CN110597023B - 一种基于多目标优化的光刻工艺分辨率增强方法及装置 - Google Patents

一种基于多目标优化的光刻工艺分辨率增强方法及装置 Download PDF

Info

Publication number
CN110597023B
CN110597023B CN201911123888.7A CN201911123888A CN110597023B CN 110597023 B CN110597023 B CN 110597023B CN 201911123888 A CN201911123888 A CN 201911123888A CN 110597023 B CN110597023 B CN 110597023B
Authority
CN
China
Prior art keywords
population
function
light source
optimized
objective optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911123888.7A
Other languages
English (en)
Other versions
CN110597023A (zh
Inventor
周洁云
崔绍春
陈雪莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moyan Computing Science (nanjing) Co Ltd
Original Assignee
Moyan Computing Science (nanjing) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moyan Computing Science (nanjing) Co Ltd filed Critical Moyan Computing Science (nanjing) Co Ltd
Priority to CN201911123888.7A priority Critical patent/CN110597023B/zh
Publication of CN110597023A publication Critical patent/CN110597023A/zh
Application granted granted Critical
Publication of CN110597023B publication Critical patent/CN110597023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本申请涉及半导体生产的光刻工艺技术领域,具体而言,涉及一种基于多目标优化的光刻工艺分辨率增强方法及装置。本申请提供一种基于多目标优化的光刻工艺分辨率增强方法,包括以下步骤:通过划分多个圆重叠的方法得到照明光源的区域划分用于优化光源;确定亚分辨率辅助图形SRAF位置变量的初始位置用于优化掩膜;使用实数编码的方法建立优化变量的种群;对种群中单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数;使用遗传进化算法对当前种群重复进行“评价‑选择‑交叉‑变异”计算,获得评价标准函数的迭代更新;通过解码最终种群得到多目标优化策略的解集帕累托支撑解。

