CN110589821B - 一种基于香蒲衍生的多孔生物炭、其制备方法及应用 - Google Patents

一种基于香蒲衍生的多孔生物炭、其制备方法及应用 Download PDF

Info

Publication number
CN110589821B
CN110589821B CN201910714844.5A CN201910714844A CN110589821B CN 110589821 B CN110589821 B CN 110589821B CN 201910714844 A CN201910714844 A CN 201910714844A CN 110589821 B CN110589821 B CN 110589821B
Authority
CN
China
Prior art keywords
biochar
porous
drying
hydrochloric acid
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910714844.5A
Other languages
English (en)
Other versions
CN110589821A (zh
Inventor
陈一
何强
阳东旭
方俊华
李果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Green Environment Protection Technology Co ltd
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201910714844.5A priority Critical patent/CN110589821B/zh
Publication of CN110589821A publication Critical patent/CN110589821A/zh
Application granted granted Critical
Publication of CN110589821B publication Critical patent/CN110589821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents

Abstract

本发明属于功能材料和环境水处理领域,具体涉及一种基于香蒲衍生的制备方法,具体包括以下步骤:(1)在隔绝氧条件下,将香蒲粉末置于密闭容器中,升温至400‑500℃,炭化4h,冷却至室温,取出,经盐酸、水清洗至中性,干燥,得到生物炭;(2)将所述生物炭和碳酸钾按质量比1‑2:2‑4混合并充分碾磨,然后置于密闭容器中,在隔绝氧的条件下,升温至850‑950℃,活化1.5‑3h,冷却至室温,取出,经盐酸、水洗涤至中性,干燥,得多孔生物炭,该多孔生物炭能够在短时间内对水体中的左氧氟沙星进行高效吸附,快速除去水体中的左氧氟沙星,有利于大规模除去左氧氟沙星,具有实际应用价值。

Description

一种基于香蒲衍生的多孔生物炭、其制备方法及应用
技术领域
本发明属于功能材料和环境水处理领域,具体涉及一种基于香蒲衍生的多孔生物炭、其 制备方法及应用。
背景技术
抗生素是一种新型环境污染,不仅对生态环境造成威胁,还严重影响人类健康。滥用抗 生素所带来的环境和健康问题,亟待解决。抗生素的用途主要是预防治疗人畜疾病、消除农 业病虫害等各个方面。相关调查表明,我国作为抗生素使用大国,且主要用于医疗及农业行 业。由于抗生素在人、畜体内代谢率极低,在环境中检测到的抗生素越来越多。由此带来抗 生素污染的环境问题,诱发耐药细菌的出现,破坏生态系统平衡,威胁生物生存。作为最广 泛使用的喹诺酮类药物抗生素之一,左氧氟沙星在地表水和地下水频繁地被发现。由于其耐 微生物和生物降解的特性,一些技术,像传统的高级氧化、混凝沉淀法等很难完全去除。吸 附技术由于高效、便捷、成本低、可操作性强等特点,广泛的应用于水体中污染物的去除。 到目前为止,改性蒙脱土、颗粒活性炭、石墨烯等已经用于左氧氟沙星的去除,但有限的去 除效率为其大规模的实际应用带来了瓶颈。
据统计,每年全球生物质产量约为1460亿吨,其中碳占比最大,占200亿吨。另一方面,生物质是也作为副产品每年大量生产工业、农业和林业,如生物酒精发酵,制浆造纸、粮食种植等森林开采。香蒲是一种广泛应用在人工湿地的水生植物。据估计,每年多达500-2000gC/m2湿地生物质废料,可能变成有机固体废物如没有有效及具成本效益的处理方法。开发利用这些大量的天然生物质和废弃生物质这不仅是一个资源问题,也是一个紧迫的环境 问题。
发明内容
为解决现有活性炭吸附左氧氟沙星效率较低的问题,本发明提供一种基于香蒲衍生的多 孔生物炭的制备方法,该方法制备的多孔生物炭能够在短时间内高效吸附水体中的左氧氟沙 星。
一种基于香蒲衍生的多孔生物碳的制备方法,包括以下步骤:
(1)在隔绝氧条件下,将香蒲粉末置于密闭容器中,升温至400-500℃,炭化2-4h,冷却至室温,取出,经盐酸、水清洗至中性,干燥,得到生物炭;
(2)将所述生物炭和碳酸钾按质量比1-2:2-4混合并充分碾磨,然后置于密闭容器中, 在隔绝氧的条件下,升温至850-950℃,活化1.5-3h,冷却至室温,取出,经盐酸、水洗涤至中性,干燥,得多孔生物炭。
优选的,所述生物炭与碳酸钾的质量比为1:2。
优选的,所述香蒲粉末为香蒲经洗涤、干燥粉碎和过200筛得到的。
优选的,所述盐酸的浓度为2mol/L。
优选的,所述步骤(1)中,所述炭化温度为450℃。更为优选的,所述炭化时间为4h。
优选的,所述步骤(2)中,所述活化温度为900℃。更为优选的,所述活化时间为2h。
优选的,所述步骤(1)和(2)中,所述升温的速率为10℃/min。
上述制备方法制备的多孔生物炭也属于本发明的保护范围。
上述多孔生物炭在在处理含左氧氟沙星的废水中的应用也属于本发明的保护范围。
本发明的有益效果在于:
本发明提供的制备方法以废弃生物质香蒲为原料制备了生物炭,然后采用碳酸钾在特定 条件下对生物炭进行活化得到本发明所述的多孔生物炭,该多孔生物炭相较于商用活性炭等 其他吸附材料,能够在短时间内对水体中的左氧氟沙星进行高效吸附,快速除去水体中的左 氧氟沙星,有利于大规模除去左氧氟沙星,具有实际应用价值。
附图说明
图1是实施例1制备的MPCS-900的扫描电镜图和透射电镜图;
图2是实施例1制备的MPCS-900及对比例材料的红外光谱图;
图3是实施例1制备的MPCS-900及对比例材料的拉曼光谱图;
图4是实施例1制备的MPCS-900的MPCS-900材料的氮气-吸附脱附图;
图5是实施例1制备的MPCS-900的孔径分布图;
图6是不同温度下活化的多孔生物炭材料的时间-去除率吸附曲线;
图7是不同活化试剂活化的多孔生物炭的时间-去除率吸附曲线;
图8是不同吸附材料的Ce-qe吸附曲线。
具体实施方式
以下结合实施例对本发明进行进一步的说明。
实施例1
将香蒲洗涤、干燥、粉碎、过200目筛得到香蒲粉末,然后将香蒲粉末置于管式炉中, 隔绝氧条件下,升温速率10℃/min升温至450℃,保持2小时,经2mol/L盐酸和纯水清洗至中性,干燥,得到生物炭。
将生物炭与两倍质量比的碳酸钾充分碾磨20min,置于无氧的管式炉中,按10℃/min的 升温速率升至900℃,保持2小时,经2mol/L盐酸和纯水清洗至中性,干燥,得到多孔生物 炭,简称MPCS-900。
为进一步研究MPCS-900,发明人对其进行电镜扫描,结果如图1所示,电镜扫描图显 示,MPCS-900呈不规则的,堆积的片层状结构,根据透射电镜图进一步观察到,MPCS-900具有很多褶皱和边缘。
接下来,发明人对MPCS-900以及其他对比例制备的材料(具体制备方法见后文)进行 了红外光谱测定和拉曼光谱测定。红外光谱参见图2,活化试剂采用碳酸钾、碳酸钠和氢氧 化钾时,吸收峰在3422cm-1和1400cm-1处,分别为羟基的伸缩振动和弯曲振动峰。在生物炭材料中,1636cm-1为C=C键的伸缩振动峰。当采用碳酸钾作为活化试剂时,随着温度的 升高,C=C键的伸缩振动峰移动到了较低的峰位置,而这里的吸收带通常是苯的C=C键的 伸缩振动峰,说明高温有利于向sp2石墨域转化。拉曼光谱参见图3,在1342cm-1和 1595cm-1处有明显的吸收峰,分别为无序的D带和基平面振动的G带。D带反映材料的不 完美结构,而G带说明材料sp2杂化的碳原子。2D及D+D’峰进一步说明了材料的无序性。 生物炭的2D及D+D’峰很大,表明生物炭的石墨化程度高,随着温度的提升,该峰明显减 小,说明缺陷或边缘明显。这一现象进一步被ID/IG(D带与G带的强度比)比证实。ID/IG反映了材料的缺陷程度。由图可知,随着温度的增加,ID/IG比值随之升高,说明高温可以提 升材料的边缘或拓扑缺陷的程度,上述缺陷有利于增加比表面积及活性位点。
为进一步研究MPCS-900的吸附性能,发明人还通过氮气吸附-脱附BET比表面积分析 仪测量了MPCS-900材料的孔特性及比表面积。如图4所示,在P/P0非常低时吸附量急剧上 升,这是因为在狭窄的微孔(分子尺寸的微孔)中,吸附剂-吸附物质的相互作用增强,从而导致在极低相对压力下的微孔填充。但当达到饱和压力时(P/P0>0.99),可能会出现吸附质凝聚,导致曲线上扬。MPCS-900材料吸附脱附等温线是明显的I型等温线,其比表面积 高达2240m2/g。微孔材料表现为I类吸附等温线,一般孔宽小于1nm。图5显示,MPCS- 900材料孔径主要分布在0.5和1nm附近,也进一步说明MPCS-900材料就是微孔材料。
根据上述表征结果可知,MPCS-900这种多孔结构和较高的比表面积及丰富的边缘/缺陷 的材料,可以提供一个较短的传输路径和足够多的活性位点,作为吸附材料用于环境治理, 具有较高的去除性能。
对比例1不同焙烧温度下制备多孔生物炭
称取干燥的生物碳粉末,加入两倍质量比的碳酸钾充分碾磨20min,置于无氧的管式炉 中,升温速率10℃/min升温至500℃和700℃,保持2小时,经2mol/L盐酸和纯水清洗至中 性,干燥,得到不同煅烧温度下制备的碳材料,简称CP-500,CP-700。
对比例2采用不同活化试剂制备的多孔生物炭
称取干燥的生物碳粉末,加入两倍质量比的碳酸钠、氢氧化钾充分碾磨20min,分别置 于无氧的管式炉中,按10℃/min的升温速率分别升温至900℃和700℃,保持2小时,经2mol/L盐酸和纯水清洗至中性,干燥,得到不同煅烧温度下制备的生物炭,简称CS-900,CPH-700。(在其他条件相同情况下,我们在900℃下采用氢氧化钾活化生物炭制备了多孔生物炭,但充分混合的生物炭与氢氧化钾经900℃煅烧后,产品的产率极低,主要是由于氢氧化钾和碳材料首先反应分解为碳酸钾与氢气,然后生成的碳酸钾与碳材料进一步反应活化,一方面KOH经历两步与碳材料反应,消耗更多的生物炭,另一方面产生的产品随释放 的氢气,很容易被氮气流带走,由此,造成了产品的产率较低。另,目前大多数文献报道的 经KOH活化的碳材料,碳化温度一般为700℃,且产率较高。因此,这里我们用碳化温度 700作为一个对比。)
实施例2煅烧温度对材料吸附性能的影响
分别称取10mg实施例1制备的多孔生物炭MPCS-900和对比例1制备的CP-500和CP-700于3个250mL带塞的锥形瓶中,每个锥形瓶中加入计算好的纯水,超声5min至溶液均 匀,然后加入已知浓度的左氧氟沙星使总体积为100mL,其中,左氧氟沙星的初始浓度为30mg/L,调节pH=7.0±0.1,将上述装置放于恒温振荡器中(150rpm,25℃),每隔一定的 间隔取一个点,然后过22um滤头,用紫外可见分光光度计检测其样品的吸光度,根据吸光 度计算左氧氟沙星浓度,根据左氧氟沙星浓度绘制时间-去除率吸附曲线(参见图6,去除 率%=(C0-Ce)×100%/C0),其中,多孔生物炭MPCS-900生物炭的吸附速率远超CP-500, CP-700,仅在10分钟内就完成了吸附,且去除率高达99.64%。
实施例3不同活化试剂对吸附材料的吸附性能影响
分别称取10mg实施例1制备的多孔生物炭MPCS-900、对比例2制备的CS-900和CPH-700于250mL于3个带塞的锥形瓶中,加入计算好的纯水,超声5min至溶液均匀,然后加 入已知浓度的左氧氟沙星使总体积为100mL,并使其中的左氧氟沙星的初始浓度为 30mg/L,调节pH=7.0±0.1,将上述装置放于恒温振荡器中(150rpm,25℃),每隔一定的 间隔取一个点,然后过22um滤头,用紫外可见分光光度计检测其样品的吸光度,空白实验 (不加吸附剂)也是同样的操作,其时间-去除率吸附曲线参见图7,由此可见,不同的活化 试剂制备的多孔生物炭的吸附性能不同,其中,MPCS-900的吸附速率远高于其他生物炭。
实施例4不同材料的吸附容量对比
分别称取10mg MPCS-900、CP-700、CS-900、CPH-700、商业活性炭(AC)和多壁碳 纳米管MWCNT于250mL 3个带塞的锥形瓶中,加入计算好的纯水,超声5min至溶液均 匀,然后加入梯度已知浓度的左氧氟沙星使总体积为100mL,调节pH=7.0±0.1。将上述装 置放于恒温振荡器中(150rpm,25℃),反应12h,然后过22um滤头,用紫外可见分光光 度计检测其样品的吸光度,绘制吸附曲线如图8,根据该图可知,各材料的最大吸附容量为 依次为754.12mg/g、273.55mg/g、313.42mg/g、513.41mg/g、268.50mg/g和107.26mg/g。

Claims (3)

1.基于香蒲衍生的多孔生物碳在处理含左氧氟沙星的废水中的应用,其特征在于,多孔生物碳的制备方法包括以下步骤:
(1)在隔绝氧条件下,将香蒲粉末置于密闭容器中,升温至450℃,炭化4h,冷却至室温,取出,经盐酸、水清洗至中性,干燥,得到生物炭;所述香蒲粉末为香蒲经洗涤、干燥粉碎和过200目筛得到的;所述升温的速率为10℃/min;
(2)将所述生物炭和碳酸钾按质量比1-2:2-4混合并充分碾磨,然后置于密闭容器中,在隔绝氧的条件下,升温至900℃,活化2h,冷却至室温,取出,经盐酸、水洗涤至中性,干燥,得多孔生物炭;所述升温的速率为10℃/min。
2.根据权利要求1所述的基于香蒲衍生的多孔生物碳在处理含左氧氟沙星的废水中的应用,其特征在于,所述生物炭与碳酸钾的质量比为1︰2。
3.根据权利要求1所述的基于香蒲衍生的多孔生物碳在处理含左氧氟沙星的废水中的应用,其特征在于,所述盐酸的浓度为2mol/L。
CN201910714844.5A 2019-08-02 2019-08-02 一种基于香蒲衍生的多孔生物炭、其制备方法及应用 Active CN110589821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910714844.5A CN110589821B (zh) 2019-08-02 2019-08-02 一种基于香蒲衍生的多孔生物炭、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910714844.5A CN110589821B (zh) 2019-08-02 2019-08-02 一种基于香蒲衍生的多孔生物炭、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN110589821A CN110589821A (zh) 2019-12-20
CN110589821B true CN110589821B (zh) 2021-05-28

Family

ID=68853394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910714844.5A Active CN110589821B (zh) 2019-08-02 2019-08-02 一种基于香蒲衍生的多孔生物炭、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN110589821B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874887A (zh) * 2020-07-31 2020-11-03 鲁东大学 一种水处理用三维结构光热转换材料
CN113213476B (zh) * 2021-05-27 2022-12-23 西南林业大学 一种生物炭制备方法、生物炭及其结构化工艺方法
CN113526676A (zh) * 2021-08-06 2021-10-22 重庆大学 一种可强化脱氮的人工湿地系统
CN113786803A (zh) * 2021-08-24 2021-12-14 福州大学 一种具有炭缺陷位结构的生物炭吸附剂及其制备方法与应用
CN114177886B (zh) * 2021-12-02 2023-12-08 广东工业大学 一种生物炭-氧化铝复合材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092238A (zh) * 2007-06-08 2007-12-26 山东大学 香蒲和菖蒲活性炭的制备方法
CN101224885A (zh) * 2007-12-27 2008-07-23 山东大学 蒲绒活性炭的制备工艺
WO2013001367A2 (en) * 2011-06-30 2013-01-03 King Abdullah University Of Science And Technology Moderate temperature synthesis of mesoporous carbon
CN110064364A (zh) * 2019-04-19 2019-07-30 南京林业大学 一种生物炭的制备及其对双氯芬酸的去除方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092238A (zh) * 2007-06-08 2007-12-26 山东大学 香蒲和菖蒲活性炭的制备方法
CN101224885A (zh) * 2007-12-27 2008-07-23 山东大学 蒲绒活性炭的制备工艺
WO2013001367A2 (en) * 2011-06-30 2013-01-03 King Abdullah University Of Science And Technology Moderate temperature synthesis of mesoporous carbon
CN110064364A (zh) * 2019-04-19 2019-07-30 南京林业大学 一种生物炭的制备及其对双氯芬酸的去除方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
锂硫电池用碳硫复合正极材料的制备及电化学性能研究;刘彬;《中国优秀硕士论文全文数据库 工程科技II辑》;20180115;正文部分第3.2.1节和第3.3.3节 *

Also Published As

Publication number Publication date
CN110589821A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110589821B (zh) 一种基于香蒲衍生的多孔生物炭、其制备方法及应用
Hou et al. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal
Jawad et al. Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption
Hameed et al. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies
Hameed et al. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust
Jawad et al. Upgrading low rank coal into mesoporous activated carbon via microwave process for methylene blue dye adsorption: Box Behnken Design and mechanism study
Ma et al. Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: Adsorption efficiency, mechanism and regeneration
Heidari et al. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation
Tan et al. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies
Samiyammal et al. Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: Studies on equilibrium isotherm
Ahmad et al. Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root
Yang et al. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal
Franco et al. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species
Wang et al. Kinetics, equilibrium and thermodynamics studies on biosorption of Rhodamine B from aqueous solution by earthworm manure derived biochar
Lima et al. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties
Wang et al. Adsorption of heavy metal onto biomass-derived activated carbon
Ashrafi et al. Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies
Yao et al. Resource utilization of a typical vegetable waste as biochars in removing phthalate acid esters from water: a sorption case study
He et al. N-doped activated carbon for high-efficiency ofloxacin adsorption
Georgin et al. Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels
Dong et al. Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process
Ahmed Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments
Zhang et al. Biological self-assembled hyphae/starch porous carbon composites for removal of organic pollutants from water
Benmahdi et al. Synthesis and characterization of microporous granular activated carbon from Silver berry seeds using ZnCl2 activation
Sewu et al. Biochar from the co-pyrolysis of Saccharina japonica and goethite as an adsorbent for basic blue 41 removal from aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231204

Address after: 400039 No. 1-1, building 4, No. 39 Xinggu Road, Jiulongpo District, Chongqing

Patentee after: CHONGQING GREEN ENVIRONMENT PROTECTION TECHNOLOGY CO.,LTD.

Address before: 400030 No. 174 Sha Jie street, Shapingba District, Chongqing

Patentee before: Chongqing University

TR01 Transfer of patent right