CN110553819B - 一种高功率石英基有源光纤纤芯缺陷检测方法 - Google Patents

一种高功率石英基有源光纤纤芯缺陷检测方法 Download PDF

Info

Publication number
CN110553819B
CN110553819B CN201910788043.3A CN201910788043A CN110553819B CN 110553819 B CN110553819 B CN 110553819B CN 201910788043 A CN201910788043 A CN 201910788043A CN 110553819 B CN110553819 B CN 110553819B
Authority
CN
China
Prior art keywords
optical fiber
active optical
fiber
defects
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910788043.3A
Other languages
English (en)
Other versions
CN110553819A (zh
Inventor
邢颍滨
廖雷
李海清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Changjin Photonics Technology Co ltd
Original Assignee
Wuhan Changjin Laser Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Changjin Laser Technology Co ltd filed Critical Wuhan Changjin Laser Technology Co ltd
Priority to CN201910788043.3A priority Critical patent/CN110553819B/zh
Publication of CN110553819A publication Critical patent/CN110553819A/zh
Application granted granted Critical
Publication of CN110553819B publication Critical patent/CN110553819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本发明公开了一种高功率石英基有源光纤纤芯缺陷检测方法,其包括以下步骤:S1、检测获得待检测的有源光纤的原始光谱;S2、将待检测的有源光纤放置在辐射源辐射场中,保持辐照剂量和辐照剂量率,进行辐照;S3、将待检测的有源光纤从辐射源辐射场撤离,并放置在充满还原性气体的密闭装置内,同时检测记录此时漂白光谱c以及从漂白光谱c恢复到a的恢复时间t;S4、确定该有源光纤烧毁率小于0.1%的标准时间T;S5、将恢复时间t与标准时间T对比,确定该有源光纤是否存在缺陷。本方法缺陷检测准确率高,光纤筛选长度长。

Description

一种高功率石英基有源光纤纤芯缺陷检测方法
技术领域
本发明涉及光纤制备领域,具体涉及一种高功率石英基有源光纤纤芯缺陷检测方法。
背景技术
基于高功率包层泵浦技术和高亮度半导体激光器的发展,光纤激光器的输出功率得到了迅猛的发展,掺镱光纤激光器单纤单模输出功率已经超过了万瓦,在工业加工、军事、医疗等领域有着越来越广发的应用。作为高功率光纤激光器的核心器件,石英基有源光纤尤不仅决定了光纤激光器的绝大部分的激光性能,而且是影响激光器长时间稳定工作的关键器件。在有源光纤中,纤芯中增益介质的掺入和纤芯的折射率剖面调控都会导致有源光纤纤芯的石英网络缺陷的增加。这些缺陷在强激光长时间甚至极短时间的作用下会快速生长蔓延,从而导致石英光纤机械强度快速下降,导致光纤烧断和整个光纤激光器系统的崩溃。
光纤中的缺陷分为顺磁缺陷和逆磁缺陷(前驱体缺陷),其中前驱体缺陷在外界高能射线作用下,比如伽马射线,能够转变成顺磁缺陷。目前对有源光纤中缺陷的检测主要有机械检测和ESR(电子自旋共振)测试两种方法。机械检测主要是通过对光纤的施加机械外力,比如在复绕机上进行绕盘来测试光纤的强度,当光纤中的玻璃网络缺陷过多时,其机械强度必然会明显降低,从而检测出缺陷相对少的光纤。然而这种方法局限性比较大,检测率不够高,其可以筛除有明显过多的缺陷的光纤,但是无法检测出缺陷多但是不足以影响光纤机械强度的光纤。相对于机械检测,对光纤进行ESR测试可以一定程度的提高纤芯缺陷的检测率,它可以将光纤中的大部分顺磁缺陷检测出来,从而检测出顺磁缺陷多的光纤。但是光纤中大量的逆磁缺陷对外界电磁场不敏感,这些缺陷通过ESR测试是无法检测出来的,因此ESR测试对光纤纤芯缺陷的检测有很大的局限性。
发明内容
本发明采用的技术方案为:一种高功率石英基有源光纤纤芯缺陷检测方法,其包括以下步骤:
S1、检测获得待检测的有源光纤的原始光谱a;
S2、将待检测的有源光纤放置在辐射源辐射场中,保持辐照剂量和辐照剂量率,进行辐照;
S3、将待检测的有源光纤从辐射源辐射场撤离,并放置在充满还原性气体的密闭装置内,同时检测记录此时漂白光谱c以及从漂白光谱c恢复到a的恢复时间t;
S4、确定该有源光纤烧毁率小于0.1%的标准时间T;标准时间T由如下公式定义:
T=ω*(c'-a')C1*C2
其中ω为经验值,c'为辐照后光谱吸收系数,a'为原始光纤吸收系数,C1、C2…为掺杂的各种离子的浓度。
S5、将恢复时间t与标准时间T对比,确定该有源光纤是否存在缺陷。
本发明的效果是:本发明具有以下优点:
1.缺陷检测准确率高;可以将用于高功率的有源光纤纤芯中的前驱体缺陷和顺磁缺陷绝大部分筛选出来,远远高于机械筛选和ESR测试,能够大大提高有源光纤的检测正确率。
2.光纤筛选长度长;ESR测试中只能够对光纤样品的端面进行测试,光纤样品短,长度约为几个厘米,不具有能够表征整盘光纤(约1km)纤芯缺陷数量级。本专利中可以将整盘光纤放置在装置中,可以衡量出整盘光纤的整体纤芯缺陷的相对数量级,能够提高有源光纤纤芯缺陷筛选的时间效率。
附图说明
图1所示为高功率石英基有源光纤纤芯缺陷检测装置的结构示意图;
图2所示为本发明的一种高功率石英基有源光纤纤芯缺陷检测方法的步骤示意图。
具体实施方式
下面结合附图介绍本发明:
一种高功率石英基有源光纤纤芯缺陷检测装置,其结构如图1.包括:宽带光源1、高精度光谱仪2、密闭装置4及60Co辐射源5,60Co辐射源5对准所述密闭装置4,其中所述宽带光源1为具有光纤尾纤输出的宽带光源,其输出工作波长为200-1500nm;所述高精度光谱仪2的反应工作波段为200-1500nm;3为待测有源光纤;所述密闭装置4可填充还原性气体并进行加压;所述60Co辐射源5用于对所述密闭装置4内的有源光纤进行辐照处理。使用时,待测有源光纤放置在所述密闭装置4内,所述宽带光源1和有源光纤的一端熔接,可以将宽带光源发射的宽带光谱激光耦合到待测光纤中;所述高精度光谱仪2和有源光纤的另一端熔接,所述高精度光谱仪2接收通过3有源光纤的宽带光谱激光。
本发明提供一种高功率石英基有源光纤纤芯缺陷检测方法,如图2所示,其包括以下步骤:
S1、检测获得待检测的有源光纤的原始光谱a。
S2、将待检测的有源光纤放置在辐射源辐射场中,保持辐照剂量D和辐照剂量率R,目的是为了光纤中一些活跃的前驱体缺陷转变成色心缺陷。其中辐照剂量D和辐照剂量率R由如下公式定义:
Figure GDA0002951851140000041
Figure GDA0002951851140000042
其中ξ为经验值,A为光纤石英部分直径,L为光纤长度,C1、C2…为光纤内掺杂的各种离子的浓度。
S3、将待检测的有源光纤从辐射源辐射场撤离,并放置在充满还原性气体的密闭装置内,同时检测记录此时漂白光谱c以及从漂白光谱c恢复到a的恢复时间t。还原性气体为氢气或者氘气。
S4、确定该高功率有源光纤烧毁率小于0.1%的标准时间T。其中标准时间T由如下公式定义:
T=ω*(c'-a')C1*C2
其中ω为经验值,c'为辐照后光谱吸收系数,a'为原始光纤吸收系数,C1、C2…为掺杂的各种离子的浓度。
S5、将恢复时间t与标准时间T对比,确定该高功率有源光纤是否存在缺陷,若恢复时间t不大于标准时间T,则判定该高功率有源光纤不存在缺陷;若恢复时间t大于标准时间T,判定该高功率有源光纤存在缺陷。
有益效果
进行测试,选取50个存在顺磁缺陷的光纤和50个存在逆磁缺陷的光纤,分别用机械检测方法和ESR(电子自旋共振)测试方法和本方法进行检测测试。结果如下表:
检测方法 顺磁缺陷 顺磁缺陷检测率 逆磁缺陷 逆磁缺陷检测率
机械检测 42 84% 41 82%
ESR 48 96% 0 0%
本方法 48 96% 47 94%
通过上表可以看到本方法对存在顺磁缺陷的光纤和存在逆磁缺陷的光纤的检测率分别达到96%和94%,相对机械检测方法和ESR(电子自旋共振)测试方法有着明显的检测准确率优势。采用本方法能够大大提高有源光纤的检测准确率。
另外,本方法可以将整盘光纤进行检测,而ESR(电子自旋共振)测试方法只能够对光纤样品的端面进行测试,光纤样品短,长度约为几个厘米,不具有能够表征整盘光纤(约1km)纤芯缺陷数量级。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种高功率石英基有源光纤纤芯缺陷检测方法,其特征在于,其包括以下步骤:
S1、检测获得待检测的有源光纤的原始光谱a;
S2、将待检测的有源光纤放置在辐射源辐射场中,保持辐照剂量和辐照剂量率,进行辐照;
S3、将待检测的有源光纤从辐射源辐射场撤离,并放置在充满还原性气体的密闭装置内,同时检测记录此时漂白光谱c以及从漂白光谱c恢复到a的恢复时间t;
S4、确定该有源光纤烧毁率小于0.1%的标准时间T;标准时间T由如下公式定义:
T=ω*(c'-a')C1*C2
其中ω为经验值,c'为辐照后光谱吸收系数,a'为原始光纤吸收系数,C1、C2…为掺杂的各种离子的浓度;
S5、将恢复时间t与标准时间T对比,确定该有源光纤是否存在缺陷。
2.根据权利要求1所述的高功率石英基有源光纤纤芯缺陷检测方法,其特征在于,步骤S2中的辐照剂量D由如下公式定义:
Figure FDA0002951851130000011
其中ξ为经验值,A为光纤石英部分直径,L为光纤长度,C1、C2…为光纤内掺杂的各种离子的浓度。
3.根据权利要求1所述的高功率石英基有源光纤纤芯缺陷检测方法,其特征在于,步骤S2中的辐照剂量率R由如下公式定义:
Figure FDA0002951851130000021
其中ξ为经验值,A为光纤石英部分直径,L为光纤长度,C1、C2…为光纤内掺杂的各种离子的浓度。
4.根据权利要求1所述的高功率石英基有源光纤纤芯缺陷检测方法,其特征在于,在步骤S3中,还原性气体为氢气或者氘气。
CN201910788043.3A 2019-08-23 2019-08-23 一种高功率石英基有源光纤纤芯缺陷检测方法 Active CN110553819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910788043.3A CN110553819B (zh) 2019-08-23 2019-08-23 一种高功率石英基有源光纤纤芯缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910788043.3A CN110553819B (zh) 2019-08-23 2019-08-23 一种高功率石英基有源光纤纤芯缺陷检测方法

Publications (2)

Publication Number Publication Date
CN110553819A CN110553819A (zh) 2019-12-10
CN110553819B true CN110553819B (zh) 2021-07-06

Family

ID=68738062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910788043.3A Active CN110553819B (zh) 2019-08-23 2019-08-23 一种高功率石英基有源光纤纤芯缺陷检测方法

Country Status (1)

Country Link
CN (1) CN110553819B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303206A (ja) * 1993-04-15 1994-10-28 Japan Atom Energy Res Inst 耐放射線型光ファイバ信号伝送路並びに同信号伝送路を利用した光通信システム及び放射線計測システム
CN1205464C (zh) * 1999-12-16 2005-06-08 古河电气工业株式会社 检测光纤缺陷的方法
CN102126825B (zh) * 2010-12-27 2013-04-03 成都富通光通信技术有限公司 耐辐射高性能石英光纤的制作方法
CN106226035B (zh) * 2016-07-25 2019-05-31 长飞光纤光缆股份有限公司 一种掺镱光纤光子暗化测试系统
CN107631796B (zh) * 2017-09-04 2019-08-13 华中科技大学 一种光纤辐照监测装置及监测方法
CN208621291U (zh) * 2018-05-15 2019-03-19 中山市华思光电科技发展有限公司 一种高分辨率光纤缺陷检测设备
CN109975922B (zh) * 2019-03-29 2020-11-24 华中科技大学 一种改善有源光纤光子暗化性能的光加固方法及系统

Also Published As

Publication number Publication date
CN110553819A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
US10295737B2 (en) Bending-insensitive, radiation-resistant single-mode optical fiber
Koponen et al. Measuring photodarkening from single-mode ytterbium doped silica fibers
Tomashuk et al. Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range
Kashaykin et al. Radiation induced attenuation in pure silica polarization maintaining fibers
US20150331182A1 (en) Method of manufacturing a radiation-resistant optical fiber, radiation-resistant optical fiber and device including such a fiber
De Michele et al. Pulsed X‐Ray Radiation Responses of Solarization‐Resistant Optical Fibers
Girard et al. Radiation-induced effects in a new class of optical waveguides: the air-guiding photonic crystal fibers
Vanvincq et al. Large mode area solid-core photonic bandgap Yb-doped fiber with hetero-structured cladding for compact high-power laser systems
Bouwmans et al. Gd 3+-doped sol-gel silica glass for remote ionizing radiation dosimetry
CN110553819B (zh) 一种高功率石英基有源光纤纤芯缺陷检测方法
Brichard et al. Round-robin evaluation of optical fibres for plasma diagnostics
Gallet et al. Influence of temperature and dose rate on radiation-induced attenuation at 1542 nm in fluorine-doped fibers
D’orazio et al. Refinement of Er 3+-doped hole-assisted optical fiber amplifier
Al Helou et al. Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures
Girard et al. Transient and steady state radiation responses of solarization-resistant optical fibers
Girard et al. Radiation effects on rare-earth doped optical fibers
CN107631796A (zh) 一种光纤辐照监测装置及监测方法
Ou et al. Amplification of 20 orbital angular momentum modes based on a ring-core Yb-doped fiber
Voloshin et al. Radiation resistant optical fiber with a high birefringence
Bisutti et al. Radiation effects of 14 MeV neutrons on germanosilicate and phosphorus-doped multimode optical fibers
Dongfa et al. Radiation effects on opto-electronic devices for fiber-optic gyroscopes
Lu et al. All-fiber bidirectional mode-locked laser to generate cylindrical vector beam asynchronous noise-like pulses
Girard et al. Radial distribution of attenuation in gamma-irradiated single-mode optical fibers
Wang et al. Experimental investigation on the internal stress of bismuth-doped fiber and its effect on the noise figure of Bismuth-doped fiber amplifier
US20100294000A1 (en) Process for manufacturing an optical fiber with a time-stable hydroxyl content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 430000 floor 1, building 5, block B, Phoenix Industrial Park (Wuhan - China Optical Valley Cultural and Creative Industrial Park), No. 52, Liufang Avenue, East Lake New Technology Development Zone, Wuhan, Hubei Province

Patentee after: Wuhan Changjin Photonics Technology Co.,Ltd.

Address before: Floor 6, block a, overseas talents building, future science and Technology City, 999 Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000

Patentee before: WUHAN CHANGJIN LASER TECHNOLOGY CO.,LTD.

CP03 Change of name, title or address