Description

一种基于多目标优化的光刻工艺分辨率增强方法及装置
技术领域
本申请涉及半导体生产的光刻工艺技术领域,具体而言,涉及一种基于多目标优化的光刻工艺分辨率增强方法及装置。
背景技术
光刻技术经历了i-line、g-line,248nmKrf及193nmArf的光刻光源设备,目前最先进的光刻为EUV光刻技术,受限于光刻机研发成本及时间的限制,目前主流的集成电路代工厂沿用193nm光刻技术用于目前先进工艺节点生产。同时开发了多种光刻分辨率增强技术:光学邻近效应修正技术(OPC)、移项掩模技术(PSM)、光源-掩模协同优化(SMO)等。分辨率增强技术用于在先进工艺节点的图像保真研究,以提高芯片设计在实际生产的良率提升。SMO技术同时优化光源的照明模式及掩模图形,具有更高的优化自由度。结合已有光学邻近效应修正技术,进一步提升光刻工艺的工艺窗口。在已有光源掩模协同优化技术的研究中,像素化及参数化描述光源及掩模函数,通过选择优化算法实现工艺窗口的提升。
在一些传统技术方案例如SMO实现中采用Abbe计算光刻模型描述点光源对掩模图形转移的影响。光源掩模协同优化的分辨率增强技术方案所采用的的评价通过调整权重因子包括:关键尺寸误差EPE、图形偏移量PE、光刻胶成像的侧壁角、成像的对比度contrast、归一化对数斜率NILS、曝光宽容度EL、工艺窗口PW等。综合函数包括各项优化评价标准的惩罚因子,优化光源,优化掩模函数等,通过调整权重因子,建立综合评价函数,将多目标问题转换为单目标优化问题。
但是,通过这种建立综合评价函数,分辨率增强技术的实现从多目标优化问题转 换为加权的单目标优化方法,且权重系数
Figure 533202DEST_PATH_IMAGE001
及各项优化评价标准的惩罚因子需要工程师根 据经验或者数值仿真实验优化获得,增加技术方案的优化难度和优化时间,导致光刻工艺 的窗口难以提升。
发明内容
本申请的目的在于提供一种基于多目标优化的光刻工艺分辨率增强方法及装置,针对不同的光刻工艺要求,在实际半导体器件生产中采取适当的选择,以期提高特定图形的保真,一定程度上提升光刻的分辨率。
本申请的实施例是这样实现的:
本申请实施例的第一方面提供基于多目标优化的光刻工艺分辨率增强方法,包括以下步骤:
根据优化掩模图形的周期,通过划分多个圆重叠的方法得到照明光源的区域划分用于优化光源,所述圆的圆心对应掩模函数的采样频率;
在Hopkins计算光刻模型中通过离散方式计算光强分布得到非对应掩模图形的光强波峰位置,从而确定亚分辨率辅助图形SRAF位置变量的初始位置用于优化掩膜;
基于所述亚分辨率辅助图形SRAF位置变量的初始位置和所述照明光源的区域划分,使用实数编码的方法建立优化变量的种群;
针对所述种群中单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数;
使用遗传进化算法对当前所述种群重复进行“评价-选择-交叉-变异”计算,获得所述评价标准函数的迭代更新;
当所述种群内染色体的数量及染色体不再变化时得到最终种群,通过解码所述最终种群得到多目标优化策略的解集帕累托支撑解。
可选地,所述照明光源的区域中每个单独区域的光照强度
Figure 420256DEST_PATH_IMAGE002
相同。
可选地,确定亚分辨率辅助图形SRAF位置变量的初始位置包括以下步骤:
S1、在Hopkins计算光刻模型中,通过离散方式计算的到光阻层上位置
Figure 601839DEST_PATH_IMAGE003
光强 分布,其表示为:
Figure 152031DEST_PATH_IMAGE004
其中,
Figure 51854DEST_PATH_IMAGE005
为降维的交叉传递函数,
Figure 742598DEST_PATH_IMAGE006
为傅里叶逆变换;
S2、基于所述位置
Figure 44266DEST_PATH_IMAGE003
光强分布,得到
Figure 404841DEST_PATH_IMAGE007
时降维交叉传递函数的函数的 傅里叶变换,表示为:
Figure 149549DEST_PATH_IMAGE008
其中,
Figure 519351DEST_PATH_IMAGE009
为空间上的光源响应函数,
Figure 144367DEST_PATH_IMAGE010
为空间上的光瞳响应函数,*表示 函数共轭,
Figure 941422DEST_PATH_IMAGE011
为光线在光瞳透镜上的入瞳位置;
S3、基于上述降维交叉传递函数的函数的傅里叶变换,通过卷积核方法计算卷积 得到得到得到
Figure 674892DEST_PATH_IMAGE007
时的光强分布,表示如下:
Figure 848384DEST_PATH_IMAGE012
S4、根据上述光强分布
Figure 859065DEST_PATH_IMAGE013
,确定在光阻层内非对应掩模图形的光强波峰位置 既为初始亚分辨率辅助图形SRAF的放置位置。
可选地,所述亚分辨率辅助图形SRAF可以为简单的矩形,矩形的长
Figure 187541DEST_PATH_IMAGE014
、宽
Figure 283673DEST_PATH_IMAGE015
均为优 化变量。
可选地,所述优化变量的种群包括:
对优化变量
Figure 854331DEST_PATH_IMAGE016
Figure 719519DEST_PATH_IMAGE017
实数编码,建立遗传算法需要的种群数量,
Figure 858376DEST_PATH_IMAGE018
Figure 70833DEST_PATH_IMAGE019
为满足解集的随机变量;
对优化光源实数编码,建立遗传算法需要的优化变量的种群,其表示如下:
Figure 320549DEST_PATH_IMAGE020
其中,
Figure 164877DEST_PATH_IMAGE021
为根据相干因子获得光源区域划分,
Figure 474635DEST_PATH_IMAGE018
为光源对应区域的光照强度,
Figure 30513DEST_PATH_IMAGE022
为 优化变量,即单个区域内光源强度相同;
对掩模优化实数编码,建立遗传算法需要的优化变量的种群,其表示如下:
Figure 83919DEST_PATH_IMAGE023
其中,
Figure 923699DEST_PATH_IMAGE024
表示亚分辨率辅助图形SRAF的添加位置,
Figure 528993DEST_PATH_IMAGE025
为优化变量长,
Figure 821434DEST_PATH_IMAGE026
为优化 变量宽。
可选地,所述多目标优化策略的评价标准函数包括至少包括关键尺寸误差,图形误差,成像对比度和归一化对数斜率。
关键尺寸误差,其表示为:
Figure 36121DEST_PATH_IMAGE027
图形误差,其表示为:
Figure 730408DEST_PATH_IMAGE028
成像对比度,其表示为:
Figure 241024DEST_PATH_IMAGE029
归一化对数斜率,其表示为:
Figure 286340DEST_PATH_IMAGE030
其中,
Figure 681549DEST_PATH_IMAGE031
为掩模设计的关键尺寸,
Figure 856441DEST_PATH_IMAGE032
为通过计算光刻模型关键尺寸 位置仿真数值,
Figure 944483DEST_PATH_IMAGE033
为光刻胶上呈现图形质量,
Figure 70571DEST_PATH_IMAGE034
为光强分布最大值,
Figure 269471DEST_PATH_IMAGE035
为光强分 布最小值。
可选地,使用遗传进化算法对所述当前种群重复进行“评价-选择-交叉-变异”计算,包括获得新的个体,维护当前种群数量,并将不满足支配关系的个体加入外部种群。
可选地,所述遗传进化算法核心步骤如下:
选择当前种群的染色体,对当前种群的染色体个体采取选择,交叉,变异的遗传进化策略,扩大种群的染色体数量,并对新产生的的染色体个体解码对应编码的光源及掩模图形计算得到对应评价标准的函数值;
判断种群内染色体个体是否满足支配关系;
对于当前种群中染色体A及染色体B满足下述条件:
染色体A支配染色体B,即A的评价标准全面优于B,计算A对应的超体积;
种群中保留A,将B加入外部种群;
染色体A不能支配染色体B,即A的评价标准不能够全面优于B;
进一步判断染色体A与其它染色体的支配关系。
可选地,所述得到多目标优化策略的解集帕累托支撑解时,其对应的超体积最大化。
本申请实施例的第二方面提供一种基于多目标优化的光刻工艺分辨率增强装置,包括:
优化光源的区域划分模块,用于根据优化掩模图形的周期,通过划分多个圆重叠的方法得到照明光源的区域划分;
辅助图形位置确定模块,用于在Hopkins计算光刻模型中通过离散方式计算光强分布得到非对应掩模图形的光强波峰位置,从而确定亚分辨率辅助图形SRAF位置变量的初始位置;
多目标问题建立模块,设计多目标评价策略函数,对优化光源和掩膜进行实数编码建立优化变量的种群;
多目标问题求解模块,所述模块采用遗传进化算法,用于实现对所述种群中单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数;使用遗传进化算法对当前所述种群重复进行“评价-选择-交叉-变异”计算,获得所述评价标准函数的迭代更新;当所述种群内染色体的数量及染色体不再变化时得到最终种群,通过解码所述最终种群得到多目标优化策略的解集帕累托支撑解。
本申请实施例的有益效果包括:通过实现光源的区域优化,计算亚分辨率辅助图形的放置位置,实现了光源掩膜的像素化及参数化描述;通过遗传进化算法,实现多目标求解,最终得到多目标优化策略的解集帕累托支撑解,计算过程其系数不依赖工程师的经验或者数值仿真实验优化,可以一定程度提升光刻工艺的分辨率、工艺窗口,相对于单目标的优化策略本申请可以提高工程师的工作效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了根据本申请的一个实施例基于多目标优化的光刻工艺分辨率增强方法流程图;
图2示出了根据本申请的一个实施例照明光源的区域划分示意图;
图3示出了根据本申请的一个实施例掩模函数在特殊情况光强分布在光阻层内对应掩模透光示意图;
图4示出了根据本申请的一个实施例掩模函数在特殊情况光强分布在光阻层内对应掩模透光的对应光强分布曲线;
图5示出了根据本申请的一个实施例支撑解集合示意图;
图6示出了根据本申请的一个实施例支撑解对应的优化变量对应的光源强度示意图;
图7示出了根据本申请的一个实施例支撑解对应的优化变量对应辅助图形尺寸示意图。
具体实施方式
现在将描述某些示例性实施方案,以从整体上理解本文所公开的装置和方法的结构、功能、制造和用途的原理。这些实施方案的一个或多个示例已在附图中示出。本领域的普通技术人员将会理解,在本文中具体描述并示出于附图中的装置和方法为非限制性的示例性实施方案,并且本申请的多个实施方案的范围仅由权利要求书限定。结合一个示例性实施方案示出或描述的特征可与其他实施方案的特征进行组合。这种修改和变型旨在包括在本申请的范围之内。
本说明书通篇提及的“多个实施例”、“一些实施例”、“一个实施例”或“实施例”等,意味着结合该实施例描述的具体特征、结构或特性包括在至少一个实施例中。因此,本说明书通篇出现的短语“在多个实施例中”、“在一些实施例中”、“在至少另一个实施例中”或“在实施例中”等并不一定都指相同的实施例。此外,在一个或多个实施例中,具体特征、结构或特性可以任何合适的方式进行组合。因此,在无限制的情形下,结合一个实施例示出或描述的具体特征、结构或特性可全部或部分地与一个或多个其他实施例的特征、结构或特性进行组合。这种修改和变型旨在包括在本申请的范围之内。
本申请提供的一种基于多目标优化的光刻工艺分辨率增强方法及装置,主要是对光源掩模协同优化技术的改进,基于多目标优化策略通过遗传进化算法获得一组非劣解即帕累托(Pareto)最优解集,从而提高光刻工艺分辨率。
传统技术方案,通过调整权重因子,建立综合评价函数,该问题为单目标优化问 题。分辨率增强技术的实现为加权的单目标优化方法及装置,权重系数
Figure 325236DEST_PATH_IMAGE001
需要工程师根据 经验或者数值仿真实验优化获得。多目标优化问题并不存在一个最优解,所有可能的解都 称为非劣解,也称为Pareto解。它是由那些任一个目标函数值的提高都必须以牺牲其他目 标函数值为代价的解组成的集合,称为Pareto最优域,简称Pareto集。Pareto最优解、非劣 解集是指由这样一些解组成的集合:与集合之外的任何解相比它们至少有一个目标函数比 集合之外的解好。
多目标优化过程中,评价标准中一个标准性能的提高都将牺牲其他标准性能。
在步骤S1中,根据优化掩模图形的周期,通过划分多个圆重叠的方法得到照明光源的区域划分,所述圆的圆心对应掩模函数的采样频率。
光源掩膜协同优化的评价标准需要建立计算光刻模型,用于获取掩模版图案在一定光照条件下,经过光化学作用在光刻胶上呈现图案。
如图2所示,每个圆的圆心的位置为掩模规则图形的周期对应的采样频率。该光源 区域划分策略将优化光源划分为单独的数十个区域,每个单独区域的光照强度
Figure 584179DEST_PATH_IMAGE002
相同,为该 基于多目标优化的光刻工艺分辨率增强方法及装置的优化变量。对于归一化频率的单位圆 对应的光源为阴影区域,
Figure 338508DEST_PATH_IMAGE021
为多个不同圆相交重叠区域,图2所示的数字为划分区域的编 码,如图2中10、11、12、13、14所示。-其中坐标轴表示光源的采样频率。
相对于像素化的光源优化策略,在本实施例中,通过优化光源的区域划分模块对优化光源的区域划分,可以有限减少光源的优化变量。
在步骤S2中,基于Hopkins计算光刻模型中离散方式计算光强分布得到非对应掩模图形的光强波峰位置,确定亚分辨率辅助图形SRAF位置变量的初始位置。
Hopkins计算光刻模型中,光阻层上位置
Figure 809941DEST_PATH_IMAGE003
的光强分布可描述为:
Figure 333326DEST_PATH_IMAGE036
其中,
Figure 622225DEST_PATH_IMAGE037
为频域上坐标点,M为掩模函数的频域响应。TCC为交叉传递函数,描述 光学性质,其定义为:
Figure 598271DEST_PATH_IMAGE038
其中,
Figure 765073DEST_PATH_IMAGE039
是光源互光强函数,
Figure 408544DEST_PATH_IMAGE040
是成像系统的光瞳函数。
本申请提供了一种放置位置的建议策略,用于加速优化过程。
所述Hopkins计算光刻模型,通过离散方式计算光强分布表示为:
Figure 743710DEST_PATH_IMAGE004
其中,
Figure 331686DEST_PATH_IMAGE041
为降维的交叉传递函数,
Figure 410501DEST_PATH_IMAGE006
为傅里叶逆变换。
对于特殊情况
Figure 266068DEST_PATH_IMAGE007
,该降维函数可利用傅里叶变换实现:
Figure 772136DEST_PATH_IMAGE008
其中,
Figure 112987DEST_PATH_IMAGE009
为空间上的光源响应函数,
Figure 995492DEST_PATH_IMAGE010
为空间上的光瞳响应函数,*表示 函数共轭,
Figure 347976DEST_PATH_IMAGE011
为光线在光瞳透镜上的入瞳位置,
得到:
Figure 775678DEST_PATH_IMAGE012
依据上式,该光强分布的获得通过如下步骤实现:
计算光源函数对应的傅里叶变换
Figure 213612DEST_PATH_IMAGE042
,计算光瞳函数对应的傅 里叶变换
Figure 493284DEST_PATH_IMAGE043
,计算掩模图形对应的面积,即
Figure 965854DEST_PATH_IMAGE044
,采用卷积核方法计 算卷积。
针对掩模函数在特殊情况
Figure 442752DEST_PATH_IMAGE007
下获得的光强分布
Figure 367983DEST_PATH_IMAGE013
,在光阻层内对 应掩模透光部分为其光强分布的峰值,并确定非对应掩模图形的光强波峰位置,该位置为 辅助图形的位置(
Figure 592291DEST_PATH_IMAGE045
,如图3所示掩模透光部分示意图。在其他位置存在较小的峰值,该 峰值对应位置为初始亚分辨率辅助图形SRAF的放置位置,如图4所示。
本申请实施例同时优化光源的照明模式及掩模图形,具有较高的优化自由度。,光源满足一定的光照强度约束条件,掩模函数的像素化分布满足其实际的集成电路设计制造规则。
在一些实施例中,所述亚分辨率辅助图形SRAF为简单的矩形,矩形的长
Figure 778422DEST_PATH_IMAGE014
、宽为优 化变量。
在步骤S3中,基于所述亚分辨率辅助图形SRAF的初始位置和所述照明光源的区域划分,使用实数编码的方法建立优化变量的种群。
对优化变量
Figure 62772DEST_PATH_IMAGE016
Figure 101398DEST_PATH_IMAGE017
实数编码。建立遗传算法需要的种群数量,
Figure 863817DEST_PATH_IMAGE018
Figure 45400DEST_PATH_IMAGE019
为满足解集的随机变量。
对优化光源实现实数编码,建立遗传算法需要的优化变量的种群,其表示如下:
Figure 359707DEST_PATH_IMAGE046
其中,
Figure 259530DEST_PATH_IMAGE021
为根据相干因子获得光源区域划分,
Figure 560061DEST_PATH_IMAGE018
为光源对应区域的光照强度,
Figure 596150DEST_PATH_IMAGE018
为 优化变量,即单个区域内光源强度相同。
如图2所示,对于归一化频率的单位圆对应的光源为阴影区域,
Figure 845472DEST_PATH_IMAGE021
为多个不同圆相 交重叠区域,图2所示的数字为划分区域的编码。
本申请提供的一种基于多目标优化的光刻工艺分辨率增强装置,包括多目标问题建立模块,设计多目标评价策略函数,对掩模优化实现编码,建立遗传算法需要的优化变量的种群,其表示如下:
Figure 232591DEST_PATH_IMAGE023
其中,
Figure 195868DEST_PATH_IMAGE024
表示亚分辨率辅助图形SRAF的添加位置,本申请给出该位置的获取 策略,
Figure 352043DEST_PATH_IMAGE047
为优化变量长,
Figure 149098DEST_PATH_IMAGE026
为优化变量宽。
在步骤S4中,基于所述优化变量的种群对种群单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数。
本申请提出上述基于多目标优化的光刻工艺分辨率增强装置,通过改变光源及掩模函数对应的参数表达,利用Hopkins计算光刻模型获得分辨率增强技术的评价标准对应函数值。
关键尺寸误差,其表示为:
Figure 118453DEST_PATH_IMAGE048
图形误差,其表示为:
Figure 291945DEST_PATH_IMAGE028
成像对比度,其表示为:
Figure 427261DEST_PATH_IMAGE029
归一化对数斜率,其表示为:
Figure 395217DEST_PATH_IMAGE049
其中,
Figure 854798DEST_PATH_IMAGE031
为掩模设计的关键尺寸,
Figure 300822DEST_PATH_IMAGE032
为通过计算光刻模型关键尺寸 位置仿真数值,
Figure 431590DEST_PATH_IMAGE033
为光刻胶上呈现图形质量,
Figure 554135DEST_PATH_IMAGE034
为光强分布最大值,
Figure 137563DEST_PATH_IMAGE035
为光强分 布最小值。
通过多目标优化策略的评价标准函数,针对不同的光刻工艺要求,在实际半导体器件生产中采取适当的选择,可以以期提高特定图形的保真,一定程度上提升光刻的分辨率。
在步骤S5中,使用遗传进化算法对当前所述种群重复进行“评价-选择-交叉-变异”计算,得到所述评价标准函数的迭代更新。
遗传进化算法是仿真生物遗传学和自然选择机理通过人工方式所构造的一类搜索算法,在一个解空间上,随机的给定一组解,这组解称为父亲种群,通过这组解的交叉,变异构建出新的解,称为下一代种群,然后在目前已有的所有解中抽取表现好的解组成新的父亲种群,然后重复上述过程,直到达到了迭代条件或者获取到了最优解。
遗传进化算法中染色体又可以叫做基因型个体(individuals),一定数量的个体组成了种群(population),种群中个体的数量叫做种群大小。
光刻胶在光照强度下发生光化学作用,在一定的阈值条件下
Figure 13378DEST_PATH_IMAGE050
,形成一定的图案 轮廓
Figure 998651DEST_PATH_IMAGE051
。进而分别计算多目
多目标优化问题的解为一组帕累托集,其包含元素为支撑解,表示当前解针对某些评价标准不比该问题的解空间其它解差。
多目标优化策略的实现,将一组优化变量编码为单一染色体,并建立一定数量种群,用于存储当前染色体编码状态,同时维持一个外部种群,所述外部种群指非支撑点的集合。
选择当前种群的染色体,对当前种群的染色体个体采取选择,交叉,变异的遗传进化策略,扩大种群的染色体数量,并对新产生的的染色体个体解码对应编码的光源及掩模图形,计算对应评价标准的函数值。
判断种群内染色体个体是否满足支配关系;
对于当前种群中染色体A及染色体B满足下述条件:
染色体A支配染色体B,即A的评价标准全面优于B,计算A对应的超体积。种群中保留A,将B加入外部种群;
染色体A不能支配染色体B,即A的评价标准不能够全面优于B,进一步判断染色体A与其它染色体的支配关系。
在步骤S6中,当所述种群内染色体的数量及染色体不再变化时得到最终种群,并通过解码所述最终种群得到多目标优化策略的解集帕累托支撑解。
当前种群数量将不再变化,此时支撑解对应的超体积最大化,解码当前种群个体即获得多目标优化决策的帕累托解集。需要说明的是,超体积用来评价多目标优化问题的搜索结果,帕累托最优解当且仅当超体积最大化。
本申请实施例优化结果为包含光照强度
Figure 167464DEST_PATH_IMAGE016
及辅助图形
Figure 238189DEST_PATH_IMAGE017
的支撑解 集合,对于单独的两个优化评价标准,其结果如图5所示,染色体A,B对应为多目标策略优化 的帕累托支撑解。针对评价标准成像对比度contrast和关键尺寸误差CD_error,染色体A对 应的优化变量其关键尺寸误差更小,染色体B对应的优化变量具有更好的成像对比度。
如图5所示,染色体C,D为非支撑解集,染色体C的评价标准较A,B存在劣势,染色体D较B存在劣势。
对于支撑解B其对应的优化变量对应的光源强度及辅助图形尺寸结果如图6和图7所示。
本申请还提供了一种基于多目标优化的光刻工艺分辨率增强装置,包括:优化光源的区域划分模块,辅助图形位置确定模块,多目标问题建立模块以及多目标问题求解模块。
所述优化光源的区域划分模块用于根据优化掩模图形的周期,通过划分多个圆重叠的方法得到照明光源的区域划分,具体实施如前述方法所示,在此不做赘述。
辅助图形位置确定模块,用于在Hopkins计算光刻模型中通过离散方式计算光强分布得到非对应掩模图形的光强波峰位置,从而确定亚分辨率辅助图形SRAF位置变量的初始位置,具体实施如前述方法所示,在此不做赘述。
多目标问题建立模块,设计多目标评价策略函数,并对优化光源和掩膜进行实数编码建立优化变量的种群,具体实施如前述方法所示,在此不做赘述。
多目标问题求解模块,所述模块采用遗传进化算法,用于实现对所述种群中单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数;使用遗传进化算法对当前所述种群重复进行“评价-选择-交叉-变异”计算,获得所述评价标准函数的迭代更新;当所述种群内染色体的数量及染色体不再变化时得到最终种群,通过解码所述最终种群得到多目标优化策略的解集帕累托支撑解,具体实施如前述方法所示,在此不做赘述。
本申请实施例的有益效果包括:通过实现光源的区域优化,计算亚分辨率辅助图形的放置位置,实现了光源掩膜的像素化及参数化描述;通过遗传进化算法,实现多目标求解,最终得到多目标优化策略的解集帕累托支撑解,计算过程其系数不依赖工程师的经验或者数值仿真实验优化,可以一定程度提升光刻工艺的分辨率、工艺窗口,相对于单目标的优化策略本申请可以提高工程师的工作效率。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。

Claims (4)

1.一种基于多目标优化的光刻工艺分辨率增强方法,其特征在于,包括以下步骤:
根据优化掩模图形的周期,建立优化光源的区域划分,所述优化光源的区域划分通过多个圆重叠实现,所述多个圆相交的重叠圆,所述重叠圆的半径与所述优化光源半径一致,所述重叠圆的圆心对应掩模函数的采样频率;
在Hopkins计算光刻模型中通过离散方式计算光强分布得到非对应掩模图形的光强波峰位置,从而确定亚分辨率辅助图形SRAF位置变量的初始位置用于优化掩膜;
基于所述亚分辨率辅助图形SRAF位置变量的初始位置和所述优化光源的区域划分,使用实数编码的方法建立优化变量的种群;
针对所述种群中单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数;
使用遗传进化算法对当前所述种群重复进行“评价-选择-交叉-变异”计算,获得所述评价标准函数的迭代更新;
当所述种群内染色体的数量及染色体不再变化时得到最终种群,通过解码所述最终种群得到多目标优化策略的解集帕累托支撑解。
2.根据权利要求1所述的一种基于多目标优化的光刻工艺分辨率增强方法,其特征在 于,所述优化光源的区域划分对应的单独区域的光照强度
Figure DEST_PATH_IMAGE001
相同。
3.根据权利要求1所述的一种基于多目标优化的光刻工艺分辨率增强方法,其特征在于,确定亚分辨率辅助图形SRAF位置变量的初始位置包括以下步骤:
S1、在Hopkins计算光刻模型中,通过离散方式计算的到光阻层上位置
Figure 378148DEST_PATH_IMAGE002
光强分布, 其表示为:
Figure 71560DEST_PATH_IMAGE004
其中,
Figure DEST_PATH_IMAGE005
为降维的交叉传递函数,
Figure 948249DEST_PATH_IMAGE006
为傅里叶逆变换;
S2、基于所述位置
Figure 567449DEST_PATH_IMAGE002
光强分布,得到
Figure DEST_PATH_IMAGE007
时降维交叉传递函数的函数的傅里 叶变换,表示为:
Figure DEST_PATH_IMAGE009
其中,
Figure 427958DEST_PATH_IMAGE010
为空间上的光源响应函数,
Figure DEST_PATH_IMAGE011
为空间上的光瞳响应函数,*表示函数共 轭,
Figure 470868DEST_PATH_IMAGE012
为光线在光瞳透镜上的入瞳位置;
S3、基于上述降维交叉传递函数的函数的傅里叶变换,通过卷积核方法计算卷积得到 得到得到
Figure 670905DEST_PATH_IMAGE007
时的光强分布,表示如下:
Figure 195427DEST_PATH_IMAGE014
S4、根据上述光强分布
Figure DEST_PATH_IMAGE015
,确定在光阻层内非对应掩模图形的光强波峰位置既为 初始亚分辨率辅助图形SRAF的放置位置。
4.一种基于多目标优化的光刻工艺分辨率增强装置,其特征在于,包括:
优化光源的区域划分模块,用于根据优化掩模图形的周期,通过划分多个圆重叠的方法得到优化光源的区域划分;
辅助图形位置确定模块,用于在Hopkins计算光刻模型中通过离散方式计算光强分布得到非对应掩模图形的光强波峰位置,从而确定亚分辨率辅助图形SRAF位置变量的初始位置;
多目标问题建立模块,设计多目标评价策略函数,对优化光源和掩膜进行实数编码建立优化变量的种群;
多目标问题求解模块,所述模块采用遗传进化算法,用于实现对所述种群中单一染色体通过计算光刻模型确定多目标优化策略的评价标准函数;使用遗传进化算法对当前所述种群重复进行“评价-选择-交叉-变异”计算,获得所述评价标准函数的迭代更新;当所述种群内染色体的数量及染色体不再变化时得到最终种群,通过解码所述最终种群得到多目标优化策略的解集帕累托支撑解。
CN201911123888.7A 2019-11-18 2019-11-18 一种基于多目标优化的光刻工艺分辨率增强方法及装置 Active CN110597023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911123888.7A CN110597023B (zh) 2019-11-18 2019-11-18 一种基于多目标优化的光刻工艺分辨率增强方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911123888.7A CN110597023B (zh) 2019-11-18 2019-11-18 一种基于多目标优化的光刻工艺分辨率增强方法及装置

Publications (2)

Publication Number Publication Date
CN110597023A CN110597023A (zh) 2019-12-20
CN110597023B true CN110597023B (zh) 2020-03-17

Family

ID=68852423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911123888.7A Active CN110597023B (zh) 2019-11-18 2019-11-18 一种基于多目标优化的光刻工艺分辨率增强方法及装置

Country Status (1)

Country Link
CN (1) CN110597023B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112699548A (zh) * 2020-12-25 2021-04-23 珠海格力电器股份有限公司 电控箱布局方案的生成方法、装置和电子设备
CN113779928B (zh) * 2021-09-03 2022-07-08 珠海市睿晶聚源科技有限公司 一种快速仿真光刻工艺的计算方法及系统
CN115906543B (zh) * 2023-03-08 2023-08-04 苏州培风图南半导体有限公司 一种基于光刻建模仿真的参数获取方法
CN117148689B (zh) * 2023-11-01 2024-03-01 合肥晶合集成电路股份有限公司 一种光刻工艺的仿真处理方法、装置、设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069015A1 (en) * 2016-10-14 2018-04-19 Asml Netherlands B.V. Selecting a set of locations associated with a measurement or feature on a substrate
CN109634068B (zh) * 2019-01-29 2020-02-07 北京理工大学 离焦低敏感度、工艺窗口增强的光源-掩模批量优化方法
CN110244527B (zh) * 2019-06-13 2020-05-19 华中科技大学 一种套刻标记形貌和测量条件优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于多染色体遗传算法的像素化光源掩模优化方法;杨朝兴等;《光学学报》;20180831;正文第2-4页第2.1、2.2节内容 *
纳米级电路光刻建模及可制造性设计研究;沈珊瑚;《中国优秀博士学位论文全文数据库》;20100531;正文第31--52页、第57-59、71-74页 *

Also Published As

Publication number Publication date
CN110597023A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110597023B (zh) 一种基于多目标优化的光刻工艺分辨率增强方法及装置
US8732625B2 (en) Methods for performing model-based lithography guided layout design
US7882480B2 (en) System and method for model-based sub-resolution assist feature generation
KR100982800B1 (ko) 광 근접성 보정을 위한 다변수 솔버
JP5371849B2 (ja) ソースおよびマスクの最適化
US8434031B2 (en) Inverse mask design and correction for electronic design
US6928634B2 (en) Matrix optical process correction
JP5619671B2 (ja) イメージの忠実度およびスループットに対する光源の最適化
WO2019162346A1 (en) Methods for training machine learning model for computation lithography
US8751979B1 (en) Determining the gradient and Hessian of the image log slope for design rule optimization for accelerating source mask optimization (SMO)
US20070186206A1 (en) System, Masks, and Methods for Photomasks Optimized with Approximate and Accurate Merit Functions
US9779186B2 (en) Methods for performing model-based lithography guided layout design
CN110187609B (zh) 一种计算光刻的深度学习方法
US9754068B2 (en) Method, computer readable storage medium and computer system for creating a layout of a photomask
Li et al. Robust pixel-based source and mask optimization for inverse lithography
CN111627799A (zh) 制造半导体元件的方法
JP4068531B2 (ja) Opcを用いたパターン寸法の補正方法及び検証方法、マスクの作成方法及び半導体装置の製造方法、並びに該補正方法を実行するシステム及びプログラム
CN111310407A (zh) 基于机器学习进行逆向光刻最优特征向量设计的方法
US20180196349A1 (en) Lithography Model Calibration Via Genetic Algorithms with Adaptive Deterministic Crowding and Dynamic Niching
US20110161895A1 (en) Retargeting Based On Process Window Simulation
CN106707681B (zh) 一种增强opc处理精度的方法
Fühner et al. Direct optimization approach for lithographic process conditions
CN113589644A (zh) 基于亚分辨率辅助图形种子插入的曲线型逆向光刻方法
US9857693B1 (en) Lithography model calibration via cache-based niching genetic algorithms
US8507160B2 (en) Flare prediction method, photomask manufacturing method, semiconductor device manufacturing method, and computer-readable medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant