CN110559438A - 一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法 - Google Patents

一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法 Download PDF

Info

Publication number
CN110559438A
CN110559438A CN201910742710.4A CN201910742710A CN110559438A CN 110559438 A CN110559438 A CN 110559438A CN 201910742710 A CN201910742710 A CN 201910742710A CN 110559438 A CN110559438 A CN 110559438A
Authority
CN
China
Prior art keywords
solution
photothermal
treatment
guided
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910742710.4A
Other languages
English (en)
Other versions
CN110559438B (zh
Inventor
徐祖顺
刘豪杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201910742710.4A priority Critical patent/CN110559438B/zh
Publication of CN110559438A publication Critical patent/CN110559438A/zh
Application granted granted Critical
Publication of CN110559438B publication Critical patent/CN110559438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明所要解决的技术问题是提供一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法,通过在纳米金颗粒表面生长二维片层硫化钼,由于纳米金颗粒与硫化钼片层的复合,能使该纳米粒子能够促进双氧水的分解,产生具备细胞毒性的活性氧(ROS),达到PDT与PTT联合的治疗效果。然后,在硫化钼表面修饰Gd3+,赋予该纳米粒子的核磁共振成像(MRI)造影功能,达到诊疗一体化的目的。最后使用壳聚糖包覆纳米粒子,使其不仅具备良好分散性,而且拥有优良的生物相容性。

Description

一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制 备方法
技术领域
本发明属于材料科学与生物医用技术领域,具体涉及一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法。
背景技术
近年来,诊疗一体化的纳米材料对癌症有着显著性的治疗效果。如何实现纳米材料的诊疗一体化对于材料的设计与合成有着非常高的要求。造影技术的兴起,使人们在肿瘤治疗上起到了极大的推进作用。例如MRI、CT、光声成像、荧光成像等技术都在肿瘤可视化成像领域起到重要作用。
光动治疗(PDT)与光热治疗(PTT)是治疗肿瘤极具前景的两种治疗手段。过渡性金属双硫属化合物(TMDCs),如MoS2,WS2和MoSe2等,因其具有独特的二位结构,而在近红外光谱处有较强吸收,所以是一种良好的纳米光热材料。但是,由于肿瘤细胞的特异性与复发性,使用单一的治疗手段难以达到理想的治疗效果,所以,将PDT与PTT结合治疗肿瘤,能达到较为理想的肿瘤清除效果。
发明内容
本发明所要解决的技术问题是提供一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法,通过在纳米金颗粒表面生长二维片层硫化钼,由于纳米金颗粒与硫化钼片层的复合,能使该纳米粒子能够促进双氧水的分解,产生具备细胞毒性的活性氧(ROS),达到PDT与PTT联合的治疗效果。然后,在硫化钼表面修饰Gd3+,赋予该纳米粒子的核磁共振成像(MRI)造影功能,达到诊疗一体化的目的。最后使用壳聚糖包覆纳米粒子,使其不仅具备良好分散性,而且拥有优良的生物相容性。
为了实现上述目的,本发明所采取的技术方案是:一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,包括以下步骤:
1)合成金纳米颗粒(GNS):将HAuCl4溶液逐滴加入到4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐(HEPES)溶液,室温下静置,固液分离,得到固体为金纳米颗粒;
2)合成MoS2-PVP包覆Au:将步骤1)获得的金纳米颗粒完全分散至去离子水中形成金纳米颗粒水溶液,随后加入到Na2MoO4与L-半胱氨酸(L-cys)混合的水溶液中,随后逐滴加入聚乙烯吡咯烷酮(PVP)水溶液,充分混合后,进行反应,得到固体进行洗涤,所述固体即为MoS2-PVP包覆Au;
3)合成MoS2-chitosan包覆Gd-Au(GGMC):将GdCl3溶液加入到步骤2)所述MoS2-PVP包覆Au的溶液中,混合均匀后用去离子水透析48h后,加入壳聚糖,搅拌然后离心,用乙醇与去离子水交替洗涤固体,即得MoS2-chitosan包覆Gd-Au(GGMC)。
在上述技术方案的基础上,本发明还可以有如下进一步的具体选择或优化选择。
具体的,步骤1)中所述HAuCl4溶液的浓度为10-20mg/mL,4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液的浓度为70-140mg/mL。优选的,步骤1中所述HAuCl4溶液的浓度为20mg/mL,4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液的浓度为100mg/mL。
具体的,步骤1)中所述HAuCl4溶液与4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液的用量体积比为1:80-120。优选的,步骤1中所述HAuCl4溶液与4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐的用量体积比为1:100。例如,步骤1中所述HAuCl4溶液的用量为250μL,4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液的用量为25mL。
具体的,步骤1)中所述静置时间为50-100min,直至溶液由无色转变为绿蓝色。优选的,所述静置时间为70min,直至溶液由无色转变为绿蓝色,表示金纳米颗粒的成功合成。
具体的,步骤1)所述固液分离为将所得产物在12000转/分钟的条件下离心3-5mins,去除上清液然后再冻干得到固体。
具体的,步骤2)中所述金纳米颗粒水溶液的浓度为1mg/mL,所述Na2MoO4与L-半胱氨酸(L-cys)的混合水溶液中,Na2MoO4的浓度为170mg/mL;L-半胱氨酸(L-cys)的浓度为245mg/mL;聚乙烯吡咯烷酮(PVP)水溶液的浓度为0.02mg/mL。其中,聚乙烯吡咯烷酮是固体,把它溶于水中,再加入。
具体的,步骤2)中所述金纳米颗粒水溶液:Na2MoO4与L-半胱氨酸(L-cys)的混合水溶液:聚乙烯吡咯烷酮水溶液的用量体积比为10:2:1。
具体的,步骤2)中所述反应为在反应釜中,150-250℃下反应8-15h。优选的,步骤2)中所述反应为在反应釜中,200℃下反应12h。所述反应釜为耐5~20Mpa的高压反应釜。
具体的,步骤2)中所述洗涤为用乙醇与去离子水交替洗涤三次。
具体的,步骤3)中所述GdCl3溶液浓度为5mg/mL,所述MoS2-PVP包覆Au的溶液浓度为5mg/mL,所述GdCl3溶液与所述MoS2-PVP包覆Au的溶液的用量体积比为1:10。例如,GdCl3使用1mL;MoS2-PVP包覆Au的用量为10mL。
具体的,步骤3)中所述壳聚糖的加入量以去离子水重量计为2-5%,优选的,步骤3中所述壳聚糖溶液质量浓度为3%。所述洗涤固体为用乙醇和去离子水交替洗涤,所述GdCl3溶液的浓度为5mg/mL,所述MoS2-PVP包覆Au的溶液与GdCl3溶液的用量体积比为10:1。
具体的,步骤3)中所述用加入壳聚后,使用磁力慢速搅拌8-15h,离心为在12000转/分钟的条件下离心3-5mins。优选的,步骤3)中所述搅拌12h。
此外,本发明还提供了一种使用上述一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法制备的核磁共振成像引导的光热和光动诊疗一体化试剂。
现阶段关于片层MoS2应用于肿瘤光热治疗,都未能达到良好的治疗效果,难以达到较高的肿瘤清除率,与光动治疗的结合,都会引入光敏剂的使用,极大提高材料合成成本。在本申请中,通过对纳米金颗粒的修饰,在其表面生长片层MoS2,使其具备优良的光热治疗效果的同时,还具备产生ROS杀伤肿瘤细胞。其优点在于:
1、通过金纳米颗粒与MoS2的复合,不仅能极大提高光热性能,还能在光照条件下产生ROS,联合杀伤肿瘤细胞;
2、Gd3+的加入赋予该纳米粒子优良的MRI造影功能,达到纳米平台诊疗一体化的目的;
3、本申请提供的合成方法通过金纳米颗粒与MoS2的结合,赋予其光热治疗与光动治疗的功能,使片层MoS2的使用得到了新的拓展。
附图说明
图1为GGMC的合成示意图;
图2为GGMC为纳米颗粒的电镜扫描图;
图3为GGMC在不同浓度的条件下的光热效果;
图4为GGMC细胞毒性测试;
图5为GGMC纳米粒子产生活性氧测试。
具体实施方式
为了更好地理解本发明,下面结合附图及具体实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
如图1所示,GGMC的合成首先合成金纳米颗粒,然后再金纳米颗粒表面接枝层状MoS2,赋予纳米粒子良好的光热效果,最后在纳米粒子表面负载Gd3+,使其具有MRI造影功能,实现诊疗一体化
如图2所示,GGMC纳米粒是金纳米颗粒表面包覆片层MoS2,且其粒径大小为80nm左右。
如图3所示,GGMC在不同浓度的条件下的光热效果图,用波长为808nm,功率为1.5W/cm2激光照射时,温度随时间的增加而变高,可以看出该纳米颗粒具有较好的光热效应,并且在较低浓度时仍然具有较好的光热效果。
如图4所示,将不同浓度的GGMC纳米粒子与4T1肿瘤细胞培养,培养4h后,使用的光源为用波长为808nm,功率为1.5W/cm2激光照射10分钟,然后测试细胞活性,从图中可以看出,随着GGMC浓度的升高,其杀伤细胞的能力也越来越强。另一方面,当没有光照时,当GGMC浓度为200μg/mL时,细胞仍保持较高活性,可以说明GGMC具有良好生物相容性。
如图5所示,为GGMC纳米粒子产生活性氧测试,DPBF(1,3-联苯基异香豆酮2,5-二苯基-3,4-苯并呋喃)为活性氧检测试剂,从图中可以看出,在808nm,功率为1.5W/cm2的激光照射下,随着时间的增加,GGMC纳米粒子会产生ROS,氧化DPBF。
实施例1:
1)合成金纳米颗粒(GNS):将250μL浓度为20mg/mL HAuCl4溶液逐滴加入到25mL浓度为100mg/mL 4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐(HEPES)缓冲液中,室温下静置,固液分离,经冻干机冻干后,得GNS固体粉末;
2)合成MoS2-PVP包覆Au:将步骤1)取5mg金纳米颗粒完全分散至5mL去离子水中形成金纳米颗粒溶液,随后加入到1mL的Na2MoO4(170mg/mL)与0.5mL的L-半胱氨酸(L-cys)(245mg/mL)的混合溶液中,随后逐滴加入5mL 0.02mg/mL聚乙烯吡咯烷酮(PVP),充分混合后,进行反应,用乙醇与去离子水交替洗涤,最后分散在10mL去离子水中备用;
3)合成MoS2-chitosan包覆Gd-Au(GGMC):将1mLGdCl3溶液(5mg/mL)加入到步骤2)所述10mL MoS2-PVP包覆Au溶液(5mg/mL)中,搅拌,用去离子水透析48h后,加入3%(质量分数)壳聚糖,搅拌12h,8000转/min离心,用乙醇与去离子水交替洗涤两次,即得MoS2-chitosan包覆Gd-Au(GGMC)。
实施例2:
1)合成金纳米颗粒(GNS):将250μL浓度为20mg/mL HAuCl4溶液逐滴加入到25mL浓度为100mg/mL 4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐(HEPES)缓冲液中,室温下静置,固液分离,经冻干机冻干后,得GNS固体粉末;
2)合成MoS2-PVP包覆Au:将步骤1)取5mg金纳米颗粒完全分散至5mL去离子水中形成金纳米颗粒溶液,随后加入到1mL的Na2MoO4(170mg/mL)与0.5mL的L-半胱氨酸(L-cys)(245mg/mL)的混合溶液中,随后逐滴加入5mL 0.02mg/mL聚乙烯吡咯烷酮(PVP),充分混合后,进行反应,用乙醇与去离子水交替洗涤,最后分散在10mL去离子水中备用;
3)合成MoS2-chitosan包覆Gd-Au(GGMC):将1mLGdCl3溶液(5mg/mL)加入到步骤2)所述10mL MoS2-PVP包覆Au溶液(5mg/mL)中,搅拌,用去离子水透析48h后,加入3%(质量分数)壳聚糖,搅拌12h,8000转/min离心,用乙醇与去离子水交替洗涤两次,即得MoS2-chitosan包覆Gd-Au(GGMC)。
实施例3:
1)合成金纳米颗粒(GNS):将250μL浓度为20mg/mL HAuCl4溶液逐滴加入到25mL浓度为100mg/mL 4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐(HEPES)缓冲液中,室温下静置,固液分离,经冻干机冻干后,得GNS固体粉末;
2)合成MoS2-PVP包覆Au:将步骤1)取5mg金纳米颗粒完全分散至5mL去离子水中形成金纳米颗粒溶液,随后加入到1mL的Na2MoO4(170mg/mL)与0.5mL的L-半胱氨酸(L-cys)(245mg/mL)的混合溶液中,随后逐滴加入5mL 0.02mg/mL聚乙烯吡咯烷酮(PVP),充分混合后,进行反应,用乙醇与去离子水交替洗涤,最后分散在10mL去离子水中备用;
3)合成MoS2-chitosan包覆Gd-Au(GGMC):将1mLGdCl3溶液(5mg/mL)加入到步骤2)所述10mL MoS2-PVP包覆Au溶液(5mg/mL)中,搅拌,用去离子水透析48h后,加入3%(质量分数)壳聚糖,搅拌12h,8000转/min离心,用乙醇与去离子水交替洗涤两次,即得MoS2-chitosan包覆Gd-Au(GGMC)。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于,包括以下步骤:
1)合成金纳米颗粒:将HAuCl4溶液逐滴加入到4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液,室温下静置,固液分离,得到固体为金纳米颗粒;
2)合成MoS2-PVP包覆Au:将步骤1)获得的金纳米颗粒完全分散至去离子水中形成金纳米颗粒水溶液,随后加入到Na2MoO4与L-半胱氨酸混合的水溶液中,随后逐滴加入聚乙烯吡咯烷酮水溶液,充分混合后,进行反应,得到固体进行洗涤,所述固体即为MoS2-PVP包覆Au;
3)合成MoS2-chitosan包覆Gd-Au:将GdCl3溶液加入到步骤2)所述MoS2-PVP包覆Au的溶液中,混合均匀后用去离子水透析48h后,加入壳聚糖,搅拌然后离心,用乙醇与去离子水交替洗涤固体,即得MoS2-chitosan包覆Gd-Au。
2.根据权利要求1所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤1)中所述HAuCl4溶液的浓度为10-20mg/mL,所述4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液的浓度为70-140mg/mL,步骤1)中所述HAuCl4溶液与4-(2-羟乙基)-1-哌嗪乙烷磺酸半钠盐溶液的用量体积比为1:80-120。
3.根据权利要求2所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤1)中所述静置时间为50-100min,直至溶液由无色转变为绿蓝色,步骤1)所述固液分离为将所得产物在12000转/分钟的条件下离心3-5mins,去上清液然后再冻干得到固体。
4.根据权利要求1所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤2)中所述金纳米颗粒水溶液的浓度为1mg/mL,所述Na2MoO4与L-半胱氨酸的混合水溶液中,Na2MoO4的浓度为170mg/mL,L-半胱氨酸的浓度为245mg/mL;所述聚乙烯吡咯烷酮水溶液的浓度为0.02mg/mL。
5.根据权利要求4所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤2)中所述金纳米颗粒水溶液:Na2MoO4与L-半胱氨酸的混合水溶液:聚乙烯吡咯烷酮水溶液的用量体积比为10:2:1。
6.根据权利要求5所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤2)中所述反应为在反应釜中,150-250℃下反应8-15h。
7.根据权利要求5所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤2)中所述洗涤为用乙醇与去离子水交替洗涤三次。
8.根据权利要求1所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤3)中所述壳聚糖的加入量以去离子水重量计为2-5%,所述洗涤固体为用乙醇和去离子水交替洗涤,所述GdCl3溶液的浓度为5mg/mL,所述MoS2-PVP包覆Au的溶液与GdCl3溶液的用量体积比为10:1。
9.根据权利要求5所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法,其特征在于:步骤3)中所述用加入壳聚后,使用磁力搅拌8-15h,离心为在12000转/分钟的条件下离心3-5mins。
10.一种核磁共振成像引导的光热和光动诊疗一体化试剂,其特征在于,使用如权利要求1-9任一项所述的一种核磁共振成像引导的光热和光动诊疗一体化试剂的制备方法制备而成。
CN201910742710.4A 2019-08-13 2019-08-13 一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法 Active CN110559438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910742710.4A CN110559438B (zh) 2019-08-13 2019-08-13 一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910742710.4A CN110559438B (zh) 2019-08-13 2019-08-13 一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110559438A true CN110559438A (zh) 2019-12-13
CN110559438B CN110559438B (zh) 2021-10-01

Family

ID=68775152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910742710.4A Active CN110559438B (zh) 2019-08-13 2019-08-13 一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110559438B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113679837A (zh) * 2021-08-17 2021-11-23 南京工业大学 一种窄带隙无机纳米酶治疗试剂及其制备方法与应用
CN113735886A (zh) * 2020-05-13 2021-12-03 北京大学 Pdt化合物及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090202650A1 (en) * 2008-02-08 2009-08-13 Yeu-Kuang Hwu Methods of treating cancers
CN107441507A (zh) * 2017-07-26 2017-12-08 苏州大学 由肿瘤细胞激活的诊疗一体化纳米探针及其应用
CN109010828A (zh) * 2018-10-12 2018-12-18 中国科学院高能物理研究所 一种二硫化钼/二氧化铪的复合纳米材料、其制备方法及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090202650A1 (en) * 2008-02-08 2009-08-13 Yeu-Kuang Hwu Methods of treating cancers
CN107441507A (zh) * 2017-07-26 2017-12-08 苏州大学 由肿瘤细胞激活的诊疗一体化纳米探针及其应用
CN109010828A (zh) * 2018-10-12 2018-12-18 中国科学院高能物理研究所 一种二硫化钼/二氧化铪的复合纳米材料、其制备方法及用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PEI LIU ET AL: "Facile preparation of versatile gadoliniumchelated protein nanocomposite for T1 magnetic resonance imaging-guided photodynamic and photothermal synergetic therapy", 《J. MATER. CHEM. B》 *
SWARUP KUMAR MAJI ET AL: "Synergistic Nanozymetic Activity of Hybrid Gold Bipyramid-Molybdenum Disulfide Core@Shell Nanostructures for Two-Photon Imaging and Anticancer Therapy", 《ACS APPL. MATER. INTERFACES》 *
李贝贝 等: "金纳米颗粒在生物医学领域中的应用", 《中华灾害救援医学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735886A (zh) * 2020-05-13 2021-12-03 北京大学 Pdt化合物及其制备方法和用途
CN113735886B (zh) * 2020-05-13 2022-06-03 北京大学 Pdt化合物及其制备方法和用途
CN113679837A (zh) * 2021-08-17 2021-11-23 南京工业大学 一种窄带隙无机纳米酶治疗试剂及其制备方法与应用

Also Published As

Publication number Publication date
CN110559438B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Dong et al. Upconversion-mediated ZnFe 2 O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy
Jia et al. Recent advances and prospects of carbon dots in cancer nanotheranostics
Sun et al. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy
Yuan et al. In situ-transition nanozyme triggered by tumor microenvironment boosts synergistic cancer radio-/chemotherapy through disrupting redox homeostasis
CN108578716B (zh) 一种聚多巴胺包裹的磁性介孔二氧化硅纳米材料及其制备和应用
Wang et al. Retracted Article: A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy
Croissant et al. Multifunctional gold-mesoporous silica nanocomposites for enhanced two-photon imaging and therapy of cancer cells
Zhang et al. A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy
CN110559438B (zh) 一种核磁共振成像引导的光热和光动诊疗一体化试剂及其制备方法
Yadav et al. Functional TiO 2 nanocoral architecture for light-activated cancer chemotherapy
Cai et al. Polypyrrole-coated UCNPs@ mSiO 2@ ZnO nanocomposite for combined photodynamic and photothermal therapy
CN112143499B (zh) 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
Rafique et al. Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanoparticles: an effective synergistic cancer therapy
CN108969766B (zh) 具有肿瘤微环境响应增氧性能的光敏复合材料及制备方法
CN111603559B (zh) 铜碘簇化合物@光敏剂复合纳米颗粒及其作为x射线光动力治疗药物的应用
CN116654986B (zh) 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用
Cheng et al. Semiconductor heterojunction-based radiocatalytic platforms for tumors treatment by enhancing radiation response and reducing radioresistance
Zhou et al. In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles
Li et al. A synergistic chemodynamic–photodynamic-photothermal therapy platform based on biodegradable Ce-doped MoO x nanoparticles
Wang et al. Luminescence imaging-guided triple-collaboratively enhanced photodynamic therapy by bioresponsive lanthanide-based nanomedicine
Zhang et al. Tumor Microenvironment‐Responsive Nanocarrier Based on VOx Nanozyme Amplify Oxidative Stress for Tumor Therapy
Zhang et al. Synergistic therapeutic effect of nanomotors triggered by Near-infrared light and acidic conditions of tumor
CN117482231A (zh) 一种应用于肿瘤免疫治疗的多孔铜锰双金属纳米材料及其制备方法
CN110743013B (zh) 用于双动力协同治疗的上转换纳米复合材料、制备方法及应用
Yang et al. Boosting immunotherapy of triple negative breast cancer through the synergy of mild PTT and Fe-loaded organosilica nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191213

Assignee: Kunming Junxiang Pharmaceutical Technology Co.,Ltd.

Assignor: Hubei University

Contract record no.: X2023530000013

Denomination of invention: A nuclear magnetic resonance imaging guided photothermal and photodynamic diagnostic and therapeutic integrated reagent and its preparation method

Granted publication date: 20211001

License type: Common License

Record date: 20230403

Application publication date: 20191213

Assignee: Yunnan Benyi Biotechnology Co.,Ltd.

Assignor: Hubei University

Contract record no.: X2023530000011

Denomination of invention: A nuclear magnetic resonance imaging guided photothermal and photodynamic diagnostic and therapeutic integrated reagent and its preparation method

Granted publication date: 20211001

License type: Common License

Record date: 20230403

Application publication date: 20191213

Assignee: Kunming Daren Medical Equipment Co.,Ltd.

Assignor: Hubei University

Contract record no.: X2023530000012

Denomination of invention: A nuclear magnetic resonance imaging guided photothermal and photodynamic diagnostic and therapeutic integrated reagent and its preparation method

Granted publication date: 20211001

License type: Common License

Record date: 20230403

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191213

Assignee: Weimi Medical (Yunnan) Co.,Ltd.

Assignor: Hubei University

Contract record no.: X2023980040027

Denomination of invention: A nuclear magnetic resonance imaging guided photothermal and photodynamic diagnostic and therapeutic integrated reagent and its preparation method

Granted publication date: 20211001

License type: Common License

Record date: 20230822

EE01 Entry into force of recordation of patent licensing contract