CN110551844B - Sugarcane cultivar genome SSR molecular marker development method and application - Google Patents
Sugarcane cultivar genome SSR molecular marker development method and application Download PDFInfo
- Publication number
- CN110551844B CN110551844B CN201910942745.2A CN201910942745A CN110551844B CN 110551844 B CN110551844 B CN 110551844B CN 201910942745 A CN201910942745 A CN 201910942745A CN 110551844 B CN110551844 B CN 110551844B
- Authority
- CN
- China
- Prior art keywords
- sugarcane
- dna
- ssr
- primers
- artificial sequences
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 240000000111 Saccharum officinarum Species 0.000 title claims abstract description 66
- 235000007201 Saccharum officinarum Nutrition 0.000 title claims abstract description 66
- 238000011161 development Methods 0.000 title description 7
- 238000000034 method Methods 0.000 title description 6
- 239000003147 molecular marker Substances 0.000 title description 5
- 230000002068 genetic effect Effects 0.000 claims abstract description 23
- 230000003321 amplification Effects 0.000 claims abstract description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 16
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 238000010276 construction Methods 0.000 claims abstract description 7
- 239000012634 fragment Substances 0.000 abstract description 7
- 238000001962 electrophoresis Methods 0.000 abstract description 5
- 239000003550 marker Substances 0.000 abstract description 4
- 108020004414 DNA Proteins 0.000 description 46
- 108091092878 Microsatellite Proteins 0.000 description 42
- 241000894007 species Species 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 102000054765 polymorphisms of proteins Human genes 0.000 description 5
- 108700028369 Alleles Proteins 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 208000024191 minimally invasive lung adenocarcinoma Diseases 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 240000006394 Sorghum bicolor Species 0.000 description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 208000020584 Polyploidy Diseases 0.000 description 2
- 241000209051 Saccharum Species 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102100023877 E3 ubiquitin-protein ligase RBX1 Human genes 0.000 description 1
- 101001111722 Homo sapiens E3 ubiquitin-protein ligase RBX1 Proteins 0.000 description 1
- 101000574654 Homo sapiens GTP-binding protein Rit1 Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 240000005382 Saccharum spontaneum Species 0.000 description 1
- 235000014704 Saccharum spontaneum Nutrition 0.000 description 1
- 241000836034 Westindia Species 0.000 description 1
- 101000832077 Xenopus laevis Dapper 1-A Proteins 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 231100001075 aneuploidy Toxicity 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000002367 polarised neutron reflectometry Methods 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 101150046136 rssB gene Proteins 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明的目的在于一种基于4460个BAC文库片段构成的甘蔗栽培种R570单倍体全基因组数据,利用多态性高的基元类型,设计、合成和验证的SSR标记引物,开发的引物应具有扩增结果稳定、电泳条带清晰可辨、多态性位点高的优点,可以广泛应用于甘蔗栽培种遗传多样性分析、新品种鉴定和保护、DNA指纹图谱及遗传连锁图谱的构建。The object of the present invention lies in a kind of whole genome data of sugarcane cultivar R570 haploid composed of 4460 BAC library fragments, and the SSR marker primers designed, synthesized and verified by using the primitive type with high polymorphism, and the developed primers should be It has the advantages of stable amplification results, clearly distinguishable electrophoresis bands, and high polymorphism sites, and can be widely used in the analysis of genetic diversity of sugarcane cultivars, the identification and protection of new varieties, and the construction of DNA fingerprints and genetic linkage maps.
Description
技术领域technical field
本发明属于甘蔗分子育种技术领域,涉及一种基于甘蔗全基因组数据进行SSR标记开发和应用。The invention belongs to the technical field of sugarcane molecular breeding, and relates to the development and application of SSR markers based on sugarcane whole genome data.
背景技术Background technique
甘蔗(Sacchrum spp. Hybrid)是一种重要的C4植物,具有适应性强、生物量高、光合作用效率高、可连续多年种植及固定CO2多的低碳作物,是世界上重要的糖料作物(占比世界上食糖总量的80%)和生物能源作物(占世界上生物乙醇的40%)之一。在1887年,Soltwedel和J B Harrison, J R Bovell分别在爪哇和西印度巴巴多斯试验场发现甘蔗种子可以产生幼苗,开启了甘蔗有性杂交的历史(骆君骕 1992)。而现代甘蔗栽培种是由甘蔗祖先种热带种(Saccharum officinarum L., 2n=80, x=10)和割手密(Saccharumspontaneum L., 2n=40~128, x=8)进行种间杂交,产生真正意义上的甘蔗杂种,选育出的新品种即为现代甘蔗栽培种。由于甘蔗栽培种的高度多倍体及非整倍体的复杂遗传背景,且复杂性超过了大多数甚至所有其他作物,造成甘蔗的遗传、育种及基因组测序等都面临巨大的困难(Piperidis et al. 2010; Wang et al. 2017)。Sugarcane (Sacchrum spp. Hybrid) is an important C4 plant with strong adaptability, high biomass, high photosynthesis efficiency, continuous planting for many years and a low-carbon crop with more CO2 fixation. It is an important sugar crop in the world. (80% of the world's total sugar) and bioenergy crops (40% of the world's bioethanol). In 1887, Soltwedel and J B Harrison, J R Bovell found that sugarcane seeds could produce seedlings in Java and Barbados, West India respectively, which opened the history of sexual hybridization of sugarcane (Luo Junsu 1992). The modern sugarcane cultivar is an interspecific cross between the ancestors of sugarcane, tropical species (Saccharum officinarum L., 2n=80, x=10) and Saccharumspontaneum L., 2n=40~128, x=8. Genuine sugarcane hybrids are produced, and the new varieties bred are modern sugarcane cultivars. Due to the complex genetic background of high polyploidy and aneuploidy of sugarcane cultivars, and the complexity exceeds that of most or all other crops, the genetics, breeding and genome sequencing of sugarcane are facing enormous difficulties (Piperidis et al. . 2010; Wang et al. 2017).
由于简单重复序列(Simple Sequence Repeats, SSR)具有高度的多态性、广泛分布于真核生物的基因组上重复序列(Piperidis et al. 2010; Wang et al. 2017),且分布随机(Smith and Devey 1994),但更偏向于低重复、富含基因的区域(Morgante et al.2002)。由于SSR位点在DNA复制时产生错误的比率较高,因而可以在种内或种间产生大量的长度的变异(Michael Klintschar et al. 2004),开发和筛选出作多态性高、重复性好的SSR分子标记,可以广泛应用于各种动、植物的品种指纹图谱鉴定、遗传多样性分析、遗传图谱构建及重要性状(基因)的遗传定位或解析等领域。然而,相对于其他禾本科作物等模式作物,甘蔗SSR分子标记开发及遗传连锁图谱构建都比较落后,相关的国内外报道都比较少。与其它禾本科作物相比较,甘蔗已开发SSR标记存在标记数量少、多态性低,无法满足甘蔗分子标记辅助育种和遗传作图等工作的要求。近年来,SSR分子标记在甘蔗栽培种上的应用也在逐步展开,但是目前可公开获得的甘蔗栽培种的SSR分子标记数量有限,由于目前甘蔗栽培种的尚未完成基因组序列测定,大规模开发SSR分子标记无法进行。而传统的SSR标记开发方法存在诸多缺点,耗费人力、物力、且效率低下,尤其是对于多倍体的甘蔗,开发难度更加大。Because Simple Sequence Repeats (SSR) are highly polymorphic, widely distributed in eukaryotic genomes (Piperidis et al. 2010; Wang et al. 2017), and randomly distributed (Smith and Devey) 1994), but prefers low-repetition, gene-rich regions (Morgante et al. 2002). Due to the high rate of errors in DNA replication at SSR sites, a large amount of variation in length can be generated within or between species (Michael Klintschar et al. 2004). Good SSR molecular markers can be widely used in various animal and plant species fingerprint identification, genetic diversity analysis, genetic map construction and genetic location or analysis of important traits (genes). However, compared with other model crops such as grasses, sugarcane SSR molecular marker development and genetic linkage map construction are relatively backward, and related domestic and foreign reports are relatively few. Compared with other grass crops, sugarcane has developed SSR markers with few markers and low polymorphisms, which cannot meet the requirements of sugarcane molecular marker-assisted breeding and genetic mapping. In recent years, the application of SSR molecular markers in sugarcane cultivars has also been gradually expanded, but the number of SSR molecular markers publicly available in sugarcane cultivars is limited. Molecular labeling is not possible. However, the traditional SSR marker development method has many shortcomings, which is labor-intensive, material-intensive, and inefficient, especially for polyploid sugarcane, which is more difficult to develop.
基于甘蔗和高粱存在较高的基因共线性和序列保守性,且甘蔗单倍体基因组接近高粱基因组大小。最近,Garsmeur et al.(2008)用全基因组分析(WGPTM)技术将R570甘蔗品种的BACs与高粱基因组进行比对,确定了一个由4660个甘蔗BACs文库片段组成的覆盖甘蔗单倍体基因组常染色质的BACs的最小标记路径。本发明基于甘蔗栽培种单倍体全基因组序列,利用生物信息学方法,分析基因组上SSR位点的特征和分布规律,设计和合成SSR引物,验证SSR分子标记的多态性,为甘蔗栽培种的分子指纹图谱、品种间遗传多样性、重要农艺性状的遗传机理研究及开展分子育种研究提供分子标记支撑。Based on the high gene collinearity and sequence conservation between sugarcane and sorghum, and the haploid genome of sugarcane is close to the size of sorghum genome. More recently, Garsmeur et al. (2008) used whole-genome analysis (WGPTM) to align the BACs of the R570 sugarcane cultivar with the sorghum genome and identified an overlying sugarcane haploid genome euchromatic consisting of 4660 sugarcane BACs library fragments Minimal labelling path for qualitative BACs. Based on the haploid whole genome sequence of sugarcane cultivar, the invention uses bioinformatics methods to analyze the characteristics and distribution rules of SSR sites on the genome, design and synthesize SSR primers, and verify the polymorphism of SSR molecular markers, and is a sugarcane cultivar. Molecular fingerprints, genetic diversity among varieties, genetic mechanism research of important agronomic traits, and molecular breeding research provide molecular marker support.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于一种基于4460个BAC文库片段构成的甘蔗栽培种R570单倍体全基因组数据,利用MISA软件进行全基因组扫描,根据已报到多态性高的基元类型,设计、合成和验证的SSR标记引物,开发的引物应具有扩增结果稳定、电泳条带清晰可辨、多态性位点高的优点,可以广泛应用于甘蔗栽培种遗传多样性分析、新品种鉴定和保护、DNA指纹图谱及遗传连锁图谱的构建。The object of the present invention lies in a kind of whole genome data of sugarcane cultivar R570 haploid composed of 4460 BAC library fragments, using MISA software to carry out whole genome scanning, and designing, synthesizing and The validated SSR marker primers should have the advantages of stable amplification results, clearly distinguishable electrophoresis bands, and high polymorphism sites, and can be widely used in the analysis of genetic diversity of sugarcane cultivars, the identification and protection of new varieties, Construction of DNA fingerprints and genetic linkage maps.
本发明的技术方案是:基于全基因组单倍体序列开发的SSR引物,共找到27 241个SSR位点, 设计引物,其特征是,选择以TG和CA基元类型的SSR引物共计50对,重复次数分别在TG(11-69)、CA(23-38)之间的SSR位点,对其进行了引物设计和合成,筛选出20对引物,序列如SEQ ID No.1-40所示。The technical scheme of the present invention is: based on the SSR primers developed based on the whole genome haploid sequence, a total of 27,241 SSR sites are found, and the primers are designed, characterized in that a total of 50 pairs of SSR primers of TG and CA motif types are selected, The number of repetitions was at the SSR site between TG (11-69) and CA (23-38), and the primers were designed and synthesized, and 20 pairs of primers were screened. The sequence is shown in SEQ ID No.1-40 .
上述的SSR核心引物组在甘蔗遗传多样性分析、新品种鉴定和保护、DNA指纹图谱及遗传连锁图谱的构建方面的应用。The application of the above-mentioned SSR core primer set in sugarcane genetic diversity analysis, new variety identification and protection, DNA fingerprint map and genetic linkage map construction.
本发明的有益效果:本发明筛选出的20对SSR核心引物主要是由TG基元和AG基元类型的SSR引物,覆盖面更加广泛,在甘蔗栽培种中多态性信息丰富、带型清晰容易判读,而且适合聚丙烯酰胺凝胶电泳和毛细管电泳检测平台检测分析,主要用于甘蔗遗传多样性分析、品种鉴定和保护、DNA指纹图谱及遗传连锁图谱的构建,不仅仅有利用保护育种者的合法权益,打击甘蔗假冒品种传播和销售,也有利于促进甘蔗遗传育种水平提高和甘蔗产业的发展壮大。Beneficial effects of the present invention: the 20 pairs of SSR core primers screened out by the present invention are mainly SSR primers of TG primitive and AG primitive type, with wider coverage, rich polymorphism information and clear and easy band pattern in sugarcane cultivars Interpretation, and suitable for polyacrylamide gel electrophoresis and capillary electrophoresis detection platform detection and analysis, mainly used for sugarcane genetic diversity analysis, variety identification and protection, DNA fingerprinting and genetic linkage map construction, not only for the protection of breeders. Legitimate rights and interests, and combating the spread and sale of counterfeit sugarcane varieties are also conducive to promoting the improvement of the level of sugarcane genetics and breeding and the development and growth of the sugarcane industry.
附图说明Description of drawings
图1为部分SSR引物4个供试甘蔗材料上的PCR扩增电泳图谱,其中泳道1-4,5-8,9-12, 13-16分别是引物FAFUR-S1, FAFUR-S2, FAFUR-S3, FAFUR-S4。Fig. 1 is the electrophoretic pattern of PCR amplification on 4 tested sugarcane materials of some SSR primers, wherein lanes 1-4, 5-8, 9-12, 13-16 are primers FAFUR-S1, FAFUR-S2, FAFUR- S3, FAFUR-S4.
图2为SSR引物(FAFUR-S32)在24个供试甘蔗材料上的PCR扩增电泳图谱,其中M:代表 50 bp Marker。Figure 2 is the electrophoresis map of PCR amplification of SSR primer (FAFUR-S32) on 24 tested sugarcane materials, where M: represents 50 bp Marker.
图3为基于20对SSR分子标记的24份甘蔗属材料的UPGMA聚类分析。Figure 3 is the UPGMA cluster analysis of 24 Saccharum materials based on 20 pairs of SSR molecular markers.
具体实施方式Detailed ways
1. 甘蔗全基因组SSR引物的开发1. Development of genome-wide SSR primers for sugarcane
1.1 甘蔗全基因组测序数据的获得1.1 Acquisition of sugarcane whole genome sequencing data
通过EMBL-欧洲生物信息学研究所的公共数据库,登录号为ERZ 654945,获得甘蔗栽培种R570全基因组数据,或者也可以在法国农业研究所甘蔗基因组中心(http://sugarcane-genome.cirad.fr)上获得。Whole-genome data of sugarcane cultivar R570 were obtained through the public database of the EMBL-European Institute of Bioinformatics, accession number ERZ 654945, or also at the Sugarcane Genome Center of the French Agricultural Research Institute (http://sugacane-genome.cirad. fr).
1.2甘蔗全基因组序列中SSR序列的查找和SSR引物的设计1.2 The search of SSR sequences in the whole genome sequence of sugarcane and the design of SSR primers
本研究应用MISA(Microsatellite identification tool)软件扫描甘蔗栽培种基因组序列,该软件下载自http://pgrc.ipk-gatersleben.de/misa/,在配置文件中设置参数,核苷酸重复基序(motif)分别为单(mononucleotide repeats MDRs)、二(dinucleotide repeats DNRs)、三(trinucleotide repeats TNRs)、四(tetranucleotiderepeats TtNRs)、五(pentanucleotide repeats PNRs)、六(hexanucleotide repeatsHNRs),最序列长度分别定为10、12、15、16、15、18。对SSR位点两侧截取各200 bp序列设计引物,MISA软件还提供一个与批量设计引物Primer3的接口工具,可以把MISA识别出来的SSR序列,转为Primer3需要的格式,从而方便批量设计引物。用Primer3 (http://frodo.wi.mit.edu/primer3/)在线设计引物,引物设计参数为:primer length: 18-28bp; annealing temperature: 55-65℃; amplicon size:100-500 bp; GC content:45-65%。In this study, the MISA (Microsatellite identification tool) software was used to scan the genome sequence of sugarcane cultivars. The software was downloaded from http://pgrc.ipk-gatersleben.de/misa/. The parameters were set in the configuration file, and the nucleotide repeat motif ( The motifs are mononucleotide repeats MDRs, dinucleotide repeats DNRs, trinucleotide repeats TNRs, tetranucleotide repeats TtNRs, pentanucleotide repeats PNRs, and hexanucleotide repeats HNRs. 10, 12, 15, 16, 15, 18. The primers are designed by truncating 200 bp sequences on both sides of the SSR site. The MISA software also provides an interface tool with the batch design primer Primer3, which can convert the SSR sequences identified by MISA into the format required by Primer3, thereby facilitating batch design of primers. Primers were designed online with Primer3 (http://frodo.wi.mit.edu/primer3/). The primer design parameters are: primer length: 18-28bp; annealing temperature: 55-65℃; amplicon size: 100-500 bp; GC content: 45-65%.
1.3甘蔗栽培种全基因组SSR引物的筛选1.3 Screening of genome-wide SSR primers in sugarcane cultivars
分别选择4份和24份甘蔗属材料,用于检测SSR标记的扩增效率及其在群体中的多态性。合成的50对引物,在4份材料的基因组DNA进行初步的扩增,根据扩增结果,筛选出扩增结果稳定、特异性高及多态性丰富的引物。PCR反应体系25μL,其中25 ng/μL DNA样品2.0μL、含10×PCR buffer (Mg2+ plus) 2.5 μL、25 mmol L -1 dNTPs 1.2μL、10 mol L-1引物各0.5 μL、0.5 U μL-1 Taq 酶 0.1μL,最后用ddH2O 补足25 μL。PCR扩增程序为94℃预变性5min; 94℃变性30 S,65℃退火30 S, 72℃延伸30 S, 共10个循环, 每个循环退火温度降低0.7℃; 94℃变性30 S, 55℃退火30 S, 72℃延伸30 S, 共25个循环; 最后72℃ 延伸7min, 4℃保存。Taq酶、dNTP等试剂购自北京康为世纪生物科技有限公司。所有PCR产物在6%的聚丙烯酰胺凝胶中进行分离, 160 V恒压下, DNA分析仪(北京六一,DYCZ-20C)上进行电泳,电泳1.5 h, 电泳结束后,采用核酸染料(GelStain,购自北京全式金生物技术有限公司,货号:GS101-01),泡染法进行染色、拍照及保存。若有100-350bp扩增产物检测到,即为有效扩增引物,如果在4个个甘蔗属材料间存在不同等位基因扩增,视为多态性高的引物。4 and 24 Saccharum materials were selected to detect the amplification efficiency of SSR markers and their polymorphisms in the population. The 50 pairs of primers synthesized were preliminarily amplified in the genomic DNA of 4 materials. According to the amplification results, primers with stable amplification results, high specificity and rich polymorphisms were screened out. The PCR reaction system was 25 μL, including 2.0 μL of 25 ng/μL DNA sample, 2.5 μL of 10× PCR buffer (Mg 2+ plus), 1.2 μL of 25 mmol L -1 dNTPs, 0.5 μL and 0.5 U of each 10 mol L -1 primer. μL -1 Taq enzyme 0.1 μL, and finally make up 25 μL with ddH 2 O. The PCR amplification program was pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 65°C for 30 s, extension at 72°C for 30 s, for a total of 10 cycles, the annealing temperature was reduced by 0.7°C for each cycle; denaturation at 94°C for 30 s, 55 Annealing at ℃ for 30 s, extension at 72 ℃ for 30 s, a total of 25 cycles; the final extension at 72 ℃ for 7 min, and storage at 4 ℃. Reagents such as Taq enzyme and dNTP were purchased from Beijing Kangwei Century Biotechnology Co., Ltd. All PCR products were separated in a 6% polyacrylamide gel, electrophoresed on a DNA analyzer (Beijing Liuyi, DYCZ-20C) under a constant pressure of 160 V for 1.5 h, and after electrophoresis, a nucleic acid dye ( GelStain, purchased from Beijing Quanshijin Biotechnology Co., Ltd., item number: GS101-01), was stained, photographed and preserved by soaking method. If a 100-350bp amplification product is detected, it is an effective amplification primer. If there are different allele amplifications among the four sugarcane materials, it is regarded as a primer with high polymorphism.
1.4 多态性位点数据的读取1.4 Reading of polymorphic site data
SSR位点:以引物名称后面加一个下划线紧跟扩增片段的大小,例如:EST40_152对目标片段统计。表示引物EST40在150bp的位置有一个多态性片段,有效片段范围在100 bp至500个bp,“1”表示存在,“0”表示不存在,“-”表示条带缺失。SSR site: add an underscore to the primer name followed by the size of the amplified fragment, for example: EST40_152 counts the target fragment. Indicates that the primer EST40 has a polymorphic fragment at the position of 150 bp, and the effective fragment range is from 100 bp to 500 bp. "1" indicates the presence, "0" indicates the absence, and "-" indicates that the band is missing.
实施例 1 :Example 1:
应用上述方法从法国农业研究所甘蔗基因组中心(http://sugarcane-genome.cirad.fr)上共计下载到序列 4460条,找到27 241个SSR位点,成功设计 SSR 引物22932对,具体 操作如下 :A total of 4,460 sequences were downloaded from the Sugarcane Genome Center of the French Agricultural Research Institute (http://sugacane-genome.cirad.fr) using the above method, 27,241 SSR sites were found, and 22,932 pairs of SSR primers were successfully designed. The specific operations are as follows :
从22932对设计的引物中,查找以TG和CA基元类型的SSR引物,随机选取其中的 50对,利用4个甘蔗属材料(栽培种R570, 栽培种ROC1, 热带种LA purple 和割手密种SES208)进行扩增效率验证(见表1)。扩增结果表明:共有45对引物能够扩增出清晰的扩增条带,其余的5对引物没有扩增条带或者扩增产物量较弱,另有35对引物在4个材料上呈现多态性,多态率为70%(35/50),其中TG重复类型的引物有28对,AG重复类型的引物有7对。图1为部分SSR引物4个供试甘蔗材料上的PCR扩增电泳图谱,泳道1-4,5-8, 9-12, 13-16分别是引物FAFUR-S1, FAFUR-S2, FAFUR-S3, FAFUR-S4扩增结果。From 22932 pairs of designed primers, SSR primers with TG and CA motif types were searched, 50 pairs were randomly selected, and 4 sugarcane materials (cultivar R570, cultivar ROC1, tropical species LA purple and cut hand dense) were used. species SES208) to verify the amplification efficiency (see Table 1). The amplification results showed that: a total of 45 pairs of primers could amplify clear amplification bands, the remaining 5 pairs of primers had no amplification bands or the amount of amplification products was weak, and another 35 pairs of primers showed more than 4 materials. The polymorphism rate was 70% (35/50). Among them, there were 28 pairs of TG repeat primers and 7 pairs of AG repeat primers. Fig. 1 is the electrophoresis pattern of PCR amplification on 4 tested sugarcane materials of some SSR primers, lanes 1-4, 5-8, 9-12, 13-16 are primers FAFUR-S1, FAFUR-S2, FAFUR-S3 respectively , FAFUR-S4 amplification results.
表1 4份供试甘蔗种质信息Table 1 Information on the four tested sugarcane germplasms
实施例 2 :Example 2:
为了进一步验证本研究鉴定到SSR引物对的多态性,从上述筛选到的35对引物中,选用了20对多态性较高的SSR引物,对我国的18个骨干亲本(它们的血缘来自热带种,割手密种、大茎野生种和印度种的2-4个种)(见表2),2个甘蔗祖先种(割手密种SES 208和热带种LA purple)和4个世界上重要的甘蔗栽培种(LCP85-384,R570,ROC 16 和ROC 22)进行遗传多样性分析和SSR引物的多态性评价。结果表明:20对引物在24个甘蔗实验材料上呈现明显的多态性,共扩增得到等位基因95个,每对扩增出1-7个等位基因,平均每一对引物扩增出4.75个等位基因。图2展示了其中2条SSR引物在24个供试甘蔗材料上的PCR扩增电泳图谱,对电泳图进行数据读取,建立0-1数据矩阵。同时,利用UPGMA软件分析数据矩阵,聚类分析后生成亲缘关系进化树,结果见图3。In order to further verify the polymorphism of the SSR primer pairs identified in this study, 20 pairs of SSR primers with higher polymorphism were selected from the 35 pairs of primers screened above, and 18 backbone parents in my country (their bloodlines came from tropical species, 2-4 species of D. scuti, 2-4 species of wild species and Indian species) (see Table 2), 2 ancestors of sugarcane (S. S. 208 S. S. 208 and D. LA purple) and 4 world species Genetic diversity analysis and polymorphism evaluation of SSR primers were performed on important sugarcane cultivars (LCP85-384, R570, ROC 16 and ROC 22). The results showed that 20 pairs of primers showed obvious polymorphisms in 24 sugarcane experimental materials. A total of 95 alleles were amplified, and each pair amplified 1-7 alleles, and each pair of primers amplified on average. 4.75 alleles were obtained. Figure 2 shows the electrophoretic patterns of PCR amplification of 2 SSR primers on 24 tested sugarcane materials, and the data of the electrophoretic patterns is read to establish a 0-1 data matrix. At the same time, UPGMA software was used to analyze the data matrix, and the phylogenetic tree was generated after cluster analysis. The results are shown in Figure 3.
由图3可见供试材料之间的遗传相似系数分布在0.40~0.82之间,在遗传相似性系数为0.525,可将24个甘蔗材料分成5种类型,第一类型包含2个甘蔗栽培种Co1001和Co419;第二种类型有19个甘蔗材料;第三种类型仅有1个热带种类型LA purple;第四种有1个甘蔗栽培种材料CP28-11;第五种有1个甘蔗属割手密种SES 208,其中SES 208 在相似性系数为0.4时, 与其他甘蔗栽培种和热带种(LA purple)较早的分开,表明割手密种与甘蔗栽培种具有较远的亲缘关系。根据张琼 et al.(2009)等分析结果CP28-11具有热带种(0.5)、割手密(0.125)和印度种(0.375)的血缘关系,遗传关系介于割手密和热带种之间,本研究结果与上述研究基本一致。而热带种(LA purple)在相似性系数为0.525与其他甘蔗栽培种分开,随后是印度种Co1001和Co419在相似性系数为0.551与其他栽培种分开,结果表明印度种亲缘关系介于热带种与甘蔗栽培种之间,也具有较丰富的遗传多样性。It can be seen from Figure 3 that the genetic similarity coefficient between the tested materials is between 0.40 and 0.82, and when the genetic similarity coefficient is 0.525, the 24 sugarcane materials can be divided into 5 types, the first type contains 2 sugarcane cultivars Co1001 and Co419; the second type has 19 sugarcane materials; the third type has only 1 tropical species type LA purple; the fourth type has 1 sugarcane cultivar material CP28-11; The SES 208 was separated from other sugarcane cultivars and the tropical species (LA purple) earlier when the similarity coefficient was 0.4, indicating that the SES 208 had a distant genetic relationship with the sugarcane cultivars. According to the analysis results of Zhang Qiong et al. (2009) and others, CP28-11 has the blood relationship of tropical species (0.5), Cuoshoumi (0.125) and Indian species (0.375), and the genetic relationship is between Cuoshoumi and tropical species , the results of this study are basically consistent with the above studies. The tropical species (LA purple) was separated from other sugarcane cultivars at a similarity coefficient of 0.525, followed by the Indian species Co1001 and Co419 at a similarity coefficient of 0.551. There is also rich genetic diversity among sugarcane cultivars.
表2 24份供试甘蔗栽培种种质信息Table 2 Germplasm information of 24 sugarcane cultivated for testing
表3 20对具有扩增多态性的SSR引物信息表Table 3 Information table of 20 pairs of SSR primers with amplification polymorphisms
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 福建农林大学<110> Fujian Agriculture and Forestry University
<120> 一种甘蔗栽培种基因组SSR分子标记开发方法和应用<120> A sugarcane cultivar genome SSR molecular marker development method and application
<130> 40<130> 40
<160> 40<160> 40
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 1<400> 1
tcatacccat tggaagaagc 20tcatacccat tggaagaagc 20
<210> 2<210> 2
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 2<400> 2
gttatgttgc cgtgccaagt 20gttatgttgc cgtgccaagt 20
<210> 3<210> 3
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 3<400> 3
tagcctttgg tcgttcttgg 20tagcctttgg tcgttcttgg 20
<210> 4<210> 4
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 4<400> 4
aatgcttcat ccatagggga 20aatgcttcat ccatagggga 20
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 5<400> 5
gcctggggaa ctatgctgta 20gcctggggaa ctatgctgta 20
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 6<400> 6
caagcattga agttgccaaa 20caagcattga agttgccaaa 20
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 7<400> 7
cgtcagttgc tcagctcttg 20cgtcagttgc tcagctcttg 20
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 8<400> 8
ccctgggaag aagaggtagg 20ccctgggaag aagaggtagg 20
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 9<400> 9
aatgatgttt cgcctgatcc 20aatgatgttt cgcctgatcc 20
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 10<400> 10
accaacacaa ctcgctaccc 20accaacacaa ctcgctaccc 20
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 11<400> 11
ccacattctt cgaccctgtt 20ccacattctt cgaccctgtt 20
<210> 12<210> 12
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 12<400> 12
ccatcctgcg aactaaccat 20ccatcctgcg aactaaccat 20
<210> 13<210> 13
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 13<400> 13
agggcacgag gtattgctta 20agggcacgag gtattgctta 20
<210> 14<210> 14
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 14<400> 14
aaccggtcaa atcacacaca 20aaccggtcaa atcacacaca 20
<210> 15<210> 15
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 15<400> 15
atctttcggc atcaacttgg 20atctttcggc atcaacttgg 20
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 16<400> 16
gcttcaagcc atctgtctcc 20gcttcaagcc atctgtctcc 20
<210> 17<210> 17
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 17<400> 17
caacgaattc cacttgcaca 20caacgaattc cacttgcaca 20
<210> 18<210> 18
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 18<400> 18
tcatggctat tgtggtctgg 20tcatggctat tgtggtctgg 20
<210> 19<210> 19
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 19<400> 19
ctcctctgtc acccagcact 20ctcctctgtc acccagcact 20
<210> 20<210> 20
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 20<400> 20
gatcacccca gatccagaga 20gatcacccca gatccagaga 20
<210> 21<210> 21
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 21<400> 21
tgctgattat gtgctgcctc 20tgctgattat gtgctgcctc 20
<210> 22<210> 22
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 22<400> 22
cacgcctagg gcataagaga 20cacgcctagg gcataagaga 20
<210> 23<210> 23
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 23<400> 23
gacacccacc acaggacttt 20gacacccacc acaggacttt 20
<210> 24<210> 24
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 24<400> 24
ccctccccaa tcctatcagt 20ccctcccccaa tcctatcagt 20
<210> 25<210> 25
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 25<400> 25
gaacttccgc aagacaattc a 21gaacttccgc aagacaattc a 21
<210> 26<210> 26
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 26<400> 26
cacacacaca cacacaagcg 20cacacacaca cacacaagcg 20
<210> 27<210> 27
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 27<400> 27
gctgatgttt ggtcatgtgg 20gctgatgttt ggtcatgtgg 20
<210> 28<210> 28
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 28<400> 28
tgcagactca gaagtagccg 20tgcagactca gaagtagccg 20
<210> 29<210> 29
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 29<400> 29
tgtttcaggc actgttttgg 20tgtttcaggc actgttttgg 20
<210> 30<210> 30
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 30<400> 30
agcaatgtgt tctccatcca 20agcaatgtgt tctccatcca 20
<210> 31<210> 31
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 31<400> 31
cggcacaagt aaatgcaaga 20cggcacaagt aaatgcaaga 20
<210> 32<210> 32
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 32<400> 32
agtactgcca acaaggcagg 20agtactgcca acaaggcagg 20
<210> 33<210> 33
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 33<400> 33
cttgagctcg tagcctcctc 20cttgagctcg tagcctcctc 20
<210> 34<210> 34
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 34<400> 34
gcctctgctg tctgctctct 20gcctctgctg tctgctctct 20
<210> 35<210> 35
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 35<400> 35
agtgcaggtt ggctttctgt 20agtgcaggtt ggctttctgt 20
<210> 36<210> 36
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 36<400> 36
ggggattcca agtctcaaca 20ggggattcca agtctcaaca 20
<210> 37<210> 37
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 37<400> 37
gtaccagccc aaaaactgga 20gtaccagccc aaaaactgga 20
<210> 38<210> 38
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 38<400> 38
ttgtcactgg gaacacggta 20ttgtcactgg gaacacggta 20
<210> 39<210> 39
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 39<400> 39
ttctccgtca actgtcatgc 20ttctccgtca actgtcatgc 20
<210> 40<210> 40
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 40<400> 40
tcctacggag ggaaatcaaa 20tcctacggag ggaaatcaaa 20
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910942745.2A CN110551844B (en) | 2019-09-30 | 2019-09-30 | Sugarcane cultivar genome SSR molecular marker development method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910942745.2A CN110551844B (en) | 2019-09-30 | 2019-09-30 | Sugarcane cultivar genome SSR molecular marker development method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110551844A CN110551844A (en) | 2019-12-10 |
CN110551844B true CN110551844B (en) | 2020-11-17 |
Family
ID=68742085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910942745.2A Expired - Fee Related CN110551844B (en) | 2019-09-30 | 2019-09-30 | Sugarcane cultivar genome SSR molecular marker development method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110551844B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111663002B (en) * | 2020-07-14 | 2022-10-11 | 福建农林大学 | A SSR marker for distinguishing the genetic background of chromosome 2 among sugarcane species and its application |
CN111663001B (en) * | 2020-07-14 | 2022-10-14 | 福建农林大学 | SSR marker for distinguishing genetic background of No. three chromosomes between sugarcane species and application |
CN113584184B (en) * | 2021-08-04 | 2023-07-28 | 南通大学 | Molecular marker system for identifying authenticity of sugarcane hybrid and development method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108504771A (en) * | 2018-06-22 | 2018-09-07 | 福建农林大学 | A method of exploitation sugarcane SSR marker and identification Sugarcane Breeding affiliation |
CN108841983A (en) * | 2018-06-22 | 2018-11-20 | 福建农林大学 | A kind of SSR primer of sugarcane overall length transcript profile data large-scale development |
-
2019
- 2019-09-30 CN CN201910942745.2A patent/CN110551844B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108504771A (en) * | 2018-06-22 | 2018-09-07 | 福建农林大学 | A method of exploitation sugarcane SSR marker and identification Sugarcane Breeding affiliation |
CN108841983A (en) * | 2018-06-22 | 2018-11-20 | 福建农林大学 | A kind of SSR primer of sugarcane overall length transcript profile data large-scale development |
Non-Patent Citations (3)
Title |
---|
A mosaic monoploid reference sequence for the highly complex genome of sugarcane;Olivier Garsmeur等;《NATURE COMMUNICATIONS》;20180706;第9卷;文章编号2638 * |
Highly Polymorphic Microsatellite DNA Markers for Sugarcane Germplasm Evaluation and Variety Identity Testing;Pingwu Liu等;《Sugar Tech》;20110622;第13卷(第2期);第129–136页 * |
甘蔗栽培种单倍体基因组SSR位点的发掘与应用;王恒波等;《作物学报》;20200115;第46卷(第4期);第631-642页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110551844A (en) | 2019-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hayashi et al. | Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus | |
CN109706263A (en) | SNP Molecular Markers Linked to Wheat Stripe Rust Resistance Gene QYr.sicau-1B-1 and Its Application | |
CN112481275B (en) | Wheat stripe rust resistant gene yrZ15-1370 and molecular marker and application thereof | |
CN102031253B (en) | Molecular marker method for identifying indica type rice and japonica rice by using rice grain | |
CN112430606B (en) | Wheat stripe rust resistant gene yrZ-1949 and molecular marker and application thereof | |
CN110295251A (en) | Chain SNP marker and its application with wheat available tillering QTL | |
CN110551844B (en) | Sugarcane cultivar genome SSR molecular marker development method and application | |
Emeriewen et al. | Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites | |
Xu et al. | A novel set of 223 EST-SSR markers in Casuarina L. ex Adans.: polymorphisms, cross-species transferability, and utility for commercial clone genotyping | |
CN106811462B (en) | Indel marker linked with tomato gray leaf spot resistance gene Sm as well as amplification primer and application thereof | |
KR101409012B1 (en) | Specific primers for Pines distinction, analysis kit using its primers, and Pines distinciton method using thereof | |
Parveen et al. | Molecular markers and their application in plant biotechnology | |
CN113897457B (en) | A KASP Molecular Marker Linked to Wheat Stripe Rust Resistance QTL and Its Application | |
CN114836556B (en) | Molecular marker closely linked with wheat stripe rust resistance QTL QYr.sicau-6B and application | |
CN111893209A (en) | A marker for detection of indel sites related to 1000-kernel weight of wheat and its application | |
Wang et al. | A genetic linkage map of Populus adenopoda Maxim.× P. alba L. hybrid based on SSR and SRAP markers | |
KR102116428B1 (en) | Primer set for discriminating clubroot disease-resistant Brassica rapa cultivar and uses thereof | |
CN116064904A (en) | Molecular markers closely linked to wheat stalk rot resistance QTL Qfcr.sicau.2A and their application | |
CN113832251B (en) | SNP locus combination for detecting tomato mosaic virus resistance and application thereof | |
CN113046467B (en) | A group of SNP loci significantly associated with resistance to wheat stripe rust and its application in genetic breeding | |
CN104293774A (en) | Functional SSR labels obviously related with wood quality characters in populus CesAs gene, and applications and kit thereof | |
CN111647677B (en) | Molecular marker closely linked to QTL QGfr.sicau-6D for grain filling rate in wheat and its application | |
CN118531157A (en) | SNP (Single nucleotide polymorphism) marker method for detecting tomato neck rot and root rot resistance gene and application thereof | |
CN116200528B (en) | SNP molecular markers linked to wheat stripe rust resistance gene QYr.sicau.-2BL and its application | |
CN113736906B (en) | SNP locus combinations for detecting tomato Verticillium wilt resistance and their applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201117 Termination date: 20210930 |
|
CF01 | Termination of patent right due to non-payment of annual fee |