CN110563685A - 一种以3-羟基黄酮为荧光团的小分子荧光探针及其制备方法与应用 - Google Patents
一种以3-羟基黄酮为荧光团的小分子荧光探针及其制备方法与应用 Download PDFInfo
- Publication number
- CN110563685A CN110563685A CN201910808566.XA CN201910808566A CN110563685A CN 110563685 A CN110563685 A CN 110563685A CN 201910808566 A CN201910808566 A CN 201910808566A CN 110563685 A CN110563685 A CN 110563685A
- Authority
- CN
- China
- Prior art keywords
- ions
- iii
- hydroxyflavone
- fluorescent probe
- fluorescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Chemical compound O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 title claims abstract description 179
- 239000007850 fluorescent dye Substances 0.000 title claims abstract description 22
- 150000003384 small molecules Chemical class 0.000 title claims description 7
- 238000002360 preparation method Methods 0.000 title claims description 5
- 150000002500 ions Chemical class 0.000 claims abstract description 81
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 38
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- 229910052738 indium Inorganic materials 0.000 claims abstract description 27
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 26
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 8
- 239000012472 biological sample Substances 0.000 claims description 7
- 238000000799 fluorescence microscopy Methods 0.000 claims description 7
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 238000002798 spectrophotometry method Methods 0.000 claims description 4
- 238000002835 absorbance Methods 0.000 claims description 2
- 238000000338 in vitro Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 abstract description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 abstract description 12
- 230000004044 response Effects 0.000 abstract description 8
- 150000001768 cations Chemical class 0.000 abstract description 5
- 230000005281 excited state Effects 0.000 abstract description 5
- 238000012546 transfer Methods 0.000 abstract description 5
- 238000010189 synthetic method Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 241000252212 Danio rerio Species 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000003068 molecular probe Substances 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000003775 Density Functional Theory Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- -1 gallium ions Chemical class 0.000 description 3
- 229910001449 indium ion Inorganic materials 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 150000002216 flavonol derivatives Chemical class 0.000 description 1
- 235000011957 flavonols Nutrition 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/22—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
- C07D311/26—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
- C07D311/28—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
- C07D311/30—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明公开了一种以3‑羟基黄酮为荧光团的小分子荧光探针及应用,在DMSO/H2O(5:1,v/v)溶液中采用激发态分子内质子转移(ESIPT)策略系统,其显示对IIIA族金属离子对其他阳离子的高选择性响应,绿色荧光转换为蓝色荧光,紫外吸收峰红移,且随着Ga、Al、In离子浓度增加,说明金属离子与探针发生了很强的结合,实现荧光技术精确检测Ga、Al、In离子,并且可以检测活细胞内外源性的Ga、Al、In离子。因此在Ga、Al、In离子检测方面具有良好的应用前景,同时,本发明的合成方法简单、操作方便,不需要苛刻的条件。
Description
技术领域
本发明涉及荧光成像分子探针领域,尤其是涉及一种利用荧光成像技术检测Ga,Al和In离子的探针,具体涉及一种分子探针及应用。
背景技术
镓,铝和铟属于元素周期表的第IIIA族,具有相似的物理和化学性质,是生物体的双刃剑,当它们参与生理过程时也带来有害。铝是生物体中的微量元素,广泛用于医药,食品加工和日常生活中。然而,铝在形成Al(III)形式时是有毒的,并且与各种疾病密切相关,过量的率在生物体重堆积,对神经系统的病变影响较大。因此,检测生物体中游离态Al(III)离子的含量尤为重要。镓是IIIA族中铝之后的活性金属,具有更好的生物相容性。此外,镓离子对癌症组织具有高亲和力:它们的硝酸盐作为临床试验中使用的抗肿瘤药物。但是,长期使用可能会导致肝脏和肾脏的毒性。因此,Ga(III)离子传感方法的发展产生了需求和学术兴趣。铟在能源,生物和医药领域被广泛用作稀有金属。研究表明,铟会对人类和动物造成各种毒性。因此,检测环境中和生物体中这三种金属离子的含量尤为重要。然而由于铝、镓、铟的化学性质相似,在自然界中常常伴生存在,给测定带来许多困难,其检出过程繁杂需要分离后在进行检测,因此如何快速的进行初步检测环境或者生物样品内是否存在镓,铝和铟离子非常重要。荧光探针法已成为检测金属离子的主流方法,具有方便,低成本,高效率和快速性等多种检测方法。现有技术中没有可同时检测这三种金属离子(特别是三价金属离子)的荧光探针。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种高选择性和高灵敏度的铜离子识别荧光探针。
为实现上述目的,本发明提供一种以3-羟基黄酮为荧光团的小分子荧光探针,所述分子探针分子式为C15H10O3,其结构式为:
本发明还提供上述以3-羟基黄酮为荧光团的小分子荧光探针在检测、识别环境中或生物样品中第三主族金属离子的应用。
进一步的,所述第三主族金属离子包括Ga、Al、In离子。
作为本发明的上述应用的检测方式,通过紫外分光光度法,在200nm~650nm的波长范围内测定Ga、Al、In离子溶液的吸光度;在最大吸收波长409nm下识别环境中或生物样品中Ga、Al、In离子,并发生红移62nm。
作为本发明的上述应用的检测方式,通过荧光分光光度法,以350nm为激发波长,在380nm到650nm的波长范围内测定Ga、Al、In离子溶液的荧光强度;在最大发射波长460nm下识别环境中或生物样品中的Ga、Al、In离子。
进一步的,通过计算I460nm/I535nm的荧光发射强度比率来测定3-HF与Ga、Al、In离子的化学计量比。
作为本发明的上述应用的检测方式,所述以3-羟基黄酮为荧光团的小分子荧光探针利用荧光成像检测正常细胞和癌细胞中外源性的Ga、Al、In离子的应用。
作为本发明的一种应用范围,所述以3-羟基黄酮为荧光团的小分子荧光探针在制备细胞体外Ga、Al、In离子检测试剂盒中的应用。
本发明具有如下优点:3-羟基黄酮主要分布在植物的根茎中,是最简单,使用最广泛的黄酮醇之一,具有独特的结构和生物活性。由于其特殊的生物结构,它已成为生物检测和金属配合研究的重点。用于检测IIIA族金属离子,在DMSO/H2O(5:1,v/v)溶液中采用激发态分子内质子转移(ESIPT)策略系统,其显示对IIIA族金属离子对其他阳离子的高选择性响应,绿色荧光转换为蓝色荧光。紫外-可见光和荧光光谱显示在3-HF和IIIA族离子之间连续形成2:1复合物,其中在添加IIIA族离子的情况下从535nm至460nm观察到大的蓝移发射带。此外,通过密度泛函理论计算采用3-HF对IIIA族离子的响应机制,并且在宽pH范围和可逆性下使用比率荧光挖掘对IIIA族离子的快速响应。此外,3-HF能够成功应用于以比率荧光成像方式监测活癌细胞和斑马鱼中的IIIA族离子。因此,3-HF是用于IIIA族离子检测和生物成像的有用工具。能作为快速初步检测环境或者生物细胞内的镓,铝和铟离子的检测手段,为下一步精准定量检测提供基础。因此在镓,铝和铟离子检测方面具有良好的应用前景。同时,本发明的合成方法简单、操作方便,不需要苛刻的条件。
附图说明
图1a、b分别为实施例1中3-羟基黄酮小分子结构和结合第三主族金属离子后的结构;
图2为实施例2中3-羟基黄酮发光原理及结合金属离子后的发光情况a);3-羟基黄酮结合第三主族金属离子前后的紫外光谱特性b)和荧光光谱特性c);
图3为实施例2中3-羟基黄酮结合镓a),铝b)和铟c)离子后的紫外光谱滴定;3-羟基黄酮结合镓c),铝d)和铟e)离子后的荧光光谱滴定;
图4为实施例4中3-羟基黄酮结合第三主族金属元素前后的密度泛函理论计算;
图5为实施例5中3-羟基黄酮结合金属离子的发光示意图a)以及在紫外灯365nm激发下相应的荧光颜色b);3-羟基黄酮结合金属离子后的质谱图c)和核磁谱图d);
图6为实施例6中3-羟基黄酮在细胞中通过细胞成像检测第三主族金属离子;
图7为实施例7中3-羟基黄酮在斑马鱼中通过荧光成像检测第三主族金属离子;
图8(a)3-羟基黄酮(2.0μM)对各种金属离子(3.0eq.)以及Ga(III),Al(III)和In(III)离子在DMSO/H2O溶液体系中的发射光谱;(b)3-羟基黄酮添加分析物在I460nm/I535nm的荧光发射强度比率,包括K(I),V(IV),Fe(III),Ca(II),Dy(III),Er(III),Al(III),Cr(III),Ga(III),Bi(III),Ni(II),Zn(II),Co(II),In(III),Mn(II)和Cu(II),(c)为荧光强度示意图;(d)为其他金属离子对3-羟基黄酮添加Ga(III),Al(III)和In(III)离子在I460nm/I535nm的荧光发射强度比率的竞争影响。
图9(a)用Ga(III),Al(III)和In(III)离子(3.0eq.)处理之前和之后3-羟基黄酮的时间依赖性荧光;(b)pH对3-羟基黄酮(2.0μM)的影响及其对Ga(III),Al(III)和In(III)离子的识别能力。数据表示在I460nm/I535nm的荧光发射强度比率。
具体实施方式
下面将结合实施例和效果例对本发明做进一步的详述,而非限制本发明的范围。
实施例1中3-羟基黄酮识别第三主族金属离子后的光谱学性质
3-羟基黄酮(3-HF),作为对包括Ga(III),Al(III)和In(III)离子的IIIA族离子的感应荧光探针,通过金属配位基团与氧原子和具有共轭系统的荧光团用于选择性检测IIIA族离子。图1a、b分别显示了3-HF和3-HF-第IIIA族络合物的分子结构。3-HF的光谱性质表现出激发态分子内质子转移(ESIPT)反应,伴随着发射光谱中正常和光聚合物形式之间的明显的带分离,这被认为是相互作用的表现。相应配合物中的3-HF-溶剂和3-HF-阳离子。此外,我们提出了一种提出的具有Ga(III),Al(III)和In(III)离子的3-HF传感机制,如图2a所示。3-HF的C=O ans-OH基团在与Ga(III),Al(III)和In(III)离子的配位中起重要作用。然而,随着IIIA族离子的添加,荧光的颜色从绿色变为蓝色,采用“ESIPT ON”和“ESIPTOFF”策略,金属离子被ESIPT阻断。这种组合模式可以充分揭示,在与Ga(III),Al(III)和In(III)离子结合后,改变3-HF的荧光,诱导535nm和460nm荧光发射的减少和增加现象。另外,在具有和不具有金属离子的DMSO-H2O(5:1,v/v)溶液系统中记录3-HF的光谱性质。如图2b所示,随着IIIA族离子的加入浓度,307nm和347nm处的吸收峰退去并逐渐消失,在409nm产生新的峰,同时红移(约62nm)。随着3-HF向Ga(III),Al(III)和In(III)离子的荧光传感,游离3-HF在535nm处显示出分离的荧光,并且具有等粘性的荧光从535nm明显地移动到460nm(图2c),表明3-HF可作为比率IIIA离子的比率荧光探针响应
实施例2中3-羟基黄酮识别金属离子光谱滴定
研究3-HF对IIIA族离子的响应的浓度依赖性。不同量的Ga(III),Al(III)和In(III)离子中的3-HF的紫外-可见光谱(图3a,3b,3c)。加入金属离子浓度后,深黄色溶液体系从淡黄色中得到,并且在307nm和347nm附近的3-HF的吸收峰逐渐减少,并且在409nm处的特定吸收峰以红移形成(62纳米)。并且,为了检查对于Ga(III),Al(III)和In(III)离子的3-HF荧光响应的象征,如图3d,3e,3f所示,游离3-HF在535处显示出符号荧光。在350nm激发时,3-HF的发射光谱显示出75nm(从535nm到460nm)的大的蓝移,在516nm处具有等发射点。随着DMSO-H2O(5:1)溶液体系中金属离子浓度的增加,发射强度(I460nm/I535nm)的比率急剧增加。为了更好地探索3-HF与Ga(III)或Al(III)或In(III)离子的化学计量比,409nm处的吸收与460nm附近的荧光强度与金属离子浓度的非线性关系(0得到-0.5eq。),荧光的非线性关系随着强度的上下变化更加直观。
实施例3验证小分子探针对Ga(III),Al(III)和In(III)选择性和竞争性。
制备5.0mL分子探针(5.0×10-6mol/L)的DMSO/H2O(v/v=1:1)溶液。通过将相应的盐溶于去离子水制备各种金属阳离子溶液[K(I),V(IV),Fe(III),Ca(II),Dy(III),Er(III),Al(III),Cr(III),Ga(III),Bi(III),Ni(II),Zn(II),Co(II),In(III),Mn(II)和Cu(II)](1.0×10-3mol/L)。随后,将同等当量的金属阳离子溶液加入到探针溶液中。通过荧光光谱进行检测,实验结果见图8(a)。取荧光最大吸收波长进行对比,如图8(b、c)所示,离子包括K(I),V(IV),Fe(III),Ca(II),Dy(III),Er(III),Al(III),Cr(III),Ga(III),Bi(III),Ni(II),Zn(II),Co(II),In(III),Mn(II)和Cu(II)。除Ga(III),Al(III)和In(III)离子外,这些金属离子对探针的荧光都没有产生明显变化。在分别加入Ga(III),Al(III)和In(III)离子后,小分子探针在460nm处的荧光强度完全淬灭,如图8(d)所示。而且在探针结合Ga(III),Al(III)和In(III)离子后,再加入其它金属离子,其它金属离子对体系的荧光强度也不产生干扰,可以判定探针和Ga(III),Al(III)和In(III)离子具有很强的结合能力。
同时,检测了探针对Ga(III),Al(III)和In(III)离子响应的时间动力学研究和不同pH值条件下的荧光强度变化,实验结果见图9(a、b)可以看出小分子探针对Ga(III),Al(III)和In(III)离子有很快的响应,且SPTPA结合Ga(III),Al(III)和In(III)离子荧光增强并达到值的时间在60s以内。在pH为2-12之间,探针以及探针与Ga(III),Al(III)和In(III)离子的复合物荧光都能够保持好现有的荧光强度。
实施例4中3-羟基黄酮识别金属离子光谱密度泛函理论计算
为了进一步了解探针的分子结构,荧光和吸收光谱的传感机理,对Ga(III),Al(III)和In(III)配位前后3-HF的理论计算利用密度泛函理论(DFT)方法对离子进行了电子跃迁。如图4所示,提出了分子轨道图的3-HF和3-HF-金属配合物,优化的结构显示3-HF可以螯合Ga(III)或Al(III)或In(III)离子与C=O和-OH基团供体组形成2:1配合物,这与上述光谱实验的结果一致。此外,3-HF的基态电子气氛主要位于分子结构的苯中,当转移并分散到整个共轭体系和周围原子激发时,表明中等激发态分子内质子转移(ESIPT)在分子中的作用。如图4所示,3-HF的能级从HOMO(0.2223eV)到LUMO(0.0808eV)的水平为0.1415eV。值得注意的是,封端的苯环与分子的其他部分共面,并且参与电子重排,表明它对电荷转移效应有影响。然而,当Ga(III)或Al(III)或In(III)离子与3-HF配位时,电子仍然处于基态的3-HF部分的苯中,这使得它们重新排列在从苯到金属配位中心的激发态,表明金属离子被阻断了分子中的ESIPT效应。随着络合物的形成,对于Ga(III),Al(III)和In(III)离子,3-HF-IIIA族的能级分别为0.0190eV,0.0191eV和0.0173eV。因此,电子重排降低了与Ga(III)或Al(III)或In(III)离子结合后整个分子结构的强电负性,导致从绿色到蓝色荧光信号的显着发射迁移。
实施例5中3-羟基黄酮识别金属离子的机制研究
基于现有报告和我们设计的思想探索了传感机制。如图5a所示,探针的C=O和-OH基团与金属离子配位,呈现(3-HF)2-金属体系可能的结合模式,并通过以下方式分解为3-HF和金属离子。因此,3-HF探针对IIIA族离子的高选择性可以开发出用于在合适的生理条件下监测IIIA族离子的工具。在UV灯(365nm)下从绿色到蓝色记录3-HF-Group IIIA复合物的显着荧光变化(图5b)。通过质谱,测量3-HF在239.3处的电荷质量比,对于3-HF-Ga(III),3-HF-Al(III)和3-HF-In(III)在544.0处测量电荷质量比。分别为501.9和589.9,证明3-HF和IIIA族离子之间的配位键比为2:1(图5c)。为了进一步分析3-HF和IIIA族离子之间的相互作用机理,在DMSO-d6-D2O(5:1)中进行1H NMR滴定。用0.5当量的IIIA族离子处理之前和之后的3-HF的1H NMR光谱示于图5d中。图5d中9.60ppm处的质子信号可以归属于羟基质子,并且在加入IIIA族离子后信号消失,质子信号略微偏移。这些结果归因于从IIIA族离子中心到配体的电子转移。
实施例6中3-羟基黄酮识别金属离子在细胞中的成像
具有优异性能,研究了3-HF用于活细胞中IIIA族离子荧光成像的潜在生物学应用。细胞生物成像在细胞系(HeLa和A549)中进行。通过传统的MTT测定法评估3-HF的细胞毒性,结果表明即使80μM 3-HF正常化培养24小时,约90%的细胞仍然存活,显示3-HF具有细胞毒性低,可进一步用于细胞成像实验。在用1×PBS洗涤三次后,将细胞系用3-HF(20μM)在37℃染色20分钟。在上述系统中,加入Ga(III),Al(III)和In(III)离子(10μM)并分别在37℃下温育10分钟。如图6a所示,当在没有金属离子的HeLa细胞中孵育20μM 3-HF时,发现3-HF的发光绿色荧光。然而,当细胞培养物分别与IIIA族离子浓度(10μM)一起孵育,然后与3-HF探针系统一起孵育时,细胞开始在细胞质中显示蓝色荧光。这些结果表明3-HF探针可以有效地应用于活HeLa细胞中的IIIA族离子成像。此外,我们还探索了3-HF对A549细胞中IIIA族离子成像的可能性。图6b显示,即使在相同条件下与IIIA族离子孵育后,A549细胞也显示出具有游离探针和浅蓝色荧光的亮绿色荧光。结果表明,3-HF还具有在A549细胞中成像IIIA族离子的潜力。
实施例7中3-羟基黄酮识别金属离子在斑马鱼中的成像
为了深入了解3-HF响应生物体内IIIA族离子的可行性,5日龄斑马鱼是一种流行的脊椎动物模型,正在选择作为我们的研究模型系统,如图7所示。最近,有报道称探针感应生物斑马鱼中的IIIA离子,特别是Ga(III)和In(III)离子传感器。将斑马鱼在胚胎培养基中培养,并与游离探针3-HF(20μM)孵育20分钟以保证3-HF渗透到斑马鱼的整个组织中,其在斑马鱼的腹部显示绿色荧光。然而,斑马鱼用3-HF预处理,用1×PBS洗涤三次,并分别与Ga(III),Al(III)和In(III)离子(10μM)进一步孵育,显示出更强的蓝色荧光。斑马鱼的腹部。此外,生物成像的蓝色荧光强度依次为Ga(III),Al(III)和In(III)组,这解释了3-HF探针对Ga(III)离子的感应,其荧光强度高于其他两个阳离子。这些结果令人信服地表明,3-HF具有较高的组织穿透能力,可以实现斑马鱼中IIIA族离子的可视化。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (8)
1.一种以3-羟基黄酮为荧光团的小分子荧光探针,其特征在于:所述小分子荧光探针分子式为C15H10O3,其结构式为:
2.根据权利要求1所述的以3-羟基黄酮为荧光团的小分子荧光探针的应用,其特征在于,在检测、识别环境中或生物样品中第三主族金属离子的应用。
3.根据权利要求2所述的以3-羟基黄酮为荧光团的小分子荧光探针的应用,其特征在于,所述第三主族金属离子包括Ga、Al、In离子。
4.根据权利要求3所述的以3-羟基黄酮为荧光团的小分子荧光探针的应用,其特征在于,所述以3-羟基黄酮为荧光团的小分子荧光探针利用荧光成像检测正常细胞和癌细胞中外源性的Ga、Al、In离子的应用。
5.根据权利要求3所述的以3-羟基黄酮为荧光团的小分子荧光探针的应用,其特征在于,所述以3-羟基黄酮为荧光团的小分子荧光探针在制备细胞体外Ga、Al、In离子检测试剂盒中的应用。
6.根据权利要求3所述的以3-羟基黄酮为荧光团的小分子荧光探针的检测方法,其特征在于,通过紫外分光光度法,在200nm~650nm的波长范围内测定Ga、Al、In离子溶液的吸光度;在最大吸收波长409nm下识别环境中或生物样品中Ga、Al、In离子,并才发生红移62nm。
7.根据权利要求3所述的以3-羟基黄酮为荧光团的小分子荧光探针的检测方法,其特征在于,通过荧光分光光度法,以350nm为激发波长,在380nm到650nm的波长范围内测定Ga、Al、In离子溶液的荧光强度;在最大发射波长460nm下识别环境中或生物样品中的Ga、Al、In离子。
8.根据权利要求7所述的以3-羟基黄酮为荧光团的小分子荧光探针的检测方法,其特征在于,通过计算I460nm/I535nm的荧光发射强度比率来测定3-HF与Ga、Al、In离子的化学计量比。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910808566.XA CN110563685B (zh) | 2019-08-29 | 2019-08-29 | 一种以3-羟基黄酮为荧光团的小分子荧光探针及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910808566.XA CN110563685B (zh) | 2019-08-29 | 2019-08-29 | 一种以3-羟基黄酮为荧光团的小分子荧光探针及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110563685A true CN110563685A (zh) | 2019-12-13 |
CN110563685B CN110563685B (zh) | 2021-06-15 |
Family
ID=68776820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910808566.XA Active CN110563685B (zh) | 2019-08-29 | 2019-08-29 | 一种以3-羟基黄酮为荧光团的小分子荧光探针及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110563685B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113289020A (zh) * | 2021-05-17 | 2021-08-24 | 福州大学 | 蛋白质二硫键异构酶小分子抑制剂及其应用 |
CN113533278A (zh) * | 2021-07-13 | 2021-10-22 | 西安文理学院 | 一种在线荧光检测土质文物中水形态的方法 |
CN113979984A (zh) * | 2021-11-23 | 2022-01-28 | 南京林业大学 | 一种水溶性黄酮类铝离子荧光探针的制备方法及其应用 |
CN114441467A (zh) * | 2022-01-27 | 2022-05-06 | 山东大学 | 一种双模式探针及其应用 |
CN114805613A (zh) * | 2022-06-01 | 2022-07-29 | 南京林业大学 | 一种用于检测Fe3+的乙基纤维素基黄酮醇类荧光探针及其制备方法与应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL143587B1 (en) * | 1985-04-22 | 1988-02-29 | Politechnika Rzeszowska | Method of obtaining novel metal complexes of aluminium /iii/ gallium /iii/ and indum /iii/ with morin-5'-sulfonic sodium salt |
WO1993022306A1 (en) * | 1992-04-27 | 1993-11-11 | Florida State University | Low self-absorbing, intrinsically scintillating polymers |
EP1026924A1 (en) * | 1997-05-08 | 2000-08-09 | Sanyo Electric Co., Ltd. | Organic electroluminescent device |
CN109053709A (zh) * | 2018-08-08 | 2018-12-21 | 江苏警官学院 | 一种用于检测Al3+的荧光探针及试剂盒 |
-
2019
- 2019-08-29 CN CN201910808566.XA patent/CN110563685B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL143587B1 (en) * | 1985-04-22 | 1988-02-29 | Politechnika Rzeszowska | Method of obtaining novel metal complexes of aluminium /iii/ gallium /iii/ and indum /iii/ with morin-5'-sulfonic sodium salt |
WO1993022306A1 (en) * | 1992-04-27 | 1993-11-11 | Florida State University | Low self-absorbing, intrinsically scintillating polymers |
EP1026924A1 (en) * | 1997-05-08 | 2000-08-09 | Sanyo Electric Co., Ltd. | Organic electroluminescent device |
CN109053709A (zh) * | 2018-08-08 | 2018-12-21 | 江苏警官学院 | 一种用于检测Al3+的荧光探针及试剂盒 |
Non-Patent Citations (4)
Title |
---|
S. XU 等: "A novel flavone-based fluorescent probe for relay recognition of HSO3- and Al3+", 《SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 * |
THEODORE A.ANNAN等: "The direct electrochemical synthesis of d10 metal ion derivatives of some anionic bidentate oxygen donors", 《CANADIAN JOURNAL OF CHEMISTRY》 * |
XIAOJUN HE 等: "ESIPT-based ratiometric fluorescent probe for highly selective and sensitive sensing and bioimaging of group IIIA ions in living cancer cells and zebrafish", 《DYES AND PIGMENTS》 * |
李节: "3-羟基黄酮类Zn2+荧光探针的设计、合成及其在前列腺癌细胞识别中的应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113289020A (zh) * | 2021-05-17 | 2021-08-24 | 福州大学 | 蛋白质二硫键异构酶小分子抑制剂及其应用 |
CN113533278A (zh) * | 2021-07-13 | 2021-10-22 | 西安文理学院 | 一种在线荧光检测土质文物中水形态的方法 |
CN113533278B (zh) * | 2021-07-13 | 2023-06-13 | 西安文理学院 | 一种在线荧光检测土质文物中水形态的方法 |
CN113979984A (zh) * | 2021-11-23 | 2022-01-28 | 南京林业大学 | 一种水溶性黄酮类铝离子荧光探针的制备方法及其应用 |
CN113979984B (zh) * | 2021-11-23 | 2024-01-30 | 深圳万知达科技有限公司 | 一种水溶性黄酮类铝离子荧光探针的制备方法及其应用 |
CN114441467A (zh) * | 2022-01-27 | 2022-05-06 | 山东大学 | 一种双模式探针及其应用 |
CN114805613A (zh) * | 2022-06-01 | 2022-07-29 | 南京林业大学 | 一种用于检测Fe3+的乙基纤维素基黄酮醇类荧光探针及其制备方法与应用 |
CN114805613B (zh) * | 2022-06-01 | 2022-12-16 | 南京林业大学 | 一种用于检测Fe3+的乙基纤维素基黄酮醇类荧光探针及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110563685B (zh) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110563685B (zh) | 一种以3-羟基黄酮为荧光团的小分子荧光探针及其制备方法与应用 | |
Wang et al. | Recent studies focusing on the development of fluorescence probes for zinc ion | |
Rasheed et al. | Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes | |
Yang et al. | Highly sensitive and selective rhodamine Schiff base “off-on” chemosensors for Cu2+ imaging in living cells | |
Meng et al. | NBD-based fluorescent chemosensor for the selective quantification of copper and sulfide in an aqueous solution and living cells | |
Murugan et al. | In vivo bio-imaging studies of highly selective, sensitive rhodamine based fluorescent chemosensor for the detection of Cu2+/Fe3+ ions | |
Ravichandiran et al. | A phenoxazine-based fluorescent chemosensor for dual channel detection of Cd2+ and CN− ions and its application to bio-imaging in live cells and zebrafish | |
Sharma et al. | Optical chemosensors for water sample analysis | |
He et al. | ESIPT-based ratiometric fluorescent probe for highly selective and sensitive sensing and bioimaging of group IIIA ions in living cancer cells and zebrafish | |
Xiao et al. | A highly selective turn-on fluorescent probe for Al (III) based on coumarin and its application in vivo | |
Praveen et al. | Dansyl-styrylquinoline conjugate as divalent iron sensor | |
Abebe et al. | Fluorescein-based fluorescent and colorimetric chemosensors for copper in aqueous media | |
Chereddy et al. | Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging | |
Hammud et al. | Thiophene aldehyde-diamino uracil Schiff base: a novel fluorescent probe for detection and quantification of cupric, silver and ferric ions | |
Han et al. | Colorimetric hydrazine detection and fluorescent hydrogen peroxide imaging by using a multifunctional chemical probe | |
Yan et al. | A novel and resumable Schiff-base fluorescent chemosensor for Zn (II) | |
Zhang et al. | Monitoring ADP and ATP in vivo using a fluorescent Ga (iii)-probe complex | |
CN102746313A (zh) | 含1,2,4-三唑结构单元的罗丹明b酰肼衍生物及其制备方法与应用 | |
Zhang et al. | A tissue-permeable fluorescent probe for Al (III), Cu (II) imaging in vivo | |
Rajendiran et al. | New [Ru (5, 6-dmp/3, 4, 7, 8-tmp) 2 (diimine)] 2+ complexes: Non-covalent DNA and protein binding, anticancer activity and fluorescent probes for nuclear and protein components | |
Geng et al. | A novel [1, 2, 4] triazolo [1, 5-a] pyrimidine derivative as a fluorescence probe for specific detection of Fe3+ ions and application in cell imaging | |
Parambil et al. | Water-soluble optical sensors: keys to detect aluminium in biological environment | |
Fu et al. | A novel calixsalen macrocycle: metal sensing behavior for Zn2+ and intracellular imaging application | |
Fegade et al. | An amide based dipodal Zn2+ complex for multications recognition: Nanomolar detection | |
Vijay et al. | Turn on fluorescent chemosensor containing rhodamine B fluorophore for selective sensing and in vivo fluorescent imaging of Fe3+ ions in HeLa cell line and zebrafish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |