CN110579522B - 纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用 - Google Patents
纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用 Download PDFInfo
- Publication number
- CN110579522B CN110579522B CN201910822945.4A CN201910822945A CN110579522B CN 110579522 B CN110579522 B CN 110579522B CN 201910822945 A CN201910822945 A CN 201910822945A CN 110579522 B CN110579522 B CN 110579522B
- Authority
- CN
- China
- Prior art keywords
- gqd
- solution
- chlorpyrifos
- rgo
- combined toxicity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides; Hydroxides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3277—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用,属于电化学传感器领域。其通过His‑GQD的制备、溶液A的制备、溶液B的制备和反应制得Co3O4‑His‑GQD@RGO纳米复合材料,再通过该材料制备电化学传感器,并将其应用于杀虫剂毒死蜱在细胞水平上的联合毒性评价。本发明将特殊官能团引入石墨烯量子点进行改性,从而引导电化学性能的改善,同时将改性后的石墨烯量子点与过渡金属氧化物复合,提高氧化物的电化学性能。石墨烯与Co3O4结合可以有效增强其电化学性能,石墨烯作为柔性基底不仅可以分散活性成分,阻止其发生团聚,而且可以构建导电通路,提高复合物导电性能。
Description
技术领域
本发明涉及一种纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用,具体涉及一种Co3O4-His-GQD@RGO纳米复合材料的制备方法及其在毒死蜱农药残留联合毒性检测中的应用,属于电化学传感器领域。
背景技术
毒死蜱(氯吡硫磷)是一种高效地硫代磷酸酯类杀虫剂,是烟碱乙酰胆碱受体的作用体,拥有胃毒、触杀和熏蒸多重功效。毒死蜱作用于害虫后,会阻碍其中枢神经正常的传导,最终使其麻痹死亡。毒死蜱杀虫剂具有广泛性、高效性、防效性,害虫不易产生抗效,已经普遍应用在农产品中。虽然毒死蜱的毒性不高。但是其在农产品中的高残留量会给人的身体健康造成严重的危害,因此迫切需要一种灵敏快速的检测方法来准确检测毒死蜱对人体细胞的毒性。
当前检测杀虫剂、杀螨剂的检测方法有荧光光谱法、高效液相色谱、气相色谱和电化学方法等,荧光光谱法难以在实际样品分析中获得可重复的结果,高效液相色谱和气相色谱这些方法大多使用大型且昂贵的仪器设备,样品预处理的步骤复杂,检测费用较为昂贵,且检测人员必须要经过专业培训,因此这些方法并不适用于样品的常规分析和批量筛选。基于电化学方法的电化学传感器具有操作简单,灵敏度高,选择性高以及操作费用低的优点而受到广泛关注。然而目前电化学传感器检测毒死蜱,在选择性、灵敏度或稳定性方面均存在一些缺陷,这主要是由电化学传感器所使用的电极材料的电化学性能不佳所导致的,因此研发改善电化学传感器性能的新型电极材料显得尤为重要。
Co3O4作为新型电极材料应用于电化学传感器在近年来得到迅速发展。Co3O4具有独特光学和化学性质的p型金属氧化物半导体之一,纳米尺寸的Co3O4有着独特的电化学性质。然而Co3O4作为电极材料,颗粒容易聚集,比表面积降低,进而影响其电化学性能。此外,自身较差的电导率也会影响其电化学性能,限制了其在高性能电化学传感器应用。
石墨烯是具有sp2杂化碳原子的六边形蜂窝结构,比表面积大,具有优秀的导电性、导热性、高拉伸强度、和化学稳定性,使其成为用于能量储存设备的潜在材料之一。因此将石墨烯与过渡金属氧化物复合形成的复合材料不仅能改善过渡金属氧化物的导电性、循环性能、抑制氧化物在充放电过程中的体积变化、提高其循环稳定性,而且还可以增加电解液与电极材料的接触面积,为电化学反应提供更多的反应点,有利于电化学反应的快速进行,从而提高其倍率性能。石墨烯量子点一般是指横向尺寸小于100nm,厚度仅为一层、两层或少层(<10层)的石墨烯小片,它同时兼具量子点(三个维度上尺寸均处于纳米级别的准零维纳米材料)与石墨烯(碳原子以sp2杂化形式紧密排列成蜂窝状结构的单层二维晶体)的性质,其内部电子在各个方向上的运动都受到局限,表现出更为显著的量子限域效应和边界效应,展现出高的电催化活性。然而相对于传统的石墨烯,石墨烯量子点的导电性较差,将极大地限制其在各种电化学领域的应用。
发明内容
本发明的目的是克服上述不足之处,提供一种纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用,其可以构建导电通路,提高复合物导电性能。
本发明的技术方案,一种纳米复合材料的制备方法,所述纳米材料为Co3O4-His-GQD@RGO纳米复合材料;步骤如下:
(1)His-GQD的制备:将柠檬酸与组氨酸混合均匀,加直至水溶解,500-1000Hz超声,600-1000r/min搅拌,直至分散均匀;采用高温热解法,在烘箱中150-180℃反应1-4h,制得组氨酸功能化石墨烯量子点His-GQD;
(2)溶液A的制备:将氧化石墨GO分散在去离子水中,500-1000Hz超声,得到质量浓度为2-4mg/mL的GO水溶液;将步骤(1)制备所得His-GQD粉末按照5-10mg/mL的浓度分散在GO水溶液中,500-1000Hz超声2-4h,之后调节pH至中性,制得溶液A;
(3)溶液B的制备:称取8mmol的Co(NO3)2·6H2O溶解在40mL去离子水中,得到溶液B;
(4)反应:将步骤(3)制备所得溶液B缓慢滴加到步骤(2)制备所得溶液A中,快速搅拌2-4h;将得到的沉淀离心、洗涤和干燥;于管式炉中,氮气气氛下退火,再于空气气氛中退火,得到Co3O4-His-GQD@RGO纳米复合材料。
进一步地,步骤(1)中柠檬酸:组氨酸混合时摩尔比为1:0.1~1。
进一步地,步骤(4)中所述在氮气气氛下退火2-4h,退火温度为400-600℃,再于270-400℃空气气氛中退火2-4h。
本发明的另一目的,纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,采用所述Co3O4-His-GQD@RGO纳米复合材料制备相应的电化学传感器,将其用于杀虫剂毒死蜱在细胞水平上的联合毒性评价。
进一步地,电化学传感器的制备步骤如下:
(1)将Co3O4-His-GQD@RGO纳米复合材料用超纯水洗涤3-6次,然后再分散在1.0-3.0mL,pH=6.0-8.0的Tris-HCl缓冲液中;
(2)电极处理:将得到Co3O4-His-GQD@RGO分散液与体积比为30:1-10:1的1-5%壳聚糖溶液混合得到混合溶液C,取5-10μL混合溶液C滴加在玻碳电极传感器的表面上,之后在N2条件下中干燥;再将修饰的玻碳电极浸入到叶酸活化液中,保持4-6小时,并用去离子水冲洗,得到叶酸/Co3O4-His-GQD@RGO玻碳电极,作为Co3O4-His-GQD@RGO纳米复合材料的电化学传感器。
进一步地,步骤(2)中修饰的玻碳电极浸入到用0.1M N-N-羟基琥珀酰亚胺-0.4M乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐混合物活化的5mM叶酸中,保持4-6小时。
进一步地,检测步骤如下:
(1)取处理后的生长至对数期的人胃癌细胞BEL-7402,向其中加入体积浓度0.5%的毒死蜱/乙醇溶液;以含0.5%体积浓度乙醇的细胞基作为实验的对照组;
(2)将5-15μL浓度为3×105细胞/mL的人胃癌细胞悬浮液滴加到叶酸/Co3O4-His-GQD@RGO玻碳电极表面上,在37℃下孵育12小时,然后浸入磷酸缓冲盐溶液中,去除未捕获的细胞;将修饰的玻碳电极采用差分脉冲伏安法进行扫描,电压窗口为-0.1~0.6V,通过DPV峰值电流的变化ΔIp来实现对人胃癌细胞浓度的测定。
进一步地,步骤(1)所述BEL-7402细胞在RPMI-1640培养基中培养,所述培养基在37℃,含有5%CO2的潮湿气氛中补充有10%胎牛血清,在3天后的生长迟缓阶段,细胞达到对数生长期。
本发明的有益效果:本发明将特殊官能团引入石墨烯量子点进行改性,从而引导电化学性能的改善,同时将改性后的石墨烯量子点与过渡金属氧化物复合,提高氧化物的电化学性能。石墨烯与Co3O4结合可以有效增强其电化学性能,石墨烯作为柔性基底不仅可以分散活性成分,阻止其发生团聚,而且可以构建导电通路,提高复合物导电性能。
附图说明
图1是本发明反应机理示意图。
图2-A为本发明中组氨酸功能化石墨烯量子点His-GQD拉曼光谱图。
图2-B为本发明中组氨酸功能化石墨烯量子点His-GQD红外光谱图。
图3为本发明中组氨酸功能化石墨烯量子点His-GQD的TEM图。
图4为本发明中Co3O4-His-GQD@RGO的拉曼光谱图。
图5为本发明中Co3O4-His-GQD@RGO的XRD图。
图6为本发明中Co3O4-His-GQD@RGO的SEM图。
具体实施方式
以下实施例中实验仪器如下:X射线衍射仪(D8 Advance,德国Bruker AXS公司)、S4800型扫描电子显微镜(日本日立公司)、傅立叶红外光谱仪(美国赛默飞世尔科技公司)、显微共焦拉曼光谱仪(英国雷尼邵贸易有限公司)、660D电化学工作站(上海辰华有限公司)。
实验用品如下:一水合柠檬酸(分析纯)、硝酸锌(分析纯)、硝酸钴(分析纯)、氢氧化钠(分析纯)、氢氧化钾(分析纯)、无水乙醇(分析纯)、毒死蜱均购自国药集团化学试剂公司,组氨酸(99%)购自阿拉丁试剂有限公司。
实施例1Co3O4-His-GQD@RGO纳米复合材料的制备方法
反应机理如图1所示。
(1)His-GQD的制备:按柠檬酸:组氨酸摩尔比1:0.1取原料,将二者混合均匀,加直至水溶解,500Hz超声,1000r/min搅拌,直至分散均匀;采用高温热解法,在烘箱中160℃反应2h,制得组氨酸功能化石墨烯量子点His-GQD;
对制备得到的组氨酸功能化石墨烯量子点His-GQD进行表征,具体如图2所示。其中图2-A为His-GQD的拉曼光谱图,图中1340cm-1处和1590cm-1处各有一个特征峰,1340cm-1处的D带为无序性碳sp3杂化结构的特征峰,1590cm-1处的G带为碳sp2杂化结构的特征峰。图2-B为His-GQD的红外光谱图,从图谱中可以观察到,位于3600cm-1和3300cm-1之间的吸收峰为His-GQD氨基中-N-H键的伸缩振动及羧基和羟基中-O-H的伸缩振动,位于1590cm-1处的吸收峰为组氨酸咪唑环中C=N的伸缩振动,位于1700cm-1处的吸收峰为-C=O键的伸缩振动。
图3为His-GQD的TEM图,从图中可以看出石墨烯量子点的典型二维片状结构,平均尺寸大小为5nm左右。
(2)溶液A的制备:将氧化石墨GO分散在去离子水中,800Hz超声,得到质量浓度为3mg/mL的GO水溶液;将步骤(1)制备所得His-GQD粉末按照8mg/mL的浓度分散在GO水溶液中,800Hz超声3h,之后调节pH至中性,制得溶液A;
(3)溶液B的制备:称取8mmol的Co(NO3)2·6H2O溶解在40mL去离子水中,得到溶液B;
(4)反应:将步骤(3)制备所得溶液B缓慢滴加到步骤(2)制备所得溶液A中,快速搅拌3h;将得到的沉淀离心、洗涤和干燥;于管式炉中,氮气气氛下500℃退火3h,再于330℃空气气氛中退火3h,得到Co3O4-His-GQD@RGO纳米复合材料。
Co3O4-His-GQD@RGO纳米复合材料的拉曼光谱图如图4所示。图5为Co3O4-His-GQD@RGO的XRD图。在衍射角2θ=19.08°、31.33°、36.81°、38.49°、44.74°、55.57°、59.28°、65.15°处的衍射峰与Co3O4的标准谱图(JCPDS No.78-1790)相吻合,分别对应于(111)、(220)、(311)、(222)、(400)、(422)、(511)、(440)晶面,在2θ=26.5°对应于石墨烯的特征峰。图6为本发明中Co3O4-His-GQD@RGO的SEM图。
实施例2Co3O4-His-GQD@RGO纳米复合材料的电化学生物传感器的制备
(1)将收集的Co3O4-His-GQD@RGO纳米复合材料用超纯水洗涤4次,然后再分散在2mL,pH=7的Tris-HCl缓冲液中。
(2)将步骤(1)得到的Co3O4-His-GQD@RGO分散液与体积比为30:1的3%壳聚糖溶液混合得到混合溶液C,取8μL混合溶液C滴加在玻碳电极传感器的表面上,之后在N2条件下中干燥。再将修饰的玻碳电极浸入到用0.1M N-N-羟基琥珀酰亚胺-0.4M乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐混合物活化的5mM叶酸中,保持5小时,并用去离子水冲洗,得到叶酸/Co3O4-His-GQD@RGO玻碳电极。
实施例3在毒死蜱农药残留联合毒性检测中的应用
(1)细胞培养:取处理后的生长至对数期的人胃癌细胞(BEL-7402)(BEL-7402细胞在RPMI-1640培养基中培养,所述培养基在37℃,含有5%CO2的潮湿气氛中补充有10%胎牛血清,在3天后的生长迟缓阶段,细胞达到对数生长期),取处理后生长至对数期的人体胃癌细胞,向其中加入0.5%体积浓度毒死蜱溶液。
毒死蜱的化学式如下:
毒死蜱分散在乙醇中,浓度为0.5%,并以含0.5%体积浓度乙醇的细胞基作为实验的对照组;
(2)将10μL浓度为3×105细胞/mL的人肝癌细胞悬浮液滴加到叶酸/Co3O4-His-GQD@RGO玻碳电极表面上,在37℃下孵育12小时,然后浸入磷酸缓冲盐溶液中,去除未捕获的细胞;将修饰的玻碳电极采用差分脉冲伏安法(DPV)进行扫描,电压窗口为-0.1~0.6V,通过DPV峰值电流的变化(ΔIp)来实现对人肝癌细胞浓度的测定。
Claims (7)
1.纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征在于,所述纳米材料为Co3O4-His-GQD@RGO纳米复合材料,制备方法如下:
(1)His-GQD的制备:将柠檬酸与组氨酸混合均匀,加热直至水溶解,500-1000 Hz超声,600-1000r/min搅拌,直至分散均匀;采用高温热解法,在烘箱中150-180℃反应1-4h,制得组氨酸功能化石墨烯量子点His-GQD;
(2)溶液A的制备:将氧化石墨GO分散在去离子水中,500-1000Hz超声,得到质量浓度为2-4mg/mL的GO水溶液;将步骤(1)制备所得His-GQD粉末按照5-10mg/mL的浓度分散在GO水溶液中,500-1000Hz超声2-4h,之后调节pH至中性,制得溶液A;
(3)溶液B的制备:称取8mmol的Co(NO3)2·6H2O溶解在40mL去离子水中,得到溶液B;
(4)反应:将步骤(3)制备所得溶液B缓慢滴加到步骤(2)制备所得溶液A中,快速搅拌2-4h;将得到的沉淀离心、洗涤和干燥;于管式炉中,氮气气氛下退火,再于空气气氛中退火,得到Co3O4-His-GQD@RGO纳米复合材料;
采用所述Co3O4-His-GQD@RGO纳米复合材料制备相应的电化学传感器,将其用于杀虫剂毒死蜱在细胞水平上的联合毒性评价。
2.如权利要求1所述纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征是:步骤(1)中柠檬酸:组氨酸混合时摩尔比为1:0.1~1。
3.如权利要求1所述纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征是:步骤(4)中在氮气气氛下退火2-4h,退火温度为400-600℃,再于270-400℃空气气氛中退火2-4h。
4.如权利要求1所述纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征是电化学传感器的制备步骤如下:
步骤S1、将Co3O4-His-GQD@RGO纳米复合材料用超纯水洗涤3-6次,然后再分散在1.0-3.0mL, pH= 6.0-8.0的Tris-HCl缓冲液中;
步骤S2、电极处理:将得到Co3O4-His-GQD@RGO分散液与体积比为30:1-10:1的1-5%壳聚糖溶液混合得到混合溶液C,取5-10μL混合溶液C滴加在玻碳电极传感器的表面上,之后在N2条件下中干燥;再将修饰的玻碳电极浸入到叶酸活化液中,保持4-6小时,并用去离子水冲洗,得到叶酸/Co3O4-His-GQD@RGO玻碳电极,作为Co3O4-His-GQD@RGO纳米复合材料的电化学传感器。
5.如权利要求4所述纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征是:步骤S2中修饰的玻碳电极浸入到用 0.1M N-N-羟基琥珀酰亚胺-0.4M 乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐混合物活化的5mM叶酸中,保持4-6小时。
6.如权利要求1所述纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征是检测步骤如下:
a、取处理后的生长至对数期的人胃癌细胞BEL-7402,向其中加入体积浓度0.5%的毒死蜱/乙醇溶液;以含0.5%体积浓度乙醇的细胞基作为实验的对照组;
b、将5-15μL浓度为3×105 细胞/mL的人胃癌细胞悬浮液滴加到叶酸/Co3O4-His-GQD@RGO玻碳电极表面上,在37 ℃下孵育12小时,然后浸入磷酸缓冲盐溶液中,去除未捕获的细胞;将修饰的玻碳电极采用差分脉冲伏安法进行扫描,电压窗口为-0.1~0.6V,通过DPV峰值电流的变化ΔIp来实现对人胃癌细胞浓度的测定。
7.如权利要求6所述纳米复合材料在毒死蜱农药残留联合毒性检测中的应用,其特征是:步骤a所述BEL-7402细胞在RPMI-1640培养基中培养,所述培养基在37℃,含有5%CO2的潮湿气氛中补充有10%胎牛血清,在3天后的生长迟缓阶段,细胞达到对数生长期。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910822945.4A CN110579522B (zh) | 2019-09-02 | 2019-09-02 | 纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910822945.4A CN110579522B (zh) | 2019-09-02 | 2019-09-02 | 纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110579522A CN110579522A (zh) | 2019-12-17 |
CN110579522B true CN110579522B (zh) | 2021-12-03 |
Family
ID=68812490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910822945.4A Active CN110579522B (zh) | 2019-09-02 | 2019-09-02 | 纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110579522B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111696790A (zh) * | 2020-06-23 | 2020-09-22 | 江苏省特种设备安全监督检验研究院 | 一种高分散石墨烯-氧化钌纳米复合材料的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437320B (zh) * | 2011-11-21 | 2014-06-18 | 北京师范大学 | 一种石墨烯包覆介孔结构金属氧化物及其制备方法和用途 |
CN107219274B (zh) * | 2017-05-27 | 2019-05-17 | 江南大学 | 一种分析真菌毒素联合毒性的细胞电化学传感器 |
-
2019
- 2019-09-02 CN CN201910822945.4A patent/CN110579522B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110579522A (zh) | 2019-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: Tunable nitrogen-doping properties and efficient electrochemiluminescence sensing | |
Ma et al. | PtNi bimetallic nanoparticles loaded MoS2 nanosheets: Preparation and electrochemical sensing application for the detection of dopamine and uric acid | |
Chung et al. | A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis | |
Xu et al. | Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit | |
Long et al. | Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation | |
Wang et al. | Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing | |
Rani et al. | Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine | |
Zhang et al. | Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing | |
Zhao et al. | Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode | |
Mei et al. | A glassy carbon electrode modified with porous Cu 2 O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid | |
Zou et al. | Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine | |
Feng et al. | A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode | |
Pei et al. | Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid | |
Zeb et al. | Synthesis of highly oriented WO3 nanowire bundles decorated with Au for gas sensing application | |
Lu et al. | Hemoglobin entrapped within a layered spongy Co 3 O 4 based nanocomposite featuring direct electron transfer and peroxidase activity | |
CN108393501B (zh) | 一种直径可控Cu纳米线的制备方法 | |
Wang et al. | Controlled preparation and gas sensitive properties of two-dimensional and cubic structure ZnSnO3 | |
Wu et al. | Binary cobalt and manganese oxides: Amperometric sensing of hydrogen peroxide | |
Bi et al. | Synthesis of Ag-functionalized α-Fe2O3 nanocomposites for ppb-level triethylamine detection | |
Chen et al. | One-step hydrothermal treatment to fabricate Bi 2 WO 6-reduced graphene oxide nanocomposites for enhanced visible light photoelectrochemical performance | |
Sun et al. | Periodic nanostructured Au arrays on an Si electrode for high-performance electrochemical detection of hydrogen peroxide without an enzyme | |
Cao et al. | Selective sensing of dopamine at MnOOH nanobelt modified electrode | |
Mutharani et al. | Ultrasound-induced radicals initiated the formation of inorganic–organic Pr2O3/polystyrene hybrid composite for electro-oxidative determination of chemotherapeutic drug methotrexate | |
Lu et al. | Construction of a au@ mos 2 composite nanosheet biosensor for the ultrasensitive detection of a neurotransmitter and understanding of its mechanism based on dft calculations | |
CN110579522B (zh) | 纳米复合材料的制备及其在毒死蜱农药残留联合毒性检测中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |