
US8642349B1 (en) * 2006-08-11 2014-02-04 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial neural network proteomic tumor classification
CN104184166A (zh) * 2014-08-29 2014-12-03 东南大学 一种运行、控制和保护性能提高的微电网系统
CN104600968A (zh) * 2015-02-09 2015-05-06 广西师范大学 数字化的高频谐振软开关电路电流跟踪同步方法及装置
CN107294118A (zh) * 2017-07-10 2017-10-24 重庆大学 燃料电池‑超级电容混合供电系统的分散式功率分配法
CN107596560A (zh) * 2017-10-18 2018-01-19 福州大学 一种基于角速度信号的足下垂助行仪的控制方法
CN107749633A (zh) * 2017-11-30 2018-03-02 重庆大学 一种含储能的分布式发电系统的分散式能量管理策略
CN109343351A (zh) * 2018-12-07 2019-02-15 桂林电子科技大学 一种改进pid控制的开关磁阻电机转矩控制系统
CN109932907A (zh) * 2019-03-14 2019-06-25 江苏大学 一种基于rbf滑模变结构控制的车辆isd悬架主动控制方法
US20190296643A1 (en) * 2018-03-26 2019-09-26 The Board Of Trustees Of The University Of Alabama Systems, methods and devices for control of dc/dc converters and a standalone dc microgrid using artificial neural networks

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642349B1 (en) * 2006-08-11 2014-02-04 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial neural network proteomic tumor classification
CN102135760A (zh) * 2010-12-16 2011-07-27 天津工业大学 微网用神经网络能量协调控制器
CN104184166A (zh) * 2014-08-29 2014-12-03 东南大学 一种运行、控制和保护性能提高的微电网系统
CN104600968A (zh) * 2015-02-09 2015-05-06 广西师范大学 数字化的高频谐振软开关电路电流跟踪同步方法及装置
CN107294118A (zh) * 2017-07-10 2017-10-24 重庆大学 燃料电池‑超级电容混合供电系统的分散式功率分配法
CN107596560A (zh) * 2017-10-18 2018-01-19 福州大学 一种基于角速度信号的足下垂助行仪的控制方法
CN107749633A (zh) * 2017-11-30 2018-03-02 重庆大学 一种含储能的分布式发电系统的分散式能量管理策略
US20190296643A1 (en) * 2018-03-26 2019-09-26 The Board Of Trustees Of The University Of Alabama Systems, methods and devices for control of dc/dc converters and a standalone dc microgrid using artificial neural networks
CN109343351A (zh) * 2018-12-07 2019-02-15 桂林电子科技大学 一种改进pid控制的开关磁阻电机转矩控制系统
CN109932907A (zh) * 2019-03-14 2019-06-25 江苏大学 一种基于rbf滑模变结构控制的车辆isd悬架主动控制方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HASSAN BEVRANI: "An Intelligent Droop Control for Simultaneous", 《IEEE TRANSACTIONS ON SMART GRID 》 *
杨世琨: "交错并联Boost变换器的智能控制方法研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
杨硕: "风光互补发电单相逆变器并联控制的研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
陈实: "一种新型UPS无互联线并联下垂特性控制", 《通信电源技术》 *
高明明: "基于RBF神经网络的直流微电网均流控制策略", 《可再生能源》 *
黄见会: "直流微电网的运行控制及建模研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751400A (zh) * 2020-12-28 2021-05-04 漳州科华技术有限责任公司 电源并机系统均流控制方法及终端设备
CN114244117A (zh) * 2021-12-23 2022-03-25 河北科技大学 低纹波开关电源的控制方法及控制装置
CN114629102A (zh) * 2022-03-07 2022-06-14 西北工业大学 一种基于bp神经网络的多电飞机直流供电系统功率分配控制方法
CN114629102B (zh) * 2022-03-07 2024-03-29 西北工业大学 一种基于bp神经网络的多电飞机直流供电系统功率分配控制方法

Also Published As

Publication number Publication date
CN110601246B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN110601246B (zh) 基于径向基神经网络预测的直流微电网均流方法
CN109713732B (zh) 一种多微电网和配电网协调优化调度的方法
CN104362648B (zh) 一种光伏电站无功调相方法
CN109861202B (zh) 一种柔性互联配电网动态优化调度方法及系统
Tang et al. Configuration of marine photovoltaic system and its MPPT using model predictive control
CN110867848B (zh) 一种用于直流微电网群落的能量管理预测控制方法
CN109103912A (zh) 考虑电网调峰需求的工业园区主动配电系统调度优化方法
CN110707680B (zh) 直流微电网功率精确分配和母线电压偏差优化控制方法
CN109802381A (zh) 一种基于模糊控制的直流微电网多源动态协调控制方法
CN110190599A (zh) 一种基于有限时间一致性理论的孤岛微电网控制策略
CN112952862B (zh) 平抑风电功率波动的混合储能分频协调控制器及实现方法
Akpolat et al. Dynamic stabilization of dc microgrids using ann-based model predictive control
CN114362267B (zh) 考虑多目标优化的交直流混合配电网分散式协调优化方法
CN108539797A (zh) 一种考虑经济性的孤岛微电网二次频率和电压控制方法
CN107508275A (zh) 一种基于自适应动态规划的直流微电网控制方法及系统
Amirtharaj et al. Optimal utilization of renewable energy sources in MG connected system with integrated converters: an AGONN approach
CN113078645A (zh) 一种考虑延时与拓扑切换的微电网参数自适应控制方法
CN114430165A (zh) 基于深度模型预测的微网群智能协调控制方法和装置
CN112671034A (zh) 一种基于分布式二层控制的孤岛式交流微电网频率恢复及功率最优分配方法
CN115545290A (zh) 一种含光伏发电配电网中的分布式储能经济优化配置方法
Bharath et al. Predictive control of energy management system for fuel cell assisted photo voltaic hybrid power system
Li et al. Adaptive droop control of a multibus DC microgrid based on consensus algorithm
CN114039346A (zh) 一种基于神经网络的电压调节和电流均流方法
CN111934307A (zh) 一种用于直流配电网的扁平化运行控制方法及系统
Sreekumar et al. ANN Based Power Management Strategy For Standalone Microgrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant