CN110572031A - 一种用于电压变换电路的控制电路及方法 - Google Patents

一种用于电压变换电路的控制电路及方法 Download PDF

Info

Publication number
CN110572031A
CN110572031A CN201910525327.3A CN201910525327A CN110572031A CN 110572031 A CN110572031 A CN 110572031A CN 201910525327 A CN201910525327 A CN 201910525327A CN 110572031 A CN110572031 A CN 110572031A
Authority
CN
China
Prior art keywords
voltage
signal
reference voltage
power switch
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910525327.3A
Other languages
English (en)
Other versions
CN110572031B (zh
Inventor
罗钲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Publication of CN110572031A publication Critical patent/CN110572031A/zh
Application granted granted Critical
Publication of CN110572031B publication Critical patent/CN110572031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/15Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using discharge tubes only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/48Indexing scheme relating to amplifiers the output of the amplifier being coupled out by a capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45631Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • H03K4/08Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape
    • H03K4/48Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices
    • H03K4/50Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提出了一种用于电压变换电路的控制电路及方法。所述电压变换电路包括至少一个功率开关。所述控制电路包括斜坡信号生成电路,生成自功率开关被关断时减小、自功率开关被导通时增大的斜坡信号;参考电压生成电路,生成自功率开关被关断时以基准电压的值开始增大的参考电压;比较电路,基于参考电压、反馈电压与斜坡信号,生成比较信号;逻辑电路,基于比较信号与定频时钟信号,生成控制信号,其中,当定频时钟信号产生脉冲,功率开关被关断,当比较信号表明参考电压等于反馈电压与斜坡电压两者之和时,功率开关被导通。本发明所提出的控制电路及方法暂态响应快,且无论在暂态还是稳态下开关频率都保持恒定不变。

Description

一种用于电压变换电路的控制电路及方法
技术领域
本发明涉及电力电子电路,尤其但不限于涉及电压变换电路。
背景技术
由于其具有快速暂态响应,固定导通时长控制COT(Constant On-Time)被广泛应用于DC/DC变换电路。然而,固定导通时长控制下的电压变换电路的开关频率无法恒定,在某些要求恒定开关频率的场合(例如车载系统),固定导通时长控制很难满足需求。与此相对地,峰值电流控制具有恒定开关频率,然而其暂态响应缓慢;同时,为了实现电流检测,必须设定每个开关周期的最小导通时间。
因此,需要提出一种同时具有快速暂态响应与恒定开关频率的控制方法与电路。
发明内容
根据本发明的实施例,提出了一种用于电压变换电路的控制电路,所述电压变换电路包括至少一个功率开关,将输入电压变换为输出电压,所述控制电路包括:斜坡信号生成电路,生成斜坡信号,所述斜坡信号自功率开关被关断的时刻起减小,自功率开关被导通的时刻起增大;参考电压生成电路,生成参考电压,所述参考电压自功率开关被关断的时刻起以基准电压的值开始增大;比较电路,基于参考电压,以及反馈电压与斜坡信号两者之和,生成比较信号;以及逻辑电路,基于比较信号与定频时钟信号,生成控制信号以控制功率开关的导通与关断,其中,当定频时钟信号产生脉冲,功率开关被关断,当比较信号表明参考电压等于反馈电压与斜坡电压两者之和时,功率开关被导通。
根据本发明的实施例,提出了一种电压变换系统,包括前述电压变换电路与控制电路。
根据本发明的实施例,提出了一种用于前述电压变换电路的控制方法,包括:基于定频时钟信号,关断功率开关;生成斜坡信号与参考电压,所述斜坡信号自功率开关被关断的时刻起减小,自功率开关被导通的时刻起增大,所述参考电压自功率开关被关断的时刻起以基准电压的值开始增大;将参考电压与反馈电压与斜坡信号两者之和进行比较,其中反馈电压与输出电压成比例关系;以及当参考电压等于反馈电压与斜坡信号两者之和,导通功率开关。
附图说明
为了更好的理解本发明,将根据以下附图对本发明的实施例进行描述。这些附图仅用于示意说明,相似的部分具有相似的数字标号。附图仅示出器件的部分特征,并且不一定按照比例进行绘制,附图的尺寸和比例可能与实际的尺寸和比例不一致。
图1示出了根据本发明一实施例的用于电压变换电路101的控制电路10 的结构框图;
图2示出了根据本发明一实施例的控制电路20的电路原理图;
图3示出了根据本发明另一实施例的参考电压生成电路204B的电路原理图;
图4示出了处于稳态下的图2的信号波形图;
图5A和图5B示出了处于暂态下的图2的信号波形图;
图6示出了根据本发明一实施例的参考电压生成电路204C的电路原理图;
图7示出了根据本发明一实施例的控制电压变换电路的方法的流程图。
具体实施方式
下面将详细描述本发明的具体实施例。应当理解的是,这些实施例只用于举例说明,并不用于限制本发明。相反地,本发明应当涵盖替代、修改和等效等方式,这些方式可能在附加的权利要求所定义的精神和范围之内。另外,在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的电路、材料或方法。
图1示出了根据本发明一实施例的用于电压变换电路101的控制电路10 的结构框图。电压变换电路101包括至少一个功率开关,接收输入电压VIN,并提供输出电压VOUT。反馈电路102接收输出电压VOUT,并提供与输出电压VOUT成比例关系的反馈电压VFB。在图1中,控制电路10包括斜坡信号生成电路103、参考电压生成电路104、比较电路105及逻辑电路106。斜坡信号生成电路103提供斜坡信号RAMP。参考电压生成电路104提供参考电压VREF。在每个开关周期内,该参考电压VREF以一定的斜率增长,并在某一时刻被拉低。比较电路105接收参考电压VREF,以及反馈电压VFB与斜坡信号RAMP两者之和,并提供比较信号COMP。逻辑电路106接收比较信号COMP,以及定频时钟信号CLK,并提供控制信号CTRL以控制电压变换电路101。
定频时钟信号CLK可以来自与控制电路10集成在一起的内部时钟电路,也可由外部独立的时钟电路提供。
图2示出了根据本发明一实施例的控制电路20的电路原理图。控制电路 20包括斜坡信号生成电路203、参考电压生成电路204A、比较电路205及逻辑电路206。控制电路20用于控制电压变换电路201,该电压变换电路201接收输入电压VIN,提供输出电压VOUT,包括高压侧功率开关M1、低压侧二极管D1、电感L1及输出电容COUT。高压侧功率开关M1具有第一端、第二端及控制端,所述第一端耦接至输入电压VIN。低压侧二极管D1具有阳极端及阴极端,所述阳极端耦接至高压侧功率开关M1的第二端,所述阴极端耦接至参考地。电感L1具有第一端及第二端,所述第一端耦接至高压侧功率开关 M1的第二端。输出电容COUT具有第一端及第二端,所述第一端耦接至电感 L1的第二端,所述第二端耦接至参考地。输出电容COUT两端的电压即为输出电压VOUT。反馈电路202接收输出电压VOUT,提供与输出电压VOUT成比例关系的反馈电压VFB。在图2中,反馈电路202包括由电阻R1与R2 组成的电阻分压网络。
斜坡信号生成电路203提供斜坡信号RAMP,包括电阻R3与电容C1。斜坡信号RAMP产生于电阻R3与电容R1的连接节点,与流过电感L1的电流 IL同相位。换言之,斜坡信号生成电路203模拟了电感电流IL,使得斜坡信号RAMP与电感电流IL同时增大且同时减小,这样可免去检测电流电流IL 的必要,从而使得高压侧功率开关M1的最小导通时间能够达到非常小的值。
参考电压生成信号204A接收定频时钟信号CLK与控制信号G1,提供参考电压VREF,包括锯齿信号生成电路41A及加法电路42。锯齿信号产生电路41A包括电流源IS、电容C2、开关S1及或门411。电流源IS具有第一端及第二端,所述第一端耦接至内部电压源VCC,所述第二端为电容C2提供充电电流。电容C2具有第一端与第二端,所述第一端耦接至电流源IS的第二端,所述第二端耦接至参考地。或门411具有第一输入端、第二输入端及输出端,所述第一输入端接收定频时钟信号CLK,第二输入端接收控制信号G1,所述输出端提供控制开关S1的信号。开关S1与电容C2并联,并且由或门411输出端提供的信号控制导通与关断。加法电路42具有第一输入端、第二输入端及输出端,所述第一输入端接收电容C2两端的电压(即锯齿信号ST),所述第二输入端接收基准电压VBASE,所述输出端提供参考电压VREF,也就是基准电压VBASE及锯齿信号ST两者之和。
比较电路205接收反馈电压VFB与斜坡信号RAMP之和,同时接收参考电压VREF,并提供比较信号COMP。在图2的示例中,比较电路205包括一个比较器,该比较器具有反相输入端、同相输入端及输出端,所述反相输入端接收反馈电压VFB与斜坡信号RAMP之和,所述同相输入端接收参考电压 VREF,所述输出端提供比较信号COMP。比较信号COMP维持在低电平,直到参考电压VREF增长至等于反馈电压VFB与斜坡信号RAMP之和,该比较信号COMP跳变至高电平。
逻辑电路206接收比较信号COMP及定频时钟信号CLK,提供控制信号 G1,包括RS触发器。该RS触发器具有复位端“R”、置位端“S”及输出端,所述复位端“R”接收定频时钟信号CLK,所述置位端“S”接收比较信号COMP,所述输出端提供控制信号G1以控制高压侧功率开关的导通与关断。
在图2中,锯齿信号ST产生于电容C2的第一端。在一个时钟周期里,当定频时钟信号CLK产生脉冲(例如在定频时钟信号CLK的上升沿),控制信号G1被复位至低电平,高压侧功率开关M1被关断。而或门411的输出信号跳变至高电平,从而导通开关S1,电容C2被迅速放电。当定频时钟信号 CLK的当前短脉冲结束,定频时钟信号CLK回落至低电平,或门411的输出信号也回落至低电平,开关S1被关断,意味着电容C2再次开始充电,锯齿信号ST以一定斜率增长。换言之,当定频时钟信号CLK产生脉冲、高压侧功率开关M1被关断,参考电压VREF被迅速拉低之后从基准电压VBASE的值开始增长,与此同时,斜坡信号RAMP开始减小,因此反馈电压VFB与斜坡信号RAMP之和也在减小。当参考电压VREF的值等于反馈电压VFB与斜坡信号RAMP之和时,比较信号COMP跳变至高电平,控制信号G1被置位至高电平,高压侧功率开关M1被导通。此时,或门411的输出信号随即跳变至高电平,开关S1被导通,参考电压VREF被拉低至基准电压VBASE的值。当定频时钟信号CLK产生下一个脉冲,即进入下一个时钟周期,上述过程再次重复。
在图2的示例中,高压侧功率开关M1是基于定频时钟信号CLK的上升沿被关断。在另一个实施例中,高压侧功率开关M1是基于定频时钟信号CLK 的下降沿被关断。
在图2的示例中,当参考电压VREF的值等于反馈电压VFB与斜坡信号 RAMP之和,比较信号COMP跳变至高电平,基于该比较信号COMP的上升沿,控制信号G1被置位。在另一个实施例中,当参考电压VREF的值等于反馈电压VFB与斜坡信号RAMP之和,比较信号COMP跳变至低电平,基于该比较信号COMP的下降沿,控制信号G1被置位。本领域普通技术人员不难理解,只要当定频时钟信号CLK产生脉冲时,高压侧功率开关M1被关断,而当参考电压VREF的值等于反馈电压VFB与斜坡信号RAMP之和,高压侧功率开关M1被导通,就没有脱离本发明的精神与范围。
参考电压VREF并不是必须在参考电压VREF的值等于反馈电压VFB与斜坡信号RAMP之和的时候,即高压侧功率开关M1被导通之时,被拉低至基准电压VBASE的值。在一个实施例中,开关S1直接由定频时钟信号CLK控制。具体而言,在当前的时钟周期内,定频时钟信号CLK产生短脉冲,开关 S1被短时导通后又关断,参考信号VREF被拉低,从基准电压VBASE的值开始增长。直至进入下一个时钟周期,定频时钟信号CLK产生下一个短脉冲,参考信号VREF被再次拉低,从基准电压VBASE的值再次开始增长。
图3示出了根据本发明另一实施例的参考电压生成电路204B的电路原理图。参考电压生成电路204B包括锯齿信号生成电路41B及加法电路42。该锯齿信号生成电路41B包括电流源IS、电容C2、开关S1及单稳态触发器412。单稳态触发器412具有输入端及输出端,所述输入端接收定频时钟信号CLK,所述输出端提供短脉冲信号,该短脉冲信号基于定频时钟信号CLK的上升沿而生成。在另一个实施例中,该短脉冲信号基于定频时钟信号CLK的下降沿而生成。定频时钟信号CLK可以是占空比为50%的方波信号。
在一个实施例中,低压侧二极管D1可由功率开关管来替代。
图4示出了处于稳态下的图2的信号波形图。如图4所示,在一个时钟周期内,当定频时钟信号CLK产生脉冲,控制信号G1被复位至低电平,高压侧功率开关M1被关断,而低压侧二极管D1导通,电感电流IL开始减小。斜坡信号RAMP逐渐减小,同时参考电压VREF的值从基准电压VBASE开始逐渐增大。因此,当参考电压VREF的值等于反馈电压VFB与斜坡信号RAMP之和,比较信号COMP由低电平跳变至高电平,控制信号也跳变至高电平,高压侧功率开关M1被导通。之后,电感电流IL开始增长,从而斜坡信号RAMP 开始增长,同时参考电压VREF被拉低。由图4可以看出,在高压侧功率开关被导通的时间段内,参考电压VREF的值保持在基准电压VBASE。当进入下一个时钟周期后,以上各信号的变化过程与前述一致。当然,如前所述,参考电压VREF的值并不必然随着高压侧功率开关M1的导通而被拉低,也可以只在定频时钟信号CLK产生脉冲时被拉低。
斜坡信号RAMP模拟了电感电流IL,所以不需要专门电路来检测电感电流,同时高压侧功率开关M1的最小导通时间也能达到足够小的值。并且,将参考电压VREF引入反馈环可避免扰动越来越大从而引发次谐波振荡的情形。
图5A和图5B示出了处于暂态下的图2的信号波形图。图5A示出的是负载突然增大的情形。在T0时刻,负载突然增大,输出电压VOUT以及反馈电压VFB都开始下跌。为了简化分析与说明,假设定频时钟信号CLK在此时产生脉冲,跳变至高电平,控制信号G1被复位至低电平,高压侧功率开关M1 被关断,电感电流IL开始减小。斜坡信号RAMP开始减小,同时参考电压VREF 开始增长。在T1时刻,参考电压VREF的值等于反馈电压VFB与斜坡信号 RAMP之和,则比较信号COMP跳变至高电平,控制信号G1被置位至高电平,高压侧功率开关M1被导通。之后,电感电流IL开始增长,从而斜坡信号RAMP 开始增长,同时参考电压VREF被拉低。在T2时刻,此时已进入下一个时钟周期,定频时钟信号CLK产生了下一个脉冲,因此前述过程再次重复。在T3 时刻,暂态过程结束。如图5A所示,负载突然增大之后,控制信号G1的占空比随开关周期逐步增大,后又逐步减小直至达到稳定,在此过程中控制信号 G1的频率保持恒定,且与定频时钟信号CLK的频率相同。
图5A示出的是负载突然减小的情形。在T0时刻,负载突然减小,输出电压VOUT及反馈电压VFB都随之上升。同时定频时钟信号CLK在此刻刚好产生脉冲,跳变至高电平,则控制信号G1被复位至低电平,高压侧功率开关 M1被关断,电感电流IL开始减小。斜坡信号RAMP开始减小,同时参考电压VREF开始增长。从图5B可以看出,在若干个开关周期内,由于参考电压 VREF总是小于反馈电压VFB与斜坡信号RAMP之和,比较信号COMP及控制信号G1保持在低电平状态,而电感电流IL则持续减小。在T1时刻,反馈电压VFB已经回落,参考电压VREF等于反馈电压VFB与斜坡信号RAMP 之和,比较信号COMP跳变至高电平,控制信号G1被置位,高压侧功率开关 M1被导通,电感电流IL增大。在T2时刻,此时已进入下一个开关周期,定频时钟信号CLK产生了下一个脉冲,控制信号G1由此跳变至低电平,电感电流IL减小,之后进入稳态。如图5所示,当负载突然减小后,高压侧功率开关M1在一定时间内维持在关断状态,促使电感电流IL迅速减小,加快暂态响应。
图6示出了根据本发明一实施例的参考电压生成电路204C的电路原理图。在图6中,基于反馈电压VFB和校准电压V_AIM,调整基准电压VBASE的大小,从而调整参考电压VREF。相较于图2所示的参考电压生成电路204A,参考电压生成电路204C进一步包括基准电压调整电路43,该基准电压调整电路43包括跨导放大器431及电容C3。跨导放大器431具有同相输入端、反相输入端及输出端,所述同相输入端接收校准电压V_AIM,所述反相输入端接收反馈电压VFB,所述输出端提供调整电流IR,该调整电流IR同校准电压 V_AIM和反馈电压VFB之间的差值成比例关系。校准电压V_AIM的值是恒定不变的。电容C3具有第一端及第二端,所述第一端耦接至跨导放大器431 的输出端,所述第二端耦接至参考地。调整电流IR流入电容C3为其充电,电容C3两端的电压即为基准电压VBASE。
当电压变换电路启动后,由于调整电流IR为电容C3充电,基准电压 VBASE逐渐增大。在电压变换电路达到稳态前,输出电压VOUT及反馈电压 VFB都在逐渐增大,而基准电压VBASE的增长跟随着反馈电压VFB的增长,抑制了电压变换电路启动过程中的输出电压尖峰,达到了软启动的效果。由于调整电流IR的大小同校准电压V_AIM和反馈电压VFB之间的差值成比例关系,当反馈电压VFB增大至等于校准电压V_AIM时,调整电流IR减小为零,之后基准电压VBASE的值维持不变。跨导放大器431使得反馈电压VFB最终等于校准电压V_AIM,而校准电压V_AIM的值恒定不变,意味着输出电压 VOUT的误差最终被消除。
图7示出了根据本发明一实施例的控制电压变换电路的方法的流程图。该电压变换电路包括至少一个功率开关,将输入电压变换为输出电压。所述控制方法包括以下步骤:
步骤701,基于定频时钟信号,关断功率开关;
步骤702,生成斜坡信号与参考电压,所述斜坡信号自功率开关被关断的时刻起减小,自功率开关被导通的时刻起增大,所述参考电压自功率开关被关断的时刻起以基准电压的值开始增大;
步骤703,将参考电压与反馈电压与斜坡信号两者之和进行比较,其中反馈电压与输出电压成比例关系;
步骤704,当参考电压等于反馈电压与斜坡信号两者之和,导通功率开关。
在一些实施例中,基于反馈电压和校准电压,对基准电压进行调整,其中所述校准电压是恒定的。在一些实施例中,所述参考电压在功率开关被导通的时刻被下拉至基准电压。
根据以上教导,本发明的许多更改和变型方式显然也是可行的。因此,应当理解的是,在权利要求所限定的范围内,本发明可以不用按照上述特定的描述来实施。同样应当理解的是,上述公开只涉及到本发明一些优选实施例,在不脱离本发明权利要求所限定的精神和范围的前提下,可以对本发明作出更改。当只有一个优选实施例被公开,本领域普通技术人员不难想到改型并将其付诸于实施,而不脱离于本发明权利要求所限定的精神与范围。

Claims (10)

1.一种用于电压变换电路的控制电路,所述电压变换电路包括至少一个功率开关,将输入电压变换为输出电压,所述控制电路包括:
斜坡信号生成电路,生成斜坡信号,所述斜坡信号自功率开关被关断的时刻起减小,自功率开关被导通的时刻起增大;
参考电压生成电路,生成参考电压,所述参考电压自功率开关被关断的时刻起以基准电压的值开始增大;
比较电路,基于参考电压以及反馈电压与斜坡信号两者之和,生成比较信号;以及
逻辑电路,基于比较信号与定频时钟信号,生成控制信号以控制功率开关的导通与关断,其中,当定频时钟信号产生脉冲,功率开关被关断,当比较信号表明参考电压等于反馈电压与斜坡电压两者之和时,功率开关被导通。
2.如权利要求1所述的控制电路,其中参考电压生成电路包括:
锯齿信号生成电路,生成锯齿信号,所述锯齿信号自功率开关被关断的时刻起从零开始增大;以及
加法电路,将锯齿信号及基准电压进行叠加运算,生成参考电压。
3.如权利要求2所述的控制电路,其中锯齿信号生成电路包括:
电流源,提供充电电流;
电容,接收充电电流,提供所述电容两端的电压作为锯齿信号;以及
控制开关,与所述电容并联,并接收定频时钟信号,所述控制开关由定频时钟信号控制开通与关断。
4.如权利要求2所述的控制电路,其中锯齿信号生成电路包括:
电流源,提供充电电流;
电容,接收充电电流,提供所述电容两端的电压作为锯齿信号;
单稳态触发器,基于定频时钟信号产生短脉冲信号;以及
控制开关,与所述电容并联,并接收所述短脉冲信号,所述控制开关由所述短脉冲信号控制开通与关断。
5.如权利要求2所述的控制电路,其中锯齿信号生成电路包括:
电流源,提供充电电流;
电容,接收充电电流,提供所述电容两端的电压作为锯齿信号;
或门,接收定频时钟信号及控制信号,提供定频时钟信号及控制信号的或运算信号;以及
控制开关,与所述电容并联,并接收所述或运算信号,所述控制开关由所述或运算信号控制开通与关断。
6.如权利要求1所述的控制电路,其中参考电压生成电路还包括基准电压调整电路,所述基准电压调整电路包括:
跨导放大器,接收校准电压和反馈电压,输出调整电流,所述调整电流与校准电压和反馈电压之间的差值成比例关系;以及
电容,接收调整电流,提供所述电容两端的电压作为基准电压;
其中,校准电压的值恒定不变。
7.一种电压变换系统,包括电压变换电路,所述电压变换电路包括至少一个功率开关,将输入电压变换为输出电压,所述电压变换系统还包括如权利要求1-6任一项所述的控制电路。
8.一种用于电压变换电路的控制方法,所述电压变换电路包括至少一个功率开关,将输入电压变换为输出电压,所述控制方法包括:
基于定频时钟信号,关断功率开关;
生成斜坡信号与参考电压,所述斜坡信号自功率开关被关断的时刻起减小,自功率开关被导通的时刻起增大,所述参考电压自功率开关被关断的时刻起以基准电压的值开始增大;
将参考电压与反馈电压与斜坡信号两者之和进行比较,其中反馈电压与输出电压成比例关系;以及
当参考电压等于反馈电压与斜坡信号两者之和,导通功率开关。
9.如权利要求8所述的控制方法,还包括,基于反馈电压和校准电压,对基准电压进行调整,其中所述校准电压是恒定的。
10.如权利要求8所述的控制方法,其中,所述参考电压在功率开关被导通的时刻被下拉至基准电压。
CN201910525327.3A 2018-06-22 2019-06-18 一种用于电压变换电路的控制电路及方法 Active CN110572031B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/016,479 US10566901B2 (en) 2018-06-22 2018-06-22 Constant-frequency control method with fast transient
US16/016,479 2018-06-22

Publications (2)

Publication Number Publication Date
CN110572031A true CN110572031A (zh) 2019-12-13
CN110572031B CN110572031B (zh) 2022-01-11

Family

ID=68772878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910525327.3A Active CN110572031B (zh) 2018-06-22 2019-06-18 一种用于电压变换电路的控制电路及方法

Country Status (2)

Country Link
US (1) US10566901B2 (zh)
CN (1) CN110572031B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865500A (zh) * 2021-04-13 2021-05-28 成都稳海半导体有限公司 基于斜波复位的斜波注入电路及开关电源的误差补偿方法
CN112865501A (zh) * 2021-04-13 2021-05-28 成都稳海半导体有限公司 基于斜波复位的斜波注入电路和开关电源中误差补偿方法
CN112910225A (zh) * 2021-01-18 2021-06-04 杰华特微电子(杭州)有限公司 开关电路的控制方法、控制电路及开关电路
CN114039475A (zh) * 2021-04-21 2022-02-11 广州金升阳科技有限公司 一种斜坡补偿电路及包含该电路的开关电源
CN116742951A (zh) * 2022-09-05 2023-09-12 荣耀终端有限公司 开关电源电路及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880237B (zh) * 2018-07-12 2020-10-30 矽力杰半导体技术(杭州)有限公司 开关变换器的开关时间产生电路及开关时间控制方法
KR102609558B1 (ko) * 2018-12-07 2023-12-04 삼성전자주식회사 전압 발생기 및 이의 동작 방법
KR20220063869A (ko) 2020-11-10 2022-05-18 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 표시 장치
US11509210B1 (en) * 2021-06-14 2022-11-22 Texas Instruments Incorporated Frequency synchronization for a voltage converter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350556A (zh) * 2007-07-05 2009-01-21 英特赛尔美国股份有限公司 变频开关调节器的稳态频率控制
CN101471603A (zh) * 2007-12-27 2009-07-01 英业达股份有限公司 直流到直流降压转换器及纹波改善电路
CN102035384A (zh) * 2010-12-13 2011-04-27 成都芯源系统有限公司 开关变换器电路和功率变换方法
US20130038310A1 (en) * 2011-08-10 2013-02-14 Paolo Menegoli Constant frequency synthetic ripple power converter
US20150102794A1 (en) * 2011-06-28 2015-04-16 Texas Instruments Incorporated Dc-dc converter using internal ripple with the dcm function
CN105141114A (zh) * 2015-09-07 2015-12-09 成都芯源系统有限公司 恒定导通时长控制的开关变换器及其控制电路
US9397570B2 (en) * 2008-02-15 2016-07-19 Advanced Analogic Technologies Incorporated Systems for controlling high frequency voltage mode switching regulators
CN107425717A (zh) * 2017-06-02 2017-12-01 江苏万邦微电子有限公司 一种电源管理用实现真关断功能的开关变换器
US20180159539A1 (en) * 2016-12-06 2018-06-07 Silergy Semiconductor Technology (Hangzhou) Ltd Clock dividing frequency circuit, control circuit and power management integrated circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350551B2 (en) * 2005-06-03 2013-01-08 Intersil Americas LLC Power-supply controller
CN103701323B (zh) * 2013-12-30 2016-06-15 成都芯源系统有限公司 恒定导通时长控制的开关电源及其控制电路和控制方法
US9716432B2 (en) * 2014-02-27 2017-07-25 Chengdu Monolithic Power Systems Co., Ltd. Switching converter with constant on-time controller thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350556A (zh) * 2007-07-05 2009-01-21 英特赛尔美国股份有限公司 变频开关调节器的稳态频率控制
CN101471603A (zh) * 2007-12-27 2009-07-01 英业达股份有限公司 直流到直流降压转换器及纹波改善电路
US9397570B2 (en) * 2008-02-15 2016-07-19 Advanced Analogic Technologies Incorporated Systems for controlling high frequency voltage mode switching regulators
CN102035384A (zh) * 2010-12-13 2011-04-27 成都芯源系统有限公司 开关变换器电路和功率变换方法
US20150102794A1 (en) * 2011-06-28 2015-04-16 Texas Instruments Incorporated Dc-dc converter using internal ripple with the dcm function
US20130038310A1 (en) * 2011-08-10 2013-02-14 Paolo Menegoli Constant frequency synthetic ripple power converter
CN105141114A (zh) * 2015-09-07 2015-12-09 成都芯源系统有限公司 恒定导通时长控制的开关变换器及其控制电路
US20180159539A1 (en) * 2016-12-06 2018-06-07 Silergy Semiconductor Technology (Hangzhou) Ltd Clock dividing frequency circuit, control circuit and power management integrated circuit
CN107425717A (zh) * 2017-06-02 2017-12-01 江苏万邦微电子有限公司 一种电源管理用实现真关断功能的开关变换器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910225A (zh) * 2021-01-18 2021-06-04 杰华特微电子(杭州)有限公司 开关电路的控制方法、控制电路及开关电路
CN112910225B (zh) * 2021-01-18 2022-01-07 杰华特微电子股份有限公司 开关电路的控制方法、控制电路及开关电路
CN112865500A (zh) * 2021-04-13 2021-05-28 成都稳海半导体有限公司 基于斜波复位的斜波注入电路及开关电源的误差补偿方法
CN112865501A (zh) * 2021-04-13 2021-05-28 成都稳海半导体有限公司 基于斜波复位的斜波注入电路和开关电源中误差补偿方法
CN112865501B (zh) * 2021-04-13 2022-03-29 成都稳海半导体有限公司 基于斜波复位的斜波注入电路和开关电源中误差补偿方法
CN112865500B (zh) * 2021-04-13 2022-03-29 成都稳海半导体有限公司 基于斜波复位的斜波注入电路及开关电源的误差补偿方法
CN114039475A (zh) * 2021-04-21 2022-02-11 广州金升阳科技有限公司 一种斜坡补偿电路及包含该电路的开关电源
CN114039475B (zh) * 2021-04-21 2023-11-17 广州金升阳科技有限公司 一种斜坡补偿电路及包含该电路的开关电源
CN116742951A (zh) * 2022-09-05 2023-09-12 荣耀终端有限公司 开关电源电路及电子设备
CN116742951B (zh) * 2022-09-05 2024-04-12 荣耀终端有限公司 开关电源电路及电子设备

Also Published As

Publication number Publication date
US10566901B2 (en) 2020-02-18
US20190393783A1 (en) 2019-12-26
CN110572031B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN110572031B (zh) 一种用于电压变换电路的控制电路及方法
US10797585B2 (en) Multi-phase control for pulse width modulation power converters
US8624574B2 (en) Pulse width modulation controller of DC-DC converter
US9035640B2 (en) High efficient control circuit for buck-boost converters and control method thereof
US9270176B1 (en) Constant on-time switching converter with internal ramp compensation and control method thereof
US8970194B2 (en) Switch mode power supply system with dual ramp compensation associated controller and method
US9716432B2 (en) Switching converter with constant on-time controller thereof
US9425688B2 (en) Converter circuit and associated method
US7202644B2 (en) DC—DC converting method and apparatus
US9774253B2 (en) Control circuit and associated method for switching converter
US8836307B2 (en) Voltage regulator and pulse width modulation signal generation method thereof
US10826392B2 (en) Voltage regulator with an adaptive off-time generator
US9634563B2 (en) Ramp signal generating method and generator thereof, and pulse width modulation signal generator
TW201630323A (zh) 開關轉換器及其控制器和控制方法
US20060261786A1 (en) Self-oscillating boost DC-DC converters with current feedback and digital control algorithm
US20170133919A1 (en) Dual-phase dc-dc converter with phase lock-up and the method thereof
US10348111B2 (en) Charging circuit and the method thereof
US20240039384A1 (en) Current detection circuit and controller for switching converter circuit
US8686801B2 (en) Power supply and DC-DC-conversion
CN114337273A (zh) 具有斜坡补偿的控制电路及方法
CN113726159B (zh) 降压转换器和电子装置
JP2019071715A (ja) スイッチングレギュレータ
US11742759B2 (en) Voltage converter with loop control
CN109256948B (zh) 开关调节器
CN114400896B (zh) 集成电路和供电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant