CN110567946A - 一种核酸染料抑制DNAzyme传感体系背景信号的方法 - Google Patents

一种核酸染料抑制DNAzyme传感体系背景信号的方法 Download PDF

Info

Publication number
CN110567946A
CN110567946A CN201910840571.9A CN201910840571A CN110567946A CN 110567946 A CN110567946 A CN 110567946A CN 201910840571 A CN201910840571 A CN 201910840571A CN 110567946 A CN110567946 A CN 110567946A
Authority
CN
China
Prior art keywords
nucleic acid
heme
acid dye
dnazyme
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910840571.9A
Other languages
English (en)
Inventor
张信凤
张驰
张后春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201910840571.9A priority Critical patent/CN110567946A/zh
Publication of CN110567946A publication Critical patent/CN110567946A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种核酸染料抑制DNAzyme传感体系背景信号的方法,是利用核酸染料与血红素相互作用,从而抑制血红素的催化性能,降低DNAzyme传感体系的背景信号;当目标DNA存在时,目标DNA和相应的探针链DNA在室温下孵育一段时间形成含有G‑四聚体结构的双链DNA,血红素嵌入G‑四聚体结构中,同时阻止了血红素与核酸染料的作用,形成DNAzyme催化鲁米诺和双氧水反应产生强的化学发光信号,实现高灵敏检测DNA。采用该法,对p53基因的检出限可达2.0pM。使用不用的探针链,该体系可用于不同DNA的测定,故具有广阔的应用前景。

Description

一种核酸染料抑制DNAzyme传感体系背景信号的方法
技术领域
本发明涉及一种核酸染料抑制DNAzyme传感体系背景信号的方法,属于生物传感技术领域。
背景技术
近年来,DNA检测已经涉及到临床诊断、基因诊疗、药物筛选、司法鉴定等领域,因而愈来愈多的研究工作者竭力构建多种高灵敏检测DNA的新方法。目前提高生物传感器灵敏度有两个途径:一种是通过信号放大,如聚合酶链式反应、、滚环扩增、目标物循环放大、目标催化发夹自组装等;另外一种是借助纳米材料特殊性或者通过设计特殊的DNA结构来降低体系的背景信号。目前基于信号放大检测的方法多,且较为成熟,但是如何有效降低背景信号的问题没有得到很好的解决。
DNAzyme传感体系是一种极具前景的无标记检测DNA的方法。在现有报道中,主要将血红素适配体的四个GGG重复序列分成两部分,在目标DNA存在下,结合形成不对称分裂的G-四聚体DNA酶(Chem.Commun.,2015,51:12373-12376;Anal.Chim.Acta.,2018,997:1-8)。然而,空白血红素也有催化性能,会产生相对高的背景信号。因此,有必要开发一种有效抑制DNAzyme传感体系背景信号的方法。
发明内容
本发明的目的在于利用核酸染料与血红素相互作用,从而抑制血红素的催化性能,降低DNAzyme传感体系的背景信号;当目标DNA存在时,目标DNA和相应的探针链DNA在室温下孵育一段时间形成含有G-四聚体结构的双链DNA,血红素嵌入G-四聚体结构中,同时阻止了血红素与核酸染料的作用,形成DNAzyme催化鲁米诺和双氧水反应产生强的化学发光信号,实现高灵敏检测。
本发明的技术方案如下:
(1)在96孔板中将探针链DNA与血红素孵育,再加入核酸染料孵育一定的时间,加入鲁米诺和双氧水,测定空白的化学发光信号;
(2)在96孔板中加入目标DNA及探针链DNA、HEPES缓冲溶液,室温孵育一定时间后,加入血红素,再孵育一定时间,使之形成有G-四聚体结构的双链DNA;并测定目标DNA存在时,形成的DNAzyme催化鲁米诺和双氧水反应产生强的化学发光信号
(3)根据对比空白所增强的化学发光信号,对目标DNA进行传感分析。
发明效果
与现有技术相比,本发明具有如下优点:
(1)核酸染料会与血红素相互作用,降低血红素的催化活性,从而降低DNAzyme传感体系的背景信号;
(2)该方法的灵敏度高,可实现对pM级DNA的检测;
(3)本方法无需标记、无需分离,分析成本低。
具体实施方式
实施例1
取20μL浓度为500nM的G3(5’-AGG AGA GAC CTG GGT-3’)探针DNA和20μL浓度为500nM的G9(5’-AGG GCG GGT GGG TGC GCA CAG AGG AA-3’)探针DNA使其终浓度均为10nM在pH为7.4的HEPES缓冲中孵育,加入不同浓度的p53基因,于30℃恒温水浴中孵育2h,然后加入终浓度为50nM的Hemin孵育30min,再加入终浓度为0.3×(0.57μM)的核酸染料SYBRGreen I(SG),避光室温孵育10min,取孵育后的试样100μL加入50μL2.0mM的luminol和50μL20mM的H2O2,用化学发光仪快速测定并记录其化学发光强度;在无目标基因的情况下,测定空白信号;根据样品信号与空白信号的比值对目标基因进行定量分析。
实施例2
取20μL浓度为500nM的G3(5’-AGG AGA GAC CTG GGT-3’)探针DNA和20μL浓度为500nM的G9(5’-AGG GCG GGT GGG TGC GCA CAG AGG AA-3’)探针DNA使其终浓度均为10nM在pH为8.0的HEPES缓冲中孵育,加入不同浓度的p53基因,于30℃恒温水浴中孵育2h,然后加入终浓度为80nM的Hemin,孵育20min,再加入终浓度为5×的核酸染料Pico Green(PG),避光室温孵育20min,取孵育后的试样100μL加入50μL 2.0mM的luminol和50μL 20mM的H2O2,用化学发光仪快速测定并记录其化学发光强度;在无目标基因的情况下,测定空白信号;根据样品信号与空白信号的比值对目标基因进行定量分析。
采用实施例1、实施例2均可实现低背景的传感检测p53基因。使用不用的探针链,该体系可用于不同DNA的测定,具有广阔的应用前景。

Claims (6)

1.一种核酸染料抑制DNAzyme传感体系背景信号的方法,其特征在于包括以下几个方面:
(1)将一定浓度的核酸染料加入DNAzyme的辅因子血红素(hemin)中,孵育一段时间后,形成核酸染料-血红素复合物,进而全面抑制血红素的催化性能,具有低的空白信号;
(2)当目标DNA存在时,目标DNA和相应的探针链DNA在室温下孵育一段时间形成含有G-四聚体结构的双链DNA,血红素嵌入G-四聚体结构中,形成DNAzyme,同时阻止了血红素与核酸染料的作用,具有强的催化鲁米诺与双氧水反应的性能;
(3)根据化学发光的强度对可实现对目标DNA的低背景传感分析。
2.按权利要求1所述的方法,与血红素作用的物质是核酸染料,包括SYBR Green I、Pico Green等。
3.按权利要求1所述的方法,其特征在于加入核酸染料孵育的时间为5-20min。
4.按权利要求1所述的方法,其特征在于采用的核酸染料的浓度为0.5-2.5μM。
5.按权利要求1所述的方法,其特征在于孵育形成双链的时间为1-2h;加入血红素后,孵育时间为40-60min。
6.按权利要求1所述的方法,其特征孵育溶液和化学发光反应的pH为7-8。
CN201910840571.9A 2019-09-06 2019-09-06 一种核酸染料抑制DNAzyme传感体系背景信号的方法 Pending CN110567946A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910840571.9A CN110567946A (zh) 2019-09-06 2019-09-06 一种核酸染料抑制DNAzyme传感体系背景信号的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910840571.9A CN110567946A (zh) 2019-09-06 2019-09-06 一种核酸染料抑制DNAzyme传感体系背景信号的方法

Publications (1)

Publication Number Publication Date
CN110567946A true CN110567946A (zh) 2019-12-13

Family

ID=68778120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910840571.9A Pending CN110567946A (zh) 2019-09-06 2019-09-06 一种核酸染料抑制DNAzyme传感体系背景信号的方法

Country Status (1)

Country Link
CN (1) CN110567946A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845969A (zh) * 2015-05-08 2015-08-19 首都师范大学 一种调控和提高脱氧核酶催化活性的方法
CN106755460A (zh) * 2017-01-10 2017-05-31 北京化工大学 一种单碱基突变检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845969A (zh) * 2015-05-08 2015-08-19 首都师范大学 一种调控和提高脱氧核酶催化活性的方法
CN106755460A (zh) * 2017-01-10 2017-05-31 北京化工大学 一种单碱基突变检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI DENG ET AL.: "Improving the Signal-to-Background Ratio during Catalytic Hairpin Assembly through Both-End-Blocked DNAzyme" *
张后春: "高信背比DNA酶-SYBR Green I化学发光传感体系的研究" *

Similar Documents

Publication Publication Date Title
Wu et al. Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction
Luo et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme
US20210301321A1 (en) Methods and devices related to toehold-based strand displacement with loop-mediated isothermal amplification
Sefah et al. Nucleic acid aptamers for biosensors and bio-analytical applications
Zheng et al. Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly
Cozma et al. DNAzymes as key components of biosensing systems for the detection of biological targets
L Neo et al. G-quadruplex based probes for visual detection and sensing
US9809846B2 (en) Compositions, kits, uses and methods for amplified detection of an analyte
Kong et al. Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase
Qiu et al. G-quadruplex DNAzyme as the turn on switch for fluorimetric detection of genetically modified organisms
Gong et al. Ag nanocluster-based label-free catalytic and molecular beacons for amplified biosensing
Fu et al. An ultrasensitive peroxidase DNAzyme-associated aptasensor that utilizes a target-triggered enzymatic signal amplification strategy
CN109439659A (zh) 一种核酸适体核酶序列
Fu et al. A superquenched DNAzyme–perylene complex: a convenient, universal and low-background strategy for fluorescence catalytic biosensors
Li et al. High sensitive and label-free colorimetric DNA detection based on nicking endonuclease-assisted activation of DNAzymes
US8551768B2 (en) Split DNA enzyme for visual single nucleotide polymorphism typing
He et al. Enzymatic cascade based fluorescent DNAzyme machines for the ultrasensitive detection of Cu (II) ions
Zhou et al. Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template
Wang et al. Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection
Hun et al. Mismatched catalytic hairpin assembly coupling hydroxylamine-O-sulfonic acid as oxide for DNA assay
Pan et al. Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme
Wang et al. Detection of T4 DNA ligase using a solid-state electrochemiluminescence biosensing switch based on ferrocene-labeled molecular beacon
Li et al. Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label
Yan et al. A Simple and Highly Sensitive Electrochemical Biosensor for microRNA Detection Using Target‐Assisted Isothermal Exponential Amplification Reaction
Tian et al. dsDNA/ssDNA-switchable isothermal colorimetric biosensor based on a universal primer and λ exonuclease

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191213