CN110595751B - 基尼指数引导的早期故障特征小波重构方法及其应用 - Google Patents

基尼指数引导的早期故障特征小波重构方法及其应用 Download PDF

Info

Publication number
CN110595751B
CN110595751B CN201910888478.5A CN201910888478A CN110595751B CN 110595751 B CN110595751 B CN 110595751B CN 201910888478 A CN201910888478 A CN 201910888478A CN 110595751 B CN110595751 B CN 110595751B
Authority
CN
China
Prior art keywords
index
sequence
early
wavelet packet
wavelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910888478.5A
Other languages
English (en)
Other versions
CN110595751A (zh
Inventor
李勇
周邵萍
邢改兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201910888478.5A priority Critical patent/CN110595751B/zh
Publication of CN110595751A publication Critical patent/CN110595751A/zh
Application granted granted Critical
Publication of CN110595751B publication Critical patent/CN110595751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • G06F17/142Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Discrete Mathematics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及一种基尼指数引导的早期故障特征小波重构方法及其应用,所述重构方法包括以下步骤:S1、采集的编码器测量获得的角位置增量信息,基于该角位置增量信息获得瞬时角加速度离散序列;S2、对所述瞬时角加速度离散序列作小波包分解,获得各小波包系数;S3、计算每个小波包系数的基尼指数;S4、选择基尼指数大于阈值δ的小波包系数进行早期故障特征重构。与现有技术相比,本发明以信号小波包分解所得各频带系数的基尼指标为指导依据,重构频带的选择,对早期故障所致的冲击具有很高的敏感性,具体可靠性高等优点。

Description

基尼指数引导的早期故障特征小波重构方法及其应用
技术领域
本发明属于机械系统健康监测、故障诊断、性能评估的机械信号处理技术领域,涉及一种故障特征重构方法,尤其是涉及一种基尼指数引导的早期故障特征小波重构方法及其应用。
背景技术
精密机床装备被广泛地应用于各领域的加工制造。相对于常用设备,精密数控机床结构复杂,表征机床伺服轴系统运动部件的微弱退化特征,通常被复杂的结构振动和环境噪声信息淹没,使得现有的以振动和噪声为基础的性能退化评估方法很难直接应用。此外,受苛刻的工作环境限制,如冷却液喷洒、有限的机体空间、封闭工作环境等,额外传感单元很难直接安装。前期研究表面,机床内置的位置(或速度)反馈编码器所俘获的瞬态位置信号,不仅反映了机床伺服轴的执行精度,同时还包含了反映系统部件健康状态的丰富信息,为精密设备的性能评估提供新的途径。然而,编码器所俘获的信息多为离散增量序列,必须转化为反映部件扭振特性的瞬时角加速度(Instantaneous Angular Acceleration,IAA)信息,此外,这一瞬时角加速度信息为系统多个部件共同作用的结果,信号具有本质上的非平稳特性,为现有精密设备性能评估和故障识别方法带来挑战。
传统小波系数选择多采用各频带的能量作为度量指标,然而对于IAA信号而言,早期故障所致的冲击通常都遍历较宽的频带,此外,通过位置波动转换而来的IAA信号通常都会加强高频部分的能量,该方法容易导致故障特征重构偏差。因而,需要寻求一种新方法来获得更准确的故障特征。
发明内容
本发明的目的在于克服上述现有技术存在的缺陷而提供一种基尼指数引导的早期故障特征小波重构方法及其应用。
本发明的目的可以通过以下技术方案来实现:
一种基尼指数引导的早期故障特征小波重构方法,包括以下步骤:
S1、采集编码器测量获得的角位置增量信息,基于该角位置增量信息获得瞬时角加速度离散序列;
S2、对所述瞬时角加速度离散序列作小波包分解,获得各小波包系数;
S3、计算每个小波包系数的基尼指数;
S4、选择基尼指数大于阈值δ的小波包系数进行早期故障特征重构。
进一步地,步骤S1具体包括:
S101、去除所述角位置增量信息β′(m)的趋势量,得到离散角位置波动序列β(m):
β(m)=β′(m)-v0m
其中,v0m表示趋势量,v0为电机内置编码器的转速,m为离散序列的点数;
S102、利用快速傅里叶变换计算离散角位置波动序列的傅里叶系数
Figure BDA0002208023270000021
Figure BDA0002208023270000022
其中,M为离散角位置序列的长度,i为离散频率;
S103、获得权重傅里叶系数C(i):
Figure BDA0002208023270000023
其中,2πfsm/M表示权重;
S104、对权重傅里叶系数进行快速傅里叶逆变换,得到瞬时角加速度离散序列a(m):
Figure BDA0002208023270000024
进一步地,步骤S2中,所述小波包系数通过递归方式分解获得,表示为:
Figure BDA0002208023270000025
其中,hk-2l、gk-2l为滤波器系数。
进一步地,步骤S3具体包括:
S301、对小波包系数进行升序排列得到新序列x;
S302、计算新序列x的基尼指数:
Figure BDA0002208023270000026
式中,GI(x)为基尼指数,||x||1为新序列x的
Figure BDA0002208023270000027
范数,S为序列的长度。
进一步地,步骤S4中,所述早期故障特征的重构公式为:
Figure BDA0002208023270000031
进一步地,步骤S4中,所述阈值δ为0.5~0.65。
本发明还提供一种设备故障识别方法,该方法利用如所述的基尼指数引导的早期故障特征小波重构方法获得早期故障特征,基于该早期故障特征进行设备故障识别。
本发明还提供一种设备性能退化评估方法,该方法利用如所述的基尼指数引导的早期故障特征小波重构方法获得早期故障特征,基于该早期故障特征进行设备性能退化评估。
与现有技术相比,本发明具有如下有益效果:
本发明以信号小波包分解所得各频带系数的基尼指标为指导依据,重构频带的选择,对早期故障所致的冲击具有很高的敏感性,可更准确地获得故障特征。
本发明方法可以大大减小故障特征重构偏差。
附图说明
图1为伺服轴编码器位置增量信息,(1a)为X轴维护前154天,(1b)为维护前3天测试所得位置增量信息;
图2为角位置信息波动信号,(2a)为X轴维护前154天,(2b)为维护前3天;
图3为角位置信息波动信号频谱图,(3a)为X轴维护前154天,(3b)为维护前3天;
图4为瞬时角加速度信号,(4a)为X轴维护前154天,(4b)为维护前3天;
图5为瞬时角加速度信号频谱图,(5a)为X轴维护前154天,(5b)为维护前3天;
图6为信号后12个小波包系数,(6a)为X轴维护前154天,(6b)为维护前3天;
图7为小波包系数的基尼指数,(7a)为X轴维护前154天,(7b)为维护前3天;
图8为早期退化故障重构特征,(8a)为X轴维护前154天,(8b)为维护前3天;
图9为本发明重构方法的流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本发明提供一种基尼指数引导的早期故障特征小波重构方法,如图9所示,该方法包括以下步骤:
S1、采集编码器测量获得的角位置增量信息,基于该角位置增量信息获得瞬时角加速度离散序列,具体过程包括:
S101、设编码器测试所得的角位置增量信息为β′(m),去除其趋势量,得到角位置信息波动量β(m)。若记角位置增量信息的趋势量为v0m,则离散角位置信息波动量序列β(m)为:
β(m)=β′(m)-v0m (1)
式中,v0为电机内置编码器的转速,m为离散序列的点数;
S102、利用快速傅里叶变换(FFT)计算离散角位置波动序列的傅里叶系数:
Figure BDA0002208023270000041
式中,M为离散角位置序列的长度,i为离散频率,j为复数中的虚数单位;
S103、将获得的傅里叶系数乘以权重系数-(2πfsm/M)2,得到权重傅里叶系数:
Figure BDA0002208023270000042
S104、对权重傅里叶系数进行快速傅里叶逆变换(IFFT),得到瞬时角加速度(Instantaneous Angular Acceleration,IAA)离散序列为:
Figure BDA0002208023270000043
S2、对上述步骤计算所得的瞬时角加速度离散序列作小波包分解。
Figure BDA0002208023270000044
Figure BDA0002208023270000045
分别为a(n)在
Figure BDA0002208023270000046
Figure BDA0002208023270000047
上的投影,则瞬时角加速度的小波包系数为
Figure BDA0002208023270000048
其中:hk-2l、gk-2l为滤波器系数,k表示序列号,Z表示整数集合,
Figure BDA0002208023270000049
为一组由尺度函数
Figure BDA00022080232700000410
与小波函数ψ(t)产生的递归函数,且
Figure BDA0002208023270000051
其中:gk=(-1)kh1-k
Figure BDA0002208023270000052
则被称作由基函数
Figure BDA0002208023270000053
确定的小波包。
S3、计算每个小波包系数的基尼指数。
对小波系数按大小进行升序排列得到新的序列x,有|x1|<|x2|,…,<|xS|,则新序列x的基尼指数为
Figure BDA0002208023270000054
式中:||x||1为新序列x的l1范数,S为序列的长度。
S4、选择基尼指数大于阈值δ的小波包系数进行早期故障特征重构,一般情况选择阈值δ介于0.5至0.65之间。
早期故障特征重构的公式为:
Figure BDA0002208023270000055
上述方法以信号小波包分解所得各频带系数的基尼指标为指导依据,重构频带的选择,对早期故障所致的冲击具有很高的敏感性。
本实施例通过机床伺服轴的现场跟踪测试实验对本发明故障特征小波重构方法做详细描述,实验对象为一台正在服役的立式精密数控车铣复合中心的X轴,具体测试过程包括以下步骤:
步骤一:如图1的(1a)与(1b)所示为伺服轴编码器测试所得的位置增量信息,从图中可知原始信息为一条斜坡直线,很难发现任何有关设备健康状态的信息。采用公式(1)去除该信号的趋势量,得到角位置信息波动信息如图2所示。如图2所示,两次测试所得的信号去除趋势后,都明显可见周期性的波动。
步骤二:运用公式(2)对步骤一计算所得的离散角位置波动序列作傅里叶变换,得到傅里叶系数,同时信号的频谱图如图3所示。如图3所示,两次测试所得信号的角位置的波动频率都为0.57Hz,且该频率等于滚珠丝杠的导程通过频率。这一现象主要由丝杠加工误差导致,而非真正的故障。
步骤三:将步骤二所得的傅里叶系数乘以权重系数-(2πfsn/N)2,得到权重傅里叶系数。
步骤四:运用公式(4)对权重傅里叶系数进行快速傅里叶逆变换,得到瞬时角加速度。图4为计算所得的瞬时角角速度信号,图5为其对应的频谱图。如图5所示,两次测试计算所得的瞬时角加速度信号能量都主要集中于32.1Hz及其倍频(X轴齿轮箱的一二级啮合频率都为32.1Hz),此外在300-400Hz处,都出现了能量频带,且频谱幅值差异不大。因此,仅从频谱来判断X轴的性能退化情况非常困难。
步骤五:对上述步骤计算所得的瞬时角加速度离散序列作小波包分解。此处,用于信号分解的小波基为db11,分解层数为5层,因此共有32个小波包系数。图6所示为两次测试瞬时角加速度后的12个小波包系数。如图6所示,虽然信号的一些特征能够很好的被某些小波包系数反映,但要用于设备故障或者性能退化的评估缺非常不方便。
步骤六:运用公式(7)计算每个小波包系数的基尼指数,并选择基尼指数阈值δ=0.5。图7所示为两组信号小波分解之后各个小波包系数的基尼指数。如(7a)所示,维护前154天时,仅小波包系数Node(5,29)的基尼指数超过阈值δ=0.5。然而,随着X轴服役时间的增加,如(7b)所示,维护前3天时,小波包系数Node(5,29)与Node(5,32)的基尼指数都超过阈值δ=0.5。
步骤七:运用公式(8)对早期故障或退化特征进行重构。按照前面的推荐,这里仅选择基尼指数大于阈值δ=0.5的小波包系数进行早期故障特征重构。图8所示为重构所得的退化特征。如(8a)可知,维护前154天时,仅在X轴丝杠的后端行程存在局部缺陷,然而,随服役时间的增加,在维护前3天时,丝杠的中间及后端行程都出现局部缺陷,如(8b)所示。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

1.一种基尼指数引导的早期故障特征小波重构方法,其特征在于,包括以下步骤:
S1、采集编码器测量获得的角位置增量信息,基于该角位置增量信息获得瞬时角加速度离散序列;
S2、对所述瞬时角加速度离散序列作小波包分解,获得各小波包系数;
S3、计算每个小波包系数的基尼指数;
S4、选择基尼指数大于阈值δ的小波包系数进行早期故障特征重构;
步骤S1具体包括:
S101、去除所述角位置增量信息β′(m)的趋势量,得到离散角位置波动序列β(m):
β(m)=β′(m)-v0m
其中,v0m表示趋势量,v0为电机内置编码器的转速,m为离散序列的点数;
S102、利用快速傅里叶变换计算离散角位置波动序列的傅里叶系数
Figure FDA0002754733980000011
Figure FDA0002754733980000012
其中,M为离散角位置序列的长度,i为离散频率;
S103、获得权重傅里叶系数C(i):
Figure FDA0002754733980000013
其中,2πfsm/M表示权重;
S104、对权重傅里叶系数进行快速傅里叶逆变换,得到瞬时角加速度离散序列a(m):
Figure FDA0002754733980000014
2.根据权利要求1所述的基尼指数引导的早期故障特征小波重构方法,其特征在于,步骤S2中,所述小波包系数通过递归方式分解获得,表示为:
Figure FDA0002754733980000015
其中,hk-2l、gk-2l为滤波器系数。
3.根据权利要求1所述的基尼指数引导的早期故障特征小波重构方法,其特征在于,步骤S3具体包括:
S301、对小波包系数进行升序排列得到新序列x;
S302、计算新序列x的基尼指数:
Figure FDA0002754733980000021
式中,GI(x)为基尼指数,||x||1为新序列x的l1范数,S为序列的长度。
4.根据权利要求2所述的基尼指数引导的早期故障特征小波重构方法,其特征在于,步骤S4中,所述早期故障特征的重构公式为:
Figure FDA0002754733980000022
5.根据权利要求1所述的基尼指数引导的早期故障特征小波重构方法,其特征在于,步骤S4中,所述阈值δ为0.5~0.65。
6.一种设备故障识别方法,其特征在于,该方法利用如权利要求1所述的基尼指数引导的早期故障特征小波重构方法获得早期故障特征,基于该早期故障特征进行设备故障识别。
7.一种设备性能退化评估方法,其特征在于,该方法利用如权利要求1所述的基尼指数引导的早期故障特征小波重构方法获得早期故障特征,基于该早期故障特征进行设备性能退化评估。
CN201910888478.5A 2019-09-19 2019-09-19 基尼指数引导的早期故障特征小波重构方法及其应用 Active CN110595751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910888478.5A CN110595751B (zh) 2019-09-19 2019-09-19 基尼指数引导的早期故障特征小波重构方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910888478.5A CN110595751B (zh) 2019-09-19 2019-09-19 基尼指数引导的早期故障特征小波重构方法及其应用

Publications (2)

Publication Number Publication Date
CN110595751A CN110595751A (zh) 2019-12-20
CN110595751B true CN110595751B (zh) 2020-12-18

Family

ID=68861434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910888478.5A Active CN110595751B (zh) 2019-09-19 2019-09-19 基尼指数引导的早期故障特征小波重构方法及其应用

Country Status (1)

Country Link
CN (1) CN110595751B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115374811A (zh) * 2022-07-26 2022-11-22 红河学院 一种滚动轴承故障状态诊断新方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100485342C (zh) * 2006-03-03 2009-05-06 西安交通大学 机械故障的集成支持向量机混合智能诊断方法
CN103091096A (zh) * 2013-01-23 2013-05-08 北京信息科技大学 基于eemd和小波包变换的早期故障敏感特征提取方法
US20160124031A1 (en) * 2014-11-04 2016-05-05 Walid G. Morsi Ibrahim Smart multi-purpose monitoring system using wavelet design and machine learning for smart grid applications
CN104729853B (zh) * 2015-04-10 2017-06-06 华东交通大学 一种滚动轴承性能退化评估装置及方法
CN107525671B (zh) * 2017-07-28 2020-12-18 中国科学院电工研究所 一种风电机组传动链复合故障特征分离与辨识方法
CN107525672B (zh) * 2017-08-18 2019-07-12 西安交通大学 一种基于基尼指标改进的SKRgram方法
CN108398260B (zh) * 2018-01-10 2021-10-01 浙江大学 基于混合概率方法的齿轮箱瞬时角速度的快速评估方法
CN108181107B (zh) * 2018-01-12 2019-08-30 东北电力大学 计及多分类目标的风电机组轴承机械故障诊断方法
CN109142946A (zh) * 2018-06-29 2019-01-04 东华大学 基于蚁群算法优化随机森林的变压器故障检测方法
CN109948194B (zh) * 2019-02-27 2020-07-03 北京航空航天大学 一种高压断路器机械缺陷集成学习诊断方法
CN110058110A (zh) * 2019-04-16 2019-07-26 重庆大学 一种有源逆变器间歇故障诊断方法
CN109877647B (zh) * 2019-04-19 2020-12-22 华东理工大学 一种基于内置编码器的机床伺服轴性能退化评估系统

Also Published As

Publication number Publication date
CN110595751A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
Bin et al. Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network
CN109635334A (zh) 基于粒子群优化的滚动轴承故障诊断方法、系统及介质
CN112665851B (zh) 一种无键相变转速齿轮箱故障诊断方法
CN111665051A (zh) 基于能量权重法的强噪声变转速条件下轴承故障诊断方法
CN111413089A (zh) 基于vmd熵值法和vpmcd相结合的齿轮故障诊断方法
CN109000921B (zh) 一种风电机组主轴故障的诊断方法
Sharma A review on vibration-based fault diagnosis techniques for wind turbine gearboxes operating under nonstationary conditions
CN106404399B (zh) 基于自适应冗余提升小波包分解树的轴承故障诊断方法
CN109374293B (zh) 一种齿轮故障诊断方法
CN108398260B (zh) 基于混合概率方法的齿轮箱瞬时角速度的快速评估方法
Lin et al. A review and strategy for the diagnosis of speed-varying machinery
CN110595751B (zh) 基尼指数引导的早期故障特征小波重构方法及其应用
Li et al. Research on a signal separation method based on Vold-Kalman filter of improved adaptive instantaneous frequency estimation
CN111665050A (zh) 一种基于聚类k-svd算法的滚动轴承故障诊断方法
CN112362343A (zh) 基于调频字典的齿轮箱变转速下分布型故障特征提取方法
CN105277362A (zh) 基于编码器多位转角信号的齿轮故障检测方法
Shi et al. An improved Viterbi algorithm for adaptive instantaneous angular speed estimation and its application into the machine fault diagnosis
CN116952584B (zh) 基于振动信号幅度谱相似度的电机轴承性能退化评估方法
CN117786607A (zh) 基于时频熵谱的变工况振动信号故障诊断方法、系统
Xu et al. Rolling bearing fault feature extraction via improved SSD and a singular-value energy autocorrelation coefficient spectrum
CN117571316A (zh) 一种复合故障诊断方法及系统
Geng et al. Fault identification of rolling bearing with variable speed based on generalized broadband mode decomposition and DET
CN111323233B (zh) 一种用于低速旋转机械故障诊断的局部均值分解方法
CN113281047A (zh) 一种基于变尺度Lempel-Ziv的轴承内外圈故障定量趋势诊断方法
Pan et al. Improved complete ensemble robust local mean decomposition with adaptive noise for slewing bearings performance degradation assessment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant