CN110543820A - 一种基于编辑倒频谱的故障滚动轴承模态参数提取方法 - Google Patents
一种基于编辑倒频谱的故障滚动轴承模态参数提取方法 Download PDFInfo
- Publication number
- CN110543820A CN110543820A CN201910689455.1A CN201910689455A CN110543820A CN 110543820 A CN110543820 A CN 110543820A CN 201910689455 A CN201910689455 A CN 201910689455A CN 110543820 A CN110543820 A CN 110543820A
- Authority
- CN
- China
- Prior art keywords
- cepstrum
- frequency
- rolling bearing
- real
- fault
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
- G01M13/045—Acoustic or vibration analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明公开了一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,包括步骤:S1、采集包含滚动轴承故障特征的振动加速度响应信号;S2、应用带通滤波器,去除振动加速度响应信号中的干扰信号,得到滤波后的时域信号;S3、根据倒频谱解卷积的特性,对滤波后的时域信号进行实倒频谱计算,再将其转换为带有相位信息的复倒频谱;S4、对复倒频谱进行指数窗滤波,提取包含频率响应函数信息的部分,再将其转换到频域中;S5、对获取的频域中信息,进行有理分式多项式拟合来提取故障滚动轴承的多阶模态参数,并补偿分析指数窗的影响。所述方法具有一定的抗噪性和参数提取的准确性,能够克服相关滤波法在含噪信号中提取参数的不准确性问题。
Description
技术领域
本发明涉及轴承等旋转机械的信号处理领域,更具体地,涉及一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,可以用来准确提取滚动轴承故障时的模态参数,为后续滚动轴承的故障诊断做出贡献。
背景技术
模态分析是研究结构动力特性的一种方法,是系统辨别方法在振动工程领域的应用。通过模态分析的方法,获得系统的多阶固有频率和阻尼比。模态分析分为试验模态分析方法和工作模态分析方法,由于工作模态分析仅需要测试得到振动响应数据,无需对输入的激励力进行测试,更符合实际情况且方法简单,近年来研究发展活跃。通过对故障轴承的工作模态分析,更能进一步通过振动数据揭示故障损伤的类型。
现常用的工作模态参数提取方法分为时域法和频域法。时域法是基于结构的各界模态相互独立,并构成一个正交函数系列的属性,将结构振动分解为结构模态分量的叠加。如时间序列识别方法、特征系统实现方法、随机子空间方法和ITD方法等。而频域法是通过傅里叶变换将时域振动数据转换到频域,进行处理并拟合获取。如份量分析法、导纳圆识别方法以及正交多项式曲线拟合方法等。测得的振动数据是激励力与传递函数卷积后的结果,但无论时域法还是频域法得到的结果中都无法排除激励力对最终结果的影响。
发明内容
本发明的目的是针对现有工作模态分析中参数提取方法的准确性不足,提出了一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,该方法能够利用倒频谱解卷积的性质,通过加窗滤波的方式将激励力信息移除,提取出振动数据中只包含传递函数信息的数据,并利用补偿分析,弥补由于加窗导致模态信息发生的改变,同时采用有理分式多项式拟合的方法来提取故障轴承的多阶固有频率和阻尼比。
本发明的目的可以通过如下技术方案实现:
一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,所述方法包括以下步骤:
S1、采集包含滚动轴承故障特征的振动加速度响应信号;
S2、应用带通滤波器,去除振动加速度响应信号中的干扰信号,得到滤波后的时域信号;
S3、根据倒频谱解卷积的特性,对滤波后的时域信号进行实倒频谱计算,再将其转换为带有相位信息的复倒频谱;
S4、对复倒频谱进行指数窗滤波,提取包含频率响应函数信息的部分,再将其转换到频域中;
S5、对获取的频域中信息,进行有理分式多项式拟合来提取故障滚动轴承的多阶模态参数,并补偿分析指数窗的影响。
进一步地,所述步骤S1具体包括以下内容:
S11、建立物理坐标系:X轴正向指向滚动轴承的轴向,Z轴正向竖直向上,Y轴正向由右手定则确定;
S12、安装传感器:利用1个单向加速度传感器,安装在被测故障滚动轴承轴承座上方,测试方向为Z向,将单向加速度传感器、数据采集器以及便携式计算机,按照正确的方式连接;
S13、设置相应的采样参数:采样时间长度T为10~20s,采样频率设为fs,则对应的采样时间间隔Δt=1/fs,采样点数n=fs×T;记最终采集的振动加速度时域信号为xT(t);
S14、从xT(t)中截取一段信噪比较高、时长为Tx的振动加速度响应信号进行分析,记为x(t)。
进一步地,所述步骤S2具体包括以下内容:
设置带通滤波器的参数:下限截止频率flc=1/20×fs,上限截止频率fhc=1/2×fs,其中fs为振动加速度响应信号的采样频率;滤波的目的是为了去除轴承制造误差和装配误差所导致的低频振动,以及其他机械结构所产生的振动干扰,记滤波后的时域信号为xp(t)。
进一步地,滤波后的时域信号xp(t)是传递路径函数h(t)与故障滚动轴承所产生的激励力d(t,tn)卷积得到的:
xp(t)=h(t)*d(t,tn)
式中:*为卷积符号;
对上式两端进行倒频谱计算:
Cp(t)=Ch(t)+Cd(t)
式中,Cp(t)、Ch(t)和Cd(t)分别是xp(t)、h(t)和d(t,tn)的倒频表达式,能够看出时域上卷积的形式,在倒频域上已经转换成相互叠加,并且Ch(t)与Cd(t)还分别处于倒频上不同的位置,Ch(t)位于低倒频处,Cd(t)位于高倒频处,因此能够通过加窗滤波分离。
所述步骤S3具体包括以下内容:
S31、对滤波后的时域信号xp(t)进行实倒频谱计算:
A(f)=Γ(xp(t))
Cr(t)=Γ-1{ln(A(f))}
式中,Γ(·)和Γ-1(·)分别代表傅里叶正变换和傅里叶逆变换,A(f)和Cr(t)分别是xp(t)的频谱以及实倒频谱;
S32、根据实倒频谱与复倒频谱之间的关系,将实倒频谱转换为带有相位信息的复倒频谱:
式中,Cc(t)为复倒频谱,即将实倒频谱中的正频部分乘以2,负频部分置零。
进一步地,步骤S4具体包括以下内容:
S41、根据倒频谱解卷积的特性,利用指数窗提取复倒频谱Cc(t)上的传递函数的信息:
式中,Ctrans(t)为传递函数信息倒频域上的表达式,σw为指数窗的阻尼因子,Δt为采样时间间隔,n为采样点数;
S42、再通过下式将Ctrans(t)频率响应函数信息转换到频域中:
Imag_T(f)=imag(Γ(Ctrans(t)))
式中:Real_T(f)与Imag_T(f)分别是提取到的频率响应函数的实部和虚部。
进一步地,步骤S5中,设置所需要识别的故障滚动轴承的模态阶数k,适当提高识别的阶数能够得到更好的精度和结果;利用有理分式多项式拟合频率响应函数的方法来获取多阶故障滚动轴承的模态参数;并通过下式进行补偿分析:
式中,ξreal、ξrec分别是准确的阻尼比与识别得到的阻尼比,ω是识别得到的固有频率,σw为指数窗的阻尼因子,σ是准确的阻尼因子,去除指数窗对模态参数提取的影响,获取准确的固有频率fdj和阻尼比ξj,其中j=1…k。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明提供的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,将编辑倒频谱算法与有理分式多项式拟合相结合,能够准确地识别故障轴承的多阶固有频率与阻尼比。
2、本发明提供的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,利用编辑倒频谱方法实现振动响应信号中的传递路径函数与激励力函数解卷积,并利用指数窗进行滤波处理,提取含有模态信息的部分,为后续利用有理分式多项式拟合打下了良好的铺垫,后续补偿分析弥补了由于加窗而导致模态参数变化的影响。
3、本发明提供的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,在仿真信号和实验测试中均具有良好的抗噪性,即使原始冲击信号均被噪声淹没,也能较为准确的提取故障轴承系统的模态参数。
附图说明
图1为本发明实施例1基于编辑倒频谱的故障滚动轴承模态参数提取方法实施的总流程图。
图2为本发明实施例1中编辑倒频谱结合有理分式多项式拟合算法的流程图。
图3(a)为本发明实施例1中仿真外圈故障轴承中滚动轴承外圈故障仿真时域信号;图3(b)为本发明实施例1中仿真外圈故障轴承中滚动轴承外圈故障仿真频域信号;图3(c)为本发明实施例1中仿真外圈故障轴承中滚动轴承外圈故障仿真对数域信号。
图4为本发明实施例1中仿真外圈故障轴承中原始信号频谱与识别频响函数曲线对比图。
图5为本发明实施例1中仿真外圈故障轴承中识别频响函数曲线与拟合频响函数曲线对比图。
图6(a)为本发明实施例2中原始信号的时域波形图;图6(b)为本发明实施例2中原始信号的幅值谱图。
图7(a)为本发明实施例2中滤波后信号的时域波形图;图7(b)为本发明实施例2中滤波后信号的幅值谱图。
图8为本发明实施例2中原始信号频谱与识别频响函数曲线对比图。
图9为本发明实施例2中识别频响函数曲线与拟合频响函数曲线对比图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
本实施例提供了一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,所述方法中编辑倒频谱结合有理分式多项式拟合算法的流程图如图2所示,实施总流程图如图1所示,包括以下步骤:
S1、采集包含滚动轴承故障特征的振动加速度响应信号;
S2、应用带通滤波器,去除振动加速度响应信号中的干扰信号,得到滤波后的时域信号;
S3、根据倒频谱解卷积的特性,对滤波后的时域信号进行实倒频谱计算,再将其转换为带有相位信息的复倒频谱;
S4、对复倒频谱进行指数窗滤波,提取包含频率响应函数信息的部分,再将其转换到频域中;
S5、对获取的频域中信息,进行有理分式多项式拟合来提取故障滚动轴承的多阶模态参数,并补偿分析指数窗的影响。
本实施例具体以仿真外圈故障轴承为例,传感器采集到的滚动轴承的振动响应信号具有幅值按指数衰减的冲击响应波形特征,考虑到冲击力会激起系统的多阶固有频率,可以通过下式对故障轴承信号进行仿真:
式中,I为采集时间内冲击响应的个数;J为被激起的固有频率的阶数;fdj为第j阶有阻尼固有频率,其中对应的阻尼比为ξj;Aij为第j阶固有频率下第i个冲击响应的幅值;τi为第i个冲击响应发生的时刻;T为冲击响应重复出现的周期;η(t)为高斯白噪声。
对所述仿真外圈故障轴承的模态参数提取具体实现步骤如下:
步骤1、利用上述式子建立滚动轴承外圈故障振动加速度仿真信号,仿真参数如下:给定转速600rpm,采样频率fs=16384Hz,截取信号长度为t=0.5s。轴承参数节圆直径D=85mm,滚动体直径d=18mm,滚动体个数z=13,接触角α=0°,固有频率fd=[1500 4000]Hz,阻尼比ξ=[0.03 0.01]。考虑到负载变化、转速波动和滚动体滑动对响应幅值和冲击时刻的影响,响应幅值Aij=10×rand(0,1),冲击产生时刻τi=0.5To×rand(0,1),仿真信号时域、频域和对数域见图3(a)、图3(b)和图3(c)。
步骤2、应用带通滤波器,去除振动加速度响应信号x(t)中由其他机械结构振动所导致的干扰信号,滤波后的信号为xp(t),带通滤波器的下限截止频率flc=1/20×fs,上限截止频率fhc=1/2×fs。
步骤3、
步骤31、对滤波后的振动加速度响应信号xp(t),进行实倒频谱的转换。计算公式:Cr(t)=Γ-1{ln(A(f))};
步骤32、将不包含相位信息的实倒频谱转换为含有相位信息的复倒频谱,转换公式:即正频部分乘以2,负频部分置零。
步骤4、
步骤41、将复倒频谱上的信息进行编辑滤波处理,获取所需的模态信息。具体公式:σw=200rad/s;
步骤42、将复倒频谱上提取到的模态信息转换到频域上,具体公式:
Imag_T(f)=imag(Γ(Ctrans(t)))
原始信号频谱与识别频响函数曲线对比见图4。
步骤5、
将识别得到的频响函数曲线,设置拟合阶数k=2,利用有理分式多项式拟合法,识别频响函数曲线与拟合频响函数曲线对比见图5,并通过补偿分析获得对应的故障轴承多阶固有频率和阻尼比见表1,具体补偿公式:
表1仿真外圈故障轴承模态参数识别结果
j | 1 | 2 |
f<sub>dj</sub> | 1503 | 3998 |
ξ<sub>j</sub> | 0.029 | 0.009 |
为了验证该方法的抗噪性能,给原始轴承外圈故障信号添加不同等级的噪声,进行20次识别,按照数理统计方法,其固有频率和阻尼比如下表2所示。
表2不同信噪比下固有频率和阻尼比对比
从表2中可以得出以下结论:(a)两阶固有频率均值在不同信噪比下均接近理论值,阻尼比除了-10dB的情况下也接近理论值;(b)当信噪比达到-15dB的时候,不仅时域上冲击波形被掩盖,频域上的峰值也被噪声的宽带所淹没,所以无法识别对应的频响函数。该方法在-15dB时失效。
实施例2:
本实施例以汽车变速器滚动轴承内圈故障为例,在汽车变速器上输出轴处安装有内圈故障的滚动轴承,故障尺寸:宽为0.2mm,1mm深,型号为NUP311EN,结构参数列于表3中。
表3 NUP311EN滚动轴承结构参数
外径 | 内径 | 节径 | 滚动体直径 | 滚子数目 | 接触角 |
120mm | 55mm | 85mm | 18mm | 13 | 0° |
对所述汽车变速器滚动轴承内圈故障的模态参数提取具体实现步骤如下:
步骤S1、
S11、坐标系建立:建立空间坐标系XYZ,X轴正向指向滚动轴承的轴向,Z轴正向竖直向上,Y轴正向由右手定则确定。
S12、安装传感器:在轴承座表面安装1个单向加速度传感器,传感器连接贝勒目(BBM)MKII信号采集器,数据采集器连接便携式计算机。
S13、设定变速器输出轴的转速为500r/min,设定数据采集器的采样频率fs=100KHz,采样时长T=10s,采集和同步记录测试点的振动加速度时域信号xT(t);
S14、从xT(t)中截取长度为Tx=1s的振动加速度响应信号x(t),其时域波形和幅值谱见图6(a)和图6(b)。
步骤S2、
对振动加速度响应信号x(t)进行带通滤波,滤除驱动前端电动机和皮带轮的干扰成分,得到滤波后的振动加速度响应信号xp(t)的时域波形和幅值谱见图7(a)和图7(b),带通滤波器的下限截止频率flc=1/20×fs,上限截止频率fhc=1/2×fs。
步骤S3、
S31、对滤波后的振动加速度响应信号xp(t),进行实倒频谱的转换。计算公式:Cr(t)=Γ-1{ln(A(f))};
S32、将不包含相位信息的实倒频谱转换为含有相位信息的复倒频谱,转换公式:即正频部分乘以2,负频部分置零。
步骤S4、
S41、将复倒频谱上的信息进行编辑滤波处理,获取所需的模态信息。具体公式:σw=200rad/s;
S42、将复倒频谱上提取到的模态信息转换到频域上,具体公式:
Imag_T(f)=imag(Γ(Ctrans(t)))
原始信号频谱与识别频响函数曲线对比见图8。
步骤S5:
将识别得到的频响函数曲线,设置拟合阶数k=7,利用有理分式多项式拟合法,识别频响函数曲线与拟合频响函数曲线对比见图9,并通过补偿分析获得对应的故障轴承多阶固有频率和阻尼比见表4,具体补偿公式:
表4识别得到的多阶固有频率(Hz)与阻尼比
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明专利构思加以等同替换或改变,都属于本发明专利的保护范围。
Claims (6)
1.一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,其特征在于,所述方法包括以下步骤:
S1、采集包含滚动轴承故障特征的振动加速度响应信号;
S2、应用带通滤波器,去除振动加速度响应信号中的干扰信号,得到滤波后的时域信号;
S3、根据倒频谱解卷积的特性,对滤波后的时域信号进行实倒频谱计算,再将其转换为带有相位信息的复倒频谱;
S4、对复倒频谱进行指数窗滤波,提取包含频率响应函数信息的部分,再将其转换到频域中;
S5、对获取的频域中信息,进行有理分式多项式拟合来提取故障滚动轴承的多阶模态参数,并补偿分析指数窗的影响。
2.根据权利要求1所述的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,其特征在于,所述步骤S1具体包括以下内容:
S11、建立物理坐标系:X轴正向指向滚动轴承的轴向,Z轴正向竖直向上,Y轴正向由右手定则确定;
S12、安装传感器:利用1个单向加速度传感器,安装在被测故障滚动轴承轴承座上方,测试方向为Z向,将单向加速度传感器、数据采集器以及便携式计算机,按照正确的方式连接;
S13、设置相应的采样参数:采样时间长度T为10~20s,采样频率设为fs,则对应的采样时间间隔Δt=1/fs,采样点数n=fs×T;记最终采集的振动加速度时域信号为xT(t);
S14、从xT(t)中截取一段信噪比较高、时长为Tx的振动加速度响应信号进行分析,记为x(t)。
3.根据权利要求1所述的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,其特征在于,所述步骤S2具体包括以下内容:
设置带通滤波器的参数:下限截止频率flc=1/20×fs,上限截止频率fhc=1/2×fs,其中fs为振动加速度响应信号的采样频率;滤波的目的是为了去除轴承制造误差和装配误差所导致的低频振动,以及其他机械结构所产生的振动干扰,记滤波后的时域信号为xp(t)。
4.根据权利要求1所述的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,其特征在于,所述步骤S3具体包括以下内容:
S31、对滤波后的时域信号xp(t)进行实倒频谱计算:
A(f)=Γ(xp(t))
Cr(t)=Γ-1{ln(A(f))}
式中,Γ(·)和Γ-1(·)分别代表傅里叶正变换和傅里叶逆变换,A(f)和Cr(t)分别是xp(t)的频谱以及实倒频谱;
S32、根据实倒频谱与复倒频谱之间的关系,将实倒频谱转换为带有相位信息的复倒频谱:
式中,Cc(t)为复倒频谱,即将实倒频谱中的正频部分乘以2,负频部分置零。
5.根据权利要求1所述的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,其特征在于,所述步骤S4具体包括以下内容:
S41、根据倒频谱解卷积的特性,利用指数窗提取复倒频谱Cc(t)上的传递函数的信息:
式中,Ctrans(t)为传递函数信息倒频域上的表达式,σw为指数窗的阻尼因子,Δt为采样时间间隔,n为采样点数;
S42、再通过下式将Ctrans(t)频率响应函数信息转换到频域中:
Imag_T(f)=imag(Γ(Ctrans(t)))
式中:Real_T(f)与Imag_T(f)分别是提取到的频率响应函数的实部和虚部。
6.根据权利要求1所述的一种基于编辑倒频谱的故障滚动轴承模态参数提取方法,其特征在于:步骤S5中,设置所需要识别的故障滚动轴承的模态阶数k;利用有理分式多项式拟合频率响应函数的方法来获取多阶故障滚动轴承的模态参数;并通过下式进行补偿分析:
式中,ξreal、ξrec分别是准确的阻尼比与识别得到的阻尼比,ω是识别得到的固有频率,σw为指数窗的阻尼因子,σ是准确的阻尼因子,去除指数窗对模态参数提取的影响,获取准确的固有频率fdj和阻尼比ξj,其中j=1…k。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910689455.1A CN110543820A (zh) | 2019-07-29 | 2019-07-29 | 一种基于编辑倒频谱的故障滚动轴承模态参数提取方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910689455.1A CN110543820A (zh) | 2019-07-29 | 2019-07-29 | 一种基于编辑倒频谱的故障滚动轴承模态参数提取方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110543820A true CN110543820A (zh) | 2019-12-06 |
Family
ID=68709929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910689455.1A Pending CN110543820A (zh) | 2019-07-29 | 2019-07-29 | 一种基于编辑倒频谱的故障滚动轴承模态参数提取方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110543820A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418700A (zh) * | 2021-06-23 | 2021-09-21 | 太原理工大学 | 一种智能传感器及矿用皮带机传动系统健康状态监测方法 |
CN113484544A (zh) * | 2021-08-25 | 2021-10-08 | 浙江上风高科专风实业股份有限公司 | 一种面向无线振动速度传感器的中低频频谱矫正方法 |
CN116992254A (zh) * | 2023-09-25 | 2023-11-03 | 北京博华信智科技股份有限公司 | 变频电机的壳振信号的重构方法、装置、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040136577A1 (en) * | 2002-10-11 | 2004-07-15 | University Of Massachusetts | Optical fourier systems and methods for medical image processing |
CN103149029A (zh) * | 2013-01-16 | 2013-06-12 | 南京航空航天大学 | 利用倒频谱识别航空发动机转静碰摩部位的方法 |
CN104316163A (zh) * | 2014-06-23 | 2015-01-28 | 华南理工大学 | 基于内积变换和相关滤波的齿轮箱耦合调制信号分离方法 |
CN105241666A (zh) * | 2015-09-21 | 2016-01-13 | 华南理工大学 | 一种基于信号稀疏表示理论的滚动轴承故障特征提取方法 |
-
2019
- 2019-07-29 CN CN201910689455.1A patent/CN110543820A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040136577A1 (en) * | 2002-10-11 | 2004-07-15 | University Of Massachusetts | Optical fourier systems and methods for medical image processing |
CN103149029A (zh) * | 2013-01-16 | 2013-06-12 | 南京航空航天大学 | 利用倒频谱识别航空发动机转静碰摩部位的方法 |
CN104316163A (zh) * | 2014-06-23 | 2015-01-28 | 华南理工大学 | 基于内积变换和相关滤波的齿轮箱耦合调制信号分离方法 |
CN105241666A (zh) * | 2015-09-21 | 2016-01-13 | 华南理工大学 | 一种基于信号稀疏表示理论的滚动轴承故障特征提取方法 |
Non-Patent Citations (6)
Title |
---|
M. W. TRETHEWEY 等: "TUTORIAL: SIGNAL PROCESSING ASPECTS OF STRUCTURAL IMPACT TESTING", 《THE INTERNATIONAL JOURNAL OF ANALYTICAL AND EXPERIMENTAL MODAL ANALYSIS》 * |
R. B. RANDALL: "Vibration-based diagnostics of gearboxes under variable speed and load conditions", 《MECCANICA》 * |
ROBERT B. RANDALL ET AL.: "A history of cepstrum analysis and its application to mechanical Problems", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》 * |
代士超 等: "基于同步平均与倒频谱编辑的齿轮箱滚动轴承故障特征量提取", 《振动与冲击》 * |
樊长博 等: "应用倒频谱分析法对风力发电机组齿轮箱故障诊断", 《科学技术与工程》 * |
王旭峰 等: "倒频谱分析在故障检测中的应用", 《机械工程师》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418700A (zh) * | 2021-06-23 | 2021-09-21 | 太原理工大学 | 一种智能传感器及矿用皮带机传动系统健康状态监测方法 |
CN113484544A (zh) * | 2021-08-25 | 2021-10-08 | 浙江上风高科专风实业股份有限公司 | 一种面向无线振动速度传感器的中低频频谱矫正方法 |
CN113484544B (zh) * | 2021-08-25 | 2024-01-12 | 浙江上风高科专风实业股份有限公司 | 一种面向无线振动速度传感器的中低频频谱矫正方法 |
CN116992254A (zh) * | 2023-09-25 | 2023-11-03 | 北京博华信智科技股份有限公司 | 变频电机的壳振信号的重构方法、装置、设备及存储介质 |
CN116992254B (zh) * | 2023-09-25 | 2024-01-19 | 北京博华信智科技股份有限公司 | 变频电机的壳振信号的重构方法、装置、设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Randall | A history of cepstrum analysis and its application to mechanical problems | |
CN108168891B (zh) | 滚动轴承微弱故障信号特征的提取方法及设备 | |
Jiang et al. | Sparse dictionary design based on edited cepstrum and its application in rolling bearing fault diagnosis | |
CN110543820A (zh) | 一种基于编辑倒频谱的故障滚动轴承模态参数提取方法 | |
Zheng et al. | Incipient fault detection of rolling bearing using maximum autocorrelation impulse harmonic to noise deconvolution and parameter optimized fast EEMD | |
Randall et al. | A survey of the application of the cepstrum to structural modal analysis | |
Borghesani et al. | A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions | |
CN111094927A (zh) | 轴承故障诊断方法及装置、可读存储介质及电子设备 | |
CN109813547B (zh) | 基于稀疏分解优化算法的旋转机械局部型故障诊断方法 | |
CN110046476B (zh) | 滚动轴承故障的三元二进分形小波稀疏诊断方法 | |
Gao et al. | Impulsive gear fault diagnosis using adaptive Morlet wavelet filter based on alpha-stable distribution and kurtogram | |
CN110987434A (zh) | 一种基于去噪技术的滚动轴承早期故障诊断方法 | |
Ding et al. | Sparsity-based algorithm for condition assessment of rotating machinery using internal encoder data | |
Xu et al. | An enhanced multipoint optimal minimum entropy deconvolution approach for bearing fault detection of spur gearbox | |
CN111896260A (zh) | NGAs同步优化小波滤波器与MCKD的轴承故障诊断方法 | |
He et al. | Weak fault detection method of rolling bearing based on testing signal far away from fault source | |
CN114441172A (zh) | 一种滚动轴承故障振动信号分析方法 | |
Li et al. | A spectrum detection approach for bearing fault signal based on spectral kurtosis | |
CN110147637B (zh) | 基于小波及谐波成分贪婪稀疏识别的碰摩故障诊断方法 | |
CN104374576A (zh) | 一种提取低速轴承故障应力波的方法 | |
Van et al. | Rolling element bearing fault diagnosis using integrated nonlocal means denoising with modified morphology filter operators | |
Yang et al. | Research on Fault Feature Extraction Method Based on FDM‐RobustICA and MOMEDA | |
CN116578840A (zh) | 一种基于eemd-isvd的滚动轴承振动信号降噪方法、装置、电子设备及介质 | |
CN116028840A (zh) | 最大重叠离散小波包变换时频谱的船用转子故障诊断方法 | |
CN116086807A (zh) | 一种用于滚动轴承的故障判断方法和相关产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191206 |