CN110577654A - 一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法 - Google Patents

一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法 Download PDF

Info

Publication number
CN110577654A
CN110577654A CN201910820012.1A CN201910820012A CN110577654A CN 110577654 A CN110577654 A CN 110577654A CN 201910820012 A CN201910820012 A CN 201910820012A CN 110577654 A CN110577654 A CN 110577654A
Authority
CN
China
Prior art keywords
polylactic acid
polyethylene glycol
hectorite
triblock copolymer
stereocomplex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910820012.1A
Other languages
English (en)
Inventor
何敏
龚勇吉
刘玉飞
于杰
秦舒浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201910820012.1A priority Critical patent/CN110577654A/zh
Publication of CN110577654A publication Critical patent/CN110577654A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种锂皂石增强的聚乳酸‑聚乙二醇‑聚乳酸三嵌段共聚物纳米立构复合水凝胶,通过纳米锂皂石的增强作用和聚乳酸链段的立构络合作用对聚乳酸‑聚乙二醇‑聚乳酸三嵌段共聚物水凝胶进行了增强,复合水凝胶的物理机械性能得到了明显的改善。

Description

一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳 米立构复合水凝胶的制备方法
技术领域
本发明涉及一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,属于高分子复合材料、生物医药材料的制备领域。
背景技术
水凝胶是一类具有高含水量和三维网络结构的材料,在智能材料和生物医药领域具有广泛的应用。聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物是一种具有良好的生物相容性和可降解性的高分子共聚物,其同时兼具亲水性和疏水性能,在生物医药领域有着广泛的应用前景。在结构上,由于聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物中的聚乳酸链段具有左旋和右旋两种异构体,因此该两种异构体的共聚物之间可以发生立构络合作用。锂皂石(LAP)是一种层状硅酸盐类物质,具有良好的抗菌性、吸附性生物相容性,其水溶液中具有良好的分散性,可以形成无色透明的物理交联网络的水凝胶,在纳米复合水凝胶领域有着广泛的应用。通过利用锂皂石水中易凝胶的特性和聚乳酸链段的立构络合作用能够增强聚乳酸-聚乙二醇-聚乳酸水凝胶的物理机械性能,拓展聚乳酸-聚乙二醇-聚乳酸水凝胶材料的应用范围。。
有关聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物水凝胶的制备方法,相关文献和专利主要采取的是单一的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物的共混法,但物理机械性能较差。本发明通过利用锂皂石和立构络合作用增强水凝胶,提高水凝胶的物理机械性能,具有创新性。
发明内容
本发明要解决的技术问题是:提供一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,以解决现有技术中聚乳酸-聚乙二醇-聚乳酸三嵌段水凝胶物理机械性能较低的局限。
本发明的技术方案是:采用锂皂石、左旋和右旋聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物按照一定的比例在蒸馏水中进行机械共混获得一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶。
所述的一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,(1)左旋的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物(PLLA-PEG-PLLA)和右旋的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物(PDLA-PEG-PDLA)为基体,水为溶剂,在室温下搅拌,得到左旋和右旋的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物胶束;(2)将两种胶束进行混合得到立构胶束溶液;(3)通过机械搅拌得到锂皂石水溶液;(4)将立构胶束溶液与锂皂石溶液共混,得到聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶。
步骤(1)PLLA-PEG-PLLA和PDLA-PEG-PDLA的胶束浓度为 20%。
步骤(2)中的两种胶束的混合比例为1:1.
步骤(3)中,锂皂石水溶液的浓度小于14%。
步骤(4)中,水凝胶的制备在4℃下进行溶液共混,在80℃以下进行凝胶。
本发明的有益效果:为了解决以上的问题,本发明制备了一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶,可以进一步提高聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物的物理机械性能。
附图说明
图1为本发明反应示意图;
图2为25℃恒温处理的不同锂皂石浓度的复合水凝胶的储能模量随温度变化的流变图;
图3为25℃恒温处理的不同锂皂石浓度的复合水凝胶的扫描电镜图;
图4为(a)LLA44 0.8EG56 2LLA44 0.8和DLA44 0.8EG56 2DLA44 0.8共聚物的 GPC曲线;(b)LLA44 0.8EG56 2LLA44 0.8和DLA44 0.8EG56 2DLA44 0.8共聚物的1H-NMR图。
具体实施方式
下面通过具体实例进一步说明本发明,但实例并不限制本发明的保护范围。
聚乳酸-聚乙二醇-聚乳酸的制备方法为:
采用PEG大分子引发丙交酯开环聚合的方法合成PLLA-PEG-PLLA三嵌段共聚物,合成反应示意式如下所示。
其中,x=2000,y=800。
第一步,将一定比例的左旋(L)(或右旋D)-丙交酯、聚乙二醇(PEG)、辛酸亚锡加入100mL的三口圆底烧瓶中,通入N2数分钟后,加入一定量的甲苯溶液,磁力搅拌均匀,120℃下反应8h;
第二步,将反应得到的产物取出,冷却至室温后,使用冰乙醚沉淀,得到白色固体产物;
第三步,再将此白色固体用二氯甲烷溶解,搅拌,滴入冰乙醚中沉淀,抽滤,此过程重复三次;
第四步,将提纯的产物放入真空干燥箱干燥,可得纯净 PLLA-PEG-PLLA三嵌段共聚物。
表1三嵌段共聚物的分子量及分布
实施例1
锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物立构复合水凝胶的制备步骤:
第一步,将2g PLLA-PEG-PLLA或PDLA-PEG-PDLA溶于4ml四氢呋喃中,随后逐滴加入到装有8ml去离子水的15ml样品瓶中。使用磁力搅拌器搅拌均匀后在4℃条件下静置过夜,然后降低气压挥发除去共混物中的四氢呋喃得到浓度为20%的胶束溶液。
第二步,在4℃的条件下,先把20%的PLLA-PEG-PLLA和 PDLA-PEG-PDLA胶束溶液按照1:1共混,得到立构胶束溶液,再把立构胶束溶液和超纯水溶液按照1:1的比例振荡混合得到聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物立构复合水凝胶,再升温得到结构稳定的复合水凝胶。
实施例2
锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备步骤:
第一步,将2gPLLA-PEG-PLLA或PDLA-PEG-PDLA溶于4ml四氢呋喃中,随后逐滴加入到装有8ml去离子水的15ml样品瓶中。使用磁力搅拌器搅拌均匀后在4℃条件下静置过夜,然后降低气压挥发除去共混物中的四氢呋喃得到浓度为20%的胶束溶液。
第二步,称取一定量的锂皂石粉末和焦磷酸钠盐,锂皂石与焦磷酸钠盐的比例为10:1,随后先将焦磷酸钠盐加入装有一定量超纯水的烧杯中配置成溶液,再把锂皂石粉末缓慢地加入用磁力搅拌器搅拌的焦磷酸钠溶液中,用保鲜膜密封,避免水分蒸发,然后搅拌过夜,得到浓度为2%,6%,10%,14%锂皂石溶液,4℃条件下静置备用。
第三步,在4℃的条件下,先把20%的PLLA-PEG-PLLA和 PDLA-PEG-PDLA胶束溶液按照1:1共混,得到立构胶束溶液,再把立构胶束溶液分别与2%,6%,10%,14%的锂皂石溶液按照1:1的比例振荡混合得到聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶,再升温得到结构稳定的复合水凝胶。
将实例1和2中得到的复合水凝胶测试流变性能,在25℃,频率为 1Hz,应变固定为1%时,复合水凝胶的储能模量结果如下表所示:
注:表中1、2、3、4、5号分别是复合水凝胶中锂皂石溶液浓度为0%、1%、3%、5%、7%的复合水凝胶样品。

Claims (6)

1.一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶,其特征在于:用锂皂石、左旋和右旋聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物在蒸馏水中进行机械共混而得。
2.如权利要求1所述的一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,其特征在于:(1)左旋的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物(PLLA-PEG-PLLA)和右旋的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物(PDLA-PEG-PDLA)为基体,水为溶剂,在室温下搅拌,得到左旋和右旋的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物胶束;(2)将两种胶束进行混合得到立构胶束溶液;(3)通过机械搅拌得到锂皂石水溶液;(4)将立构胶束溶液与锂皂石溶液共混,得到聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶。
3.根据权利要求2所述的一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,其特征在于:步骤(1)PLLA-PEG-PLLA和PDLA-PEG-PDLA的胶束浓度为20%。
4.根据权利要求2所述的一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,其特征在于:步骤(2)中的两种胶束的混合比例为1:1。
5.根据权利要求2所述的一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,其特征在于:步骤(3)中,锂皂石水溶液的浓度小于14%。
6.根据权利要求2所述的一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法,其特征在于:步骤(4)中,水凝胶的制备在4℃下进行溶液共混,在80℃以下进行凝胶。
CN201910820012.1A 2019-08-31 2019-08-31 一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法 Pending CN110577654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910820012.1A CN110577654A (zh) 2019-08-31 2019-08-31 一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910820012.1A CN110577654A (zh) 2019-08-31 2019-08-31 一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法

Publications (1)

Publication Number Publication Date
CN110577654A true CN110577654A (zh) 2019-12-17

Family

ID=68811624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910820012.1A Pending CN110577654A (zh) 2019-08-31 2019-08-31 一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN110577654A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825956A (zh) * 2020-07-07 2020-10-27 江西师范大学 聚乳酸嵌段共聚物的共混物的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283966A (zh) * 2008-06-05 2008-10-15 复旦大学 一种生物降解性水凝胶控释制剂及其制备方法和应用
CN101942167A (zh) * 2010-09-10 2011-01-12 天津工业大学 含有纳米粘土的高吸附性水凝胶及其制备方法和应用
CN102344559A (zh) * 2011-07-16 2012-02-08 西北大学 一种可注射温敏水凝胶及其制备方法
CN103408693A (zh) * 2013-07-15 2013-11-27 东华大学 一种响应温度可调的温敏性水凝胶的制备方法
CN104341556A (zh) * 2014-10-10 2015-02-11 齐鲁工业大学 一种高强度双网络纳米锂皂石复合水凝胶的制备方法
US20160272811A1 (en) * 2013-03-20 2016-09-22 Institute Of Chemistry Academy Of Sciences A polylactic acid stereocomplex composition, its molded product, a process for its manufacture and its application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283966A (zh) * 2008-06-05 2008-10-15 复旦大学 一种生物降解性水凝胶控释制剂及其制备方法和应用
CN101942167A (zh) * 2010-09-10 2011-01-12 天津工业大学 含有纳米粘土的高吸附性水凝胶及其制备方法和应用
CN102344559A (zh) * 2011-07-16 2012-02-08 西北大学 一种可注射温敏水凝胶及其制备方法
US20160272811A1 (en) * 2013-03-20 2016-09-22 Institute Of Chemistry Academy Of Sciences A polylactic acid stereocomplex composition, its molded product, a process for its manufacture and its application
CN103408693A (zh) * 2013-07-15 2013-11-27 东华大学 一种响应温度可调的温敏性水凝胶的制备方法
CN104341556A (zh) * 2014-10-10 2015-02-11 齐鲁工业大学 一种高强度双网络纳米锂皂石复合水凝胶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YMIYAZAKI, MAKOTO ET AL.: "PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration", 《POLYMER》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825956A (zh) * 2020-07-07 2020-10-27 江西师范大学 聚乳酸嵌段共聚物的共混物的制备方法

Similar Documents

Publication Publication Date Title
Ma et al. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
CN105176080A (zh) 一种生物相容性良好的可注射水凝胶及其制备方法和应用
Yang et al. A facile strategy to fabricate glucose-responsive vesicles via a template of thermo-sensitive micelles
Yang et al. Synthesis and characterization of temperature-sensitive cellulose-graft-poly (N-isopropylacrylamide) copolymers
Zou et al. Supramolecular hydrogels from inclusion complexation of α-cyclodextrin with densely grafted chains in micelles for controlled drug and protein release
Gao et al. Facile preparation of shell crosslinked micelles for redox-responsive anticancer drug release
CN101798403A (zh) 一种壳聚糖/聚乙烯醇/聚乳酸共混致密膜的制备方法
Yuan et al. Amphiphilic block copolymer terminated with pyrene group: from switchable CO 2-temperature dual responses to tunable fluorescence
CN110698718A (zh) 纳米羟基磷灰石包覆的中空聚合物微球及其制备方法和应用
CN110577654A (zh) 一种锂皂石增强的聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物纳米立构复合水凝胶的制备方法
KR102123731B1 (ko) 하이드로젤 및 마이셀용의 기능성 폴리에틸렌글리콜/폴리에스터 블록 공중합체 및 이의 제조방법
Lee et al. Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution
CN109568675A (zh) 降解速率可荧光标记的聚酯/周期性介孔骨填充复合材料的制备及产品和应用
Xu et al. Microstructure transformation of PDMS-E grafted gelatin polymers induced by SDS and SDBS
CN112480417A (zh) 一种天然高分子基可注射水凝胶及其制备方法
Tafazoli et al. Synthesis and characterization of novel biodegradable water dispersed poly (ether-urethane) s and their MWCNT-AS nanocomposites functionalized with aspartic acid as dispersing agent
Zhang et al. The effect of an anionic starburst dendrimer on the crystallization of BaWO4 under hydrothermal reaction conditions
Guo et al. Suprarmolecular hydrogels driven by the dual host–guest interactions between α-cyclodextrin and ferrocene-modified poly (ethylene glycol) with low-molecular-weight
Liang et al. Novel quaternized chitosan and polymeric micelles with cross-linked ionic cores for prolonged release of minocycline
Liu et al. Self-assembled oleylamine grafted alginate aggregates for hydrophobic drugs loading and controlled release
KR20160041166A (ko) 인산화된 칼슘 알기네이트 복합체로부터 유래된 주사가능한 하이드로겔
Yang et al. Effect of hydroxyapatite particles on the rheological behavior of poly (ethylene glycol)-poly (lactic-co-glycolic acid) thermosensitive hydrogels
CN110302155B (zh) 一种黄原胶共聚物纳米胶束的制备方法及其应用
Zhu Particle formation and aggregation–collapse behavior of poly (N-isopropylacrylamide) and poly (ethylene glycol) block copolymers in the presence of cross-linking agent
Zhang et al. Synthesis and properties of Pluronic-based pentablock copolymers with pendant amino groups

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191217