CN110571946B - 模块化无线充电系统的电压注入解耦控制方法 - Google Patents

模块化无线充电系统的电压注入解耦控制方法 Download PDF

Info

Publication number
CN110571946B
CN110571946B CN201910853029.7A CN201910853029A CN110571946B CN 110571946 B CN110571946 B CN 110571946B CN 201910853029 A CN201910853029 A CN 201910853029A CN 110571946 B CN110571946 B CN 110571946B
Authority
CN
China
Prior art keywords
module
wireless charging
modules
charging system
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910853029.7A
Other languages
English (en)
Other versions
CN110571946A (zh
Inventor
钟文兴
徐德鸿
朱晨
李豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910853029.7A priority Critical patent/CN110571946B/zh
Publication of CN110571946A publication Critical patent/CN110571946A/zh
Application granted granted Critical
Publication of CN110571946B publication Critical patent/CN110571946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种模块化无线充电系统的电压注入解耦控制方法,所述的模块化无线充电系统中含有若干无线充电模块,每个模块包含一个发射线圈和一个正对的接收线圈,在某一模块单通道作用时的基波输入电压中加入其余各模块的电流比例项即可实现对该模块输出电流的单独控制。本发明所述方法可以针对任意多个无线充电模块进行解耦后的输出电流、功率的单独控制,不同谐振腔参数以及任意线圈互感参数均不影响此方法的通用性。本方法通过对各模块单通道作用时的基波输入电压中注入其余模块电流的比例项,从而消除了其他模块交叉耦合对此模块接收端输出电流的影响,因此在不需要在系统主功率回路中外添元件就可以实现不同无线充电模块输出之间的解耦。

Description

模块化无线充电系统的电压注入解耦控制方法
技术领域
本发明属于无线充电技术领域,涉及一种模块化无线充电系统的电压注入解耦控制方法。
背景技术
随着全球范围内能源紧缺和环境污染问题的日益严重,发展电动汽车的重要性日益凸显。电动汽车无线充电技术,由于具有高效便利、维护成本低、不受环境影响等一系列优点备受关注。虽然目前中低功率无线充电技术已经得到一定发展,但大功率无线快充仍在研究当中。模块化的无线传能技术有利于突破传统单通道无线充电的局限性,但由于不同模块间存在着复杂的交叉耦合,难以单独对其中一个模块的输出进行控制,所以目前还没有实际应用。本文提出了一种应用于多模块无线充电系统的控制方法,利用电压注入的思想,实现了对单个模块输出的解耦控制。
发明内容
本发明的目的在于针对传统单通道无线充电难以实现大功率以及模块化无线充电系统控制中的耦合问题,提供一种通过电压注入实现多模块系统解耦控制的方法。
本发明采用的技术方案如下:
一种模块化无线充电系统的电压注入解耦控制方法,所述的模块化无线充电系统中含有若干无线充电模块,每个模块包含一个发射线圈和一个正对的接收线圈,针对含有n个模块的系统,其解耦控制方法如下:对于其中模块i而言,将该模块的基波输入电压调整为单通道无线充电系统的基波输入电压加上其余各模块的电流比例项,其中,模块k的电流比例项是
Figure BDA0002197450730000011
Figure BDA0002197450730000012
i、k∈[1,n],i≠k,其中iKT(s)和iKR(s)分别代表第k个模块在输入电压调整后的发射线圈和接收线圈中的电流(频域表示),
Figure BDA0002197450730000013
Figure BDA0002197450730000014
表示通过本发明计算方法确定的传递函数,且该传递函数乘一个接近1的系数并不影响控制结果。
本发明所述方法可以针对任意多个无线充电模块进行解耦后的输出电流单独控制,不同模块之间的摆放位置及间距不影响此方法的通用性。本方法通过对小信号模型下某一模块电流控制器的输出注入其余模块电流的比例项,从而消除了其他模块交叉耦合对此模块接收端输出电流的影响,以此实现不同模块输出电流的单独控制。以完全补偿后的两模块系统为例,在单通道无线充电系统基波输入电压的基础上加入如下所示的电流比例项,即可实现各模块输出电流表达式与单通道无线充电系统输出电流表达式相同:
Figure BDA0002197450730000021
Figure BDA0002197450730000022
其中u1(s)、u2(s)表示单通道无线充电系统的基波输入电压,i′1T(s)、i′1R(s)、i′2T(s)、i′2R(s)分别表示第一个模块的发射线圈电流、第一个模块接收线圈电流以及第二个模块的发射线圈电流、第二个模块接收线圈电流。下标中T表示发射线圈(transmittingcoil),R表示接收线圈(receiving coil),例如,下标1T、1R、2T、2R分别对应第一个模块的发射线圈、接收线圈以及第二个模块的发射线圈、接收线圈。u′1(s)、u′2(s)分别表示第一、第二模块无线充电系统解耦后的基波输入电压。
解耦控制框图如图6所示。上述方法可以推广到无限多模块系统。
本发明的有益效果是:
采用本发明的方法可以仅通过控制手段即可消除模块化无线充电系统间复杂的相互耦合,在不需要在系统主功率回路中外添元件就可以实现不同无线充电模块输出之间的解耦,在调整某一模块输出电流的同时可以保证其余模块输出电流不受影响,并且不同谐振腔参数以及任意线圈互感参数均不影响此方法的通用性。
附图说明
图1单通道无线充电系统基波等效电路;
图2两模块线圈摆放示意图;
图3两模块系统(a)电路拓扑(b)基波等效电路;
图4两模块系统受控源交流模型等效电路;
图5不解耦情况下控制框图;
图6电压解耦控制框图;
图7解耦后受控源等效电路;
图8 Maxwell线圈结构及位置(a)两模块系统(b)三模块系统(c)四模块系统;
图9 PLECS仿真分析(a)两模块系统(b)三模块系统(c)四模块系统
具体实施方式
下面以具体实例解释说明本发明的技术方案:
以含有两模块的无线充电系统为例对本发明进行说明解释,最后推广到无限多模块系统。
理论推导
首先对传统单通道无线充电系统进行分析,基波等效电路如图1所示。可列出回路电压方程:
Figure BDA0002197450730000031
Figure BDA0002197450730000032
Figure BDA0002197450730000033
Figure BDA0002197450730000034
L1T与L1R代表发射线圈和接收线圈的自感,C1T与C1R表示原边和副边的补偿电容,R1T表示原边寄生电阻,R1R表示副边等效负载电阻与副边寄生电阻之和,Mi(j)Tj(i)R,i、j∈[1,n],i≠j,表示第i个线圈与第j个线圈之间的互感。联立公式(3)至(6),可以求得回路的状态方程,假设:
Z=L1TL1R-M1T1R 2 (7)
则状态方程可以表示如下:
Figure BDA0002197450730000041
对上述状态方程进行拉普拉斯变换(假设电路为零初始状态),并假设两传递函数H1(s)和H2(s)的表达式如下:
Figure BDA0002197450730000042
Figure BDA0002197450730000043
根据公式(8),并使用中间变量表示,可以求出单通道无线充电系统原边和副边电流的表达式:
Figure BDA0002197450730000044
对两模块无线充电系统进行对比分析,线圈摆放示意图如图2所示。两模块系统的电路拓扑和基波等效电路分别如图3(a)和图3(b)所示,L1T、L1R、L2T、L2R代表四个线圈的自感,C1T、C1R、C1T和C1R表示四个回路的补偿电容,可对四个回路分别列出电压方程:
Figure BDA0002197450730000045
Figure BDA0002197450730000046
Figure BDA0002197450730000047
Figure BDA0002197450730000048
Figure BDA0002197450730000049
Figure BDA0002197450730000051
Figure BDA0002197450730000052
Figure BDA0002197450730000053
Figure BDA0002197450730000054
其中,u1(t)、u2(t)分别表示第一个模块和第二个模块的基波输入电压(此处两模块基波输入电压先与单通道系统取相同),R1T、R2T为原边寄生电阻,R1R和R2R为副边寄生电阻与等效负载电阻之和。假设不同模块间参数对称,则:
L2TL2R-M2T2R 2=L1TL1R-M1T1R 2=Z (20)
定义矩阵变量:
Figure BDA0002197450730000055
Figure BDA0002197450730000056
Figure BDA0002197450730000057
Figure BDA0002197450730000058
Figure BDA0002197450730000059
Figure BDA00021974507300000510
Figure BDA00021974507300000511
Figure BDA0002197450730000061
联立方程(12)至(19),并使用上述中间变量,可以求得如下状态方程:
Figure BDA0002197450730000062
对公式(29)进拉普拉斯变换,假设如下传递函数:
Figure BDA0002197450730000063
Figure BDA0002197450730000064
Figure BDA0002197450730000065
Figure BDA0002197450730000066
Figure BDA0002197450730000067
Figure BDA0002197450730000068
Figure BDA0002197450730000071
Figure BDA0002197450730000072
Figure BDA0002197450730000073
Figure BDA0002197450730000074
Figure BDA0002197450730000075
采用前述方法可以得到各回路电流:
Figure BDA0002197450730000076
根据公式(41)得到将耦合线圈表示为受控源的等效电路如图4所示。
在不进行解耦的情况下,两模块系统的控制框图如图5所示,此处采用输出电压外环,输出电流内环的控制方法。此时两个模块输出端存在相互耦合,对u1(s)的控制不仅会影响i1R(s),也会影响i2R(s)。此时控制器的设计要按照两输入、两输出的方法进行,给设计过程带来很多不便。
将第一个模块输入侧逆变器的输出电压调整为
Figure BDA0002197450730000077
其中*′表示在调整了输入电压后的电路参数,
Figure BDA0002197450730000078
刚好抵消第一个模块接收线圈等效电路中来自i′2T(s)和i′2R(s)的影响的受控源
Figure BDA0002197450730000079
Figure BDA00021974507300000710
这样就消除了第二个模块电流变化对第一个模块输出电流i′1R(s)的影响。
同理,将第二个模块输入侧逆变器的输出电压的基波分量调整为:
Figure BDA0002197450730000081
其中
Figure BDA0002197450730000082
刚好抵消第二个模块接收线圈等效电路中来自i′1T(s)和i′1R(s)的影响的受控源
Figure BDA0002197450730000083
Figure BDA0002197450730000084
这样就消除了第一个模块电流的变化对第二个模块输出电流i′2R(s)的影响。
将公式(42)和(43)带入到矩阵公式(41)中,可以得到解耦后各回路电流的表达式:
Figure BDA0002197450730000085
其中
Figure BDA0002197450730000086
Figure BDA0002197450730000087
Figure BDA0002197450730000088
Figure BDA0002197450730000089
根据公式(44),两个模块输出回路的电流表达式可以表示为:
Figure BDA00021974507300000810
与单线圈无线充电系统的输出表达式相同。
根据公式(42)和(43)可以得到对于两模块系统的解耦控制框图如图6所示,根据公式(44)得到解耦完成后的受控源等效电路如图7所示。
下面将上述结论推广到多模块系统。假设一个n模块系统(n≥1),可以对其中第一个模块列出如下的电压方程:
Figure BDA0002197450730000091
Figure BDA0002197450730000092
Figure BDA0002197450730000093
Figure BDA0002197450730000094
定义
Figure BDA0002197450730000095
Figure BDA0002197450730000096
同样可解得第一个模块输出侧电流表达式:
i1R(s)=H2(s)u1(s)+H1R2T(s)i2T(s)+H1R2R(s)i2R(s)+…+H1RnT(s)inT(s)+H1RnR(s)inR(s) (56)
根据之前的分析,可以得到完全补偿情况下的解耦电压表达式为:
Figure BDA0002197450730000097
传递函数的求解与之前分析类似,不再赘述。解耦后的输出电流表达式为:
i″1R(s)=H2(s)u1(s) (58)
与单模块系统输出电流表达式相同。
仿真验证
下面分别以两模块、三模块和四模块无线充电系统为例对本发明提出的控制方法进行仿真分析。线圈位置和摆放方式如图8所示,原副边线圈正对,间距取20cm,负载电阻R1R取30Ω。通过Maxwell仿真得到两模块、三模块和四模块线圈间的电感参数和交流电阻如下所示:
表1两模块无线充电系统电感及交流电阻参数
Figure BDA0002197450730000101
表2三模块无线充电系统电感及交流电阻参数
Figure BDA0002197450730000102
表3四模块无线充电系统电感及交流电阻参数
Figure BDA0002197450730000103
补偿电容采取完全补偿的形式,分别将两模块、三模块和四模块系统的第二、第三和第四个模块输出电压参考值设置为阶跃函数,前半段仿真时间参考值设为333V,后半段时间参考值设为250V,其余模块输出电压参考值在整个仿真时间内均为333V。从图9仿真结果可以看出,对三种不同模块数量的无线充电系统而言,采用本发明所提出的控制方式的仿真输出都可以很好的跟随参考值,并且在其中一个模块电压发生变化的过程中,其余几个模块的输出基本不变,与理论分析相符合。

Claims (2)

1.模块化无线充电系统的电压注入解耦控制方法,其特征在于,所述的模块化无线充电系统中含有若干无线充电模块,每个模块包含一个发射线圈和一个正对的接收线圈,针对含有n个模块的系统,其解耦控制方法如下:对于其中模块i而言,将该模块的基波输入电压调整为单通道无线充电系统的基波输入电压加上其余各模块的电流比例项,其中,模块k的电流比例项是
Figure FDA0002891568150000011
Figure FDA0002891568150000012
其中i′kT(s)和i′kR(s)分别代表第k个模块在输入电压调整后的发射线圈和接收线圈中的电流,
Figure FDA0002891568150000013
Figure FDA0002891568150000014
为传递函数,其中:H2i(s)表示第i个模块的输出电流iiR(s)表达式中第i个模块输入电压的系数;HiRkT(s)表示第i个模块的输出电流iiR(s)表达式中第k个模块发射线圈电流的系数;
HiRkR(s)表示第i个模块的输出电流iiR(s)表达式中第k个模块接收线圈电流的系数;
Figure FDA0002891568150000015
表示所示两个系数之比;
Figure FDA0002891568150000016
表示所示两个系数之比。
2.根据权利要求1所述的模块化无线充电系统的电压注入解耦控制方法,其特征在于,对于任意模块数量的无线充电系统,不同谐振腔参数以及任意线圈互感参数均不影响此方法的通用性。
CN201910853029.7A 2019-09-10 2019-09-10 模块化无线充电系统的电压注入解耦控制方法 Active CN110571946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910853029.7A CN110571946B (zh) 2019-09-10 2019-09-10 模块化无线充电系统的电压注入解耦控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910853029.7A CN110571946B (zh) 2019-09-10 2019-09-10 模块化无线充电系统的电压注入解耦控制方法

Publications (2)

Publication Number Publication Date
CN110571946A CN110571946A (zh) 2019-12-13
CN110571946B true CN110571946B (zh) 2021-03-05

Family

ID=68778715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910853029.7A Active CN110571946B (zh) 2019-09-10 2019-09-10 模块化无线充电系统的电压注入解耦控制方法

Country Status (1)

Country Link
CN (1) CN110571946B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060283B4 (de) * 2007-12-12 2020-08-13 Sew-Eurodrive Gmbh & Co Kg System zur berührungslosen Energieübertragung und Verfahren
US10046660B2 (en) * 2015-06-19 2018-08-14 Qualcomm Incorporated Devices, systems, and methods using reactive power injection for active tuning electric vehicle charging systems
CN205610356U (zh) * 2016-02-01 2016-09-28 北京动力京工科技有限公司 Ac/ac注入型感应耦合式无线能量传输装置
CN109586383A (zh) * 2019-01-25 2019-04-05 歌尔科技有限公司 无线充电系统、方法及智能电子设备
CN109873504B (zh) * 2019-03-08 2022-11-04 哈尔滨工业大学 一种动态无线供电的静态模拟系统
CN109995151A (zh) * 2019-03-25 2019-07-09 浙江大学 一种实现无线充电系统中两线圈解耦的方法
CN109873505B (zh) * 2019-03-25 2020-12-15 浙江大学 一种无线电能传输系统中单排放置多发射线圈解耦的方法
CN109980756B (zh) * 2019-03-25 2020-12-01 浙江大学 一种实现无线电能传输系统中多发射线圈全解耦的装置

Also Published As

Publication number Publication date
CN110571946A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
Chen et al. A switching hybrid LCC-S compensation topology for constant current/voltage EV wireless charging
Lu et al. A dual-coupled LCC-compensated IPT system with a compact magnetic coupler
Yang et al. Analysis and design of an LCCC/S-compensated WPT system with constant output characteristics for battery charging applications
Yao et al. Analysis and design of an S/SP compensated IPT system to minimize output voltage fluctuation versus coupling coefficient and load variation
CN110949152B (zh) 无线充电系统、方法及汽车无线充电装置
Li et al. A flexible load-independent multi-output wireless power transfer system based on cascaded double T-resonant circuits: Analysis, design and experimental verification
Yao et al. Design and optimization of an electric vehicle wireless charging system using interleaved boost converter and flat solenoid coupler
Ke et al. Research on IPT resonant converters with high misalignment tolerance using multicoil receiver set
CN110620446B (zh) 两模块无线充电系统的单极性spwm电流控制方法
CN113659684A (zh) 副边cl/s恒流恒压ipt充电系统及其参数设计方法
Huang et al. Comparison of basic inductive power transfer systems with linear control achieving optimized efficiency
Li et al. High-Misalignment Tolerance and Output Adjustable Wireless Charging System via Detuned Series–Series Compensated Reconfigurable Transmission Channels
CN113972749B (zh) 多端口电容式耦合机构及解耦型补偿拓扑的cpt系统
Zhang et al. A hybrid compensation topology with constant current and constant voltage outputs for wireless charging system
CN216134292U (zh) 副边cl/s恒流恒压ipt充电系统
CN110571946B (zh) 模块化无线充电系统的电压注入解耦控制方法
CN110581608B (zh) 适用于定相位差模块化无线充电系统的同边解耦方法
Zhang et al. An LCL-N compensated strongly-coupled wireless power transfer system for high-power applications
Zhu et al. Misalignment tolerance improvement in wireless power transfer using LCC compensation topology
Liang et al. Input-Series Output-Series (ISOS) Multi-Channel IPT System for High-Voltage and High-Power Wireless Power Transfer
CN110445263B (zh) 基于多耦合参数识别的无线电能传输系统的协同控制方法
Vuchev et al. Design considerations for stages of modular topology for fast charging of electric vehicles
Scher et al. Stability analysis and efficiency optimization of an inductive power transfer system with a constant power load
Zhang et al. Reserch on Dynamic Wireless Charging of Electric Vehicle Based on Double LCC Compensation Mode
Wang et al. Coils layout optimization of dynamic wireless power transfer system to realize output voltage stable

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant