CN110534350B - 一种功能化碳纳米片/wo3纳米棒复合材料及制备方法 - Google Patents

一种功能化碳纳米片/wo3纳米棒复合材料及制备方法 Download PDF

Info

Publication number
CN110534350B
CN110534350B CN201910778688.9A CN201910778688A CN110534350B CN 110534350 B CN110534350 B CN 110534350B CN 201910778688 A CN201910778688 A CN 201910778688A CN 110534350 B CN110534350 B CN 110534350B
Authority
CN
China
Prior art keywords
nano
functionalized carbon
composite material
drying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910778688.9A
Other languages
English (en)
Other versions
CN110534350A (zh
Inventor
严学华
袁小雪
王静静
犹明瑜
苗洁玉
程晓农
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910778688.9A priority Critical patent/CN110534350B/zh
Publication of CN110534350A publication Critical patent/CN110534350A/zh
Application granted granted Critical
Publication of CN110534350B publication Critical patent/CN110534350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及超级电容器,特指一种功能化碳纳米片/WO3纳米棒复合材料及其制备方法。本发明首先制备出了功能化碳纳米片,然后再水热反应生成功能化碳纳米片/WO3纳米棒复合材料,该复合材料作为超级电容电极材料表现出优异的电化学性能,且制备工艺简单,作为新型能源材料在超级电容器、锂离子电池等设备领域具有较好的应用前景。

Description

一种功能化碳纳米片/WO3纳米棒复合材料及制备方法
技术领域
本发明涉及超级电容器,特指一种功能化碳纳米片/WO3纳米棒复合材料及其制备方法。首先制备出了功能化碳纳米片,然后再水热反应生成功能化碳纳米片/WO3纳米棒复合材料,该复合材料作为超级电容电极材料表现出优异的电化学性能,且制备工艺简单,作为新型能源材料在超级电容器、锂离子电池等设备领域具有较好的应用前景。
背景技术
超级电容器作为一种新型的储能器件,因其较高的循环寿命,以及较大的功率密度和绿色的环境友好性,使其在生产实践中具有巨大的应用。随着科学技术的不断发展,人们对储能材料的能量密度和循环次数的要求逐渐提高,根据超级电容器的双电层理论,电极材料的修饰改性是提高其电化学性能的关键,因此寻找较大比表面积且电化学性能优异的电极材料已经成为人们研究的热点。
碳纳米片具有比表面积大、吸附能力强、反应及催化活性高等优点,独特的二维片状结构提高了电极材料在电解液中的浸润性,促进大量氧化还原反应在活性边缘进行,从而提高超级电容器的比电容。碳纳米片电极材料的电化学性能关键制约因素主要包括比表面积、导电性、孔径及孔径分布,孔体积等。活化方式和条件的不同也可对碳纳米片的孔隙率及电化学性能产生重要的影响。化学活化方式可使碳纳米片表面产生丰富的官能团,其可明显增强电极的表面润湿性,不仅可以使碳材料更容易与其他材料进行复合,而且可以在充放电过程中发生氧化还原反应从而提供额外的赝电容。文献研究表明,改性碳纳米材料在光催化、电解水制氢、锂离子电池、超级电容器等众多能源领域具有重要的应用。
过渡金属氧化物WO3是一种性能优异的超级电容器电极材料,其所具有的比表面积高、吸附能力强、反应活性高等优点,极大地提高了它在电解液中的浸润度,促进了电化学储能反应的进行,从而提高超级电容器的电化学性能。然而,目前仍存在一些重要因素制约着WO3在超级电容器中的应用,如半导体材料本身的导电性差、循环过程中材料发生团聚、材料受力发生体积膨胀和收缩而导致结构破坏等问题。现在许多研究集中在通过改性优化和复合来提高WO3的电化学性能。在复合材料设计方面,常常将WO3与过渡金属硫化物、导电聚合物、碳材料等复合,以提高的WO3导电性。纳米材料具有多样微观形貌,可以通过不同的实验方法的优选及对实验条件的调控来实现其形貌控制,目前广泛研究的纳米结构有纳米棒结构、纳米片结构、介孔结构、核壳结构等。对于超级电容器电极材料而言,一维纳米棒与二维纳米片的复合结构具有高比表面积和合适的孔径分布,可以提供丰富的电化学反应活性位点,提高WO3的导电性,极大地缩短电解液中电子离子的扩散路径,对材料电化学性能的提升起重要作用。
发明内容
本发明的目的是提供一种通过功能化碳纳米片与一维WO3纳米棒复合所形成的具有稳定的1D/2D复合形貌与良好电化学性能的纳米复合材料。
本发明中的功能化碳纳米片/WO3纳米棒复合材料,在260cm-1、740cm-1和 954cm-1处有三个明显的WO3特征峰,在1349cm-1(D峰)和1581cm-1(G峰)有两个明显的碳特征峰,如图1。样品微观形貌均匀,一维的WO3纳米棒均匀分散在功能化碳纳米片的表面,碳纳米片的厚度为20nm,一维WO3纳米棒的长度为 800nm,如图2。
本发明中的功能化碳纳米片/WO3纳米棒复合材料具有良好的电化学性能,使其在WO3纳米棒的基础上有了显著的提高,在测试电压范围-1V到-0.1V,扫描速率为10mV/s到50mV/s的CV循环测试中,功能化碳纳米片/WO3纳米棒复合材料表现出优良的比电容,在10mV/s的扫描速率下,比容量达到了185F/g,如图3所示。
实现本发明所采用的技术方案为:一种功能化碳纳米片/WO3纳米棒复合材料,该方法具有工艺简单、成本低廉等特点,所得的一维的WO3纳米棒均匀分散在功能化碳纳米片的表面,在超级电容器中,表现出优良的电化学性能,制备步骤如下:
(1)称取C6H5K3O7·H2O用瓷舟装好,放入到管式炉中,氩气氛围下,以一定升温速率,升温至设定温度并保温一定时间,自然冷却后将样品收集,得到的粉末用稀盐酸溶液清洗,然后用去离子水和乙醇各洗涤离心三次,并在真空干燥箱中烘干,烘干得到的粉末备用。
所述的C6H5K3O7·H2O的质量为6g。
升温速率为5℃/min,设定温度为850℃,保温时间为1h。
稀盐酸溶液的浓度为1mol/L。
所述烘干指放在真空干燥箱中65℃的温度条件下干燥24h。
(2)将步骤(1)得到的粉末放入浓硝酸、浓硫酸和双氧水的混合溶液中,在水浴环境下进行搅拌,搅拌一定时间后静置,然后用去离子水和无水乙醇洗至中性,并在真空干燥箱中烘干,得到功能化碳纳米片。
所述的浓硝酸、浓硫酸和双氧水的体积比为3:1:1。
水浴温度为80℃,搅拌时间为10h。
静置时间为12h。
所述烘干指放在真空干燥箱中65℃的温度条件下干燥24h。
(3)取步骤(2)中制备好的功能化碳纳米片,制备成悬浮液,加入Na2WO4·2H2O,用盐酸调节PH,持续搅拌再超声,加入K2SO4,继续搅拌一段时间,然后转移至反应釜中,在一定温度下反应,以使功能化碳纳米片更好地和一维的WO3纳米棒复合,反应结束后自然冷却至室温,用去离子水和乙醇各洗涤离心三次,并在真空干燥箱中干燥。
所述的功能化碳纳米片悬浮液的浓度为0.4g/L;功能化碳纳米片、 Na2WO4·2H2O和K2SO4的质量比为0.02:1.5:5;盐酸浓度为3mol/L;调节PH 为1.5。
所述的持续搅拌的时间为1h,超声的时间为1h,继续搅拌的时间为30min;反应温度为180℃,反应时间为16h,干燥温度为60℃,干燥时间为12h。
附图说明
图1为功能化碳纳米片/WO3纳米棒复合材料的拉曼图谱。
图2为功能化碳纳米片/WO3纳米棒复合材料的扫描电镜图。
图3为功能化碳纳米片/WO3纳米棒复合材料在不同扫描速率下的CV曲线图。
具体实施方式
本发明实施方案是一种工艺简单、成本相对低廉制备方法,首先通过高温法制备出了碳纳米片,然后通过化学活化得到功能化碳纳米片,最后通过水热法来合成功能化碳纳米片/WO3纳米棒复合材料,具有1D/2D的复合形貌特征,极大地提高了材料的比容量以及循环稳定性。
本发明涉及优良电化学性能的功能化碳纳米片/WO3纳米棒复合材料的制备方法,包括以下步骤:
(1)称取6g C6H5K3O7·H2O用瓷舟装好,放入到管式炉中,氩气氛围下,以5℃/min的升温速率,升温至850℃,保温1h,自然冷却后将样品收集,得到的粉末用1mol/L的稀盐酸溶液清洗,然后用去离子水和乙醇各洗涤离心三次,并在真空干燥箱中65℃的温度条件下干燥24h。
(2)将步骤(1)得到的粉末放入浓硝酸、浓硫酸和双氧水(体积比为3:1:1) 的混合溶液中,在80℃水浴环境下搅拌10h,然后静置12h,用去离子水和无水乙醇洗至中性,并在真空干燥箱中65℃的温度条件下干燥24h。
(3)取步骤(2)中制备好的功能化碳纳米片,制备成50mL的0.4g/L的悬浮液,加入1.5g的Na2WO4·2H2O,用3mol/L盐酸调节PH=1.5,持续搅拌1h再超声1h,加入5g的K2SO4,继续搅拌30min,然后转移至100ml反应釜中,在 180℃反应16h,以使功能化碳纳米片更好地和一维的WO3纳米棒复合,反应结束后自然冷却至室温,用去离子水和乙醇各洗涤离心三次,并在真空干燥箱中 60℃干燥12h。

Claims (7)

1.一种功能化碳纳米片/WO3纳米棒复合材料的制备方法,所述复合材料由表面功能化碳纳米片和一维棒状WO3两种材料复合而成,具有2D/1D的形貌特征,一维WO3纳米棒均匀地分散在二维功能化碳纳米片的表面,其特征在于,制备步骤如下:在功能化的碳纳米片悬浮液中加入Na2WO4·2H2O,用盐酸调节PH为1.5,持续搅拌再超声,加入K2SO4,继续搅拌一段时间,然后转移至反应釜中,在一定温度下反应,反应温度为180℃,反应时间为16h,以使功能化碳纳米片更好地和一维的WO3纳米棒复合,反应结束后自然冷却至室温,用去离子水和乙醇各洗涤离心三次,并在真空干燥箱中干燥;功能化碳纳米片、Na2WO4·2H2O和K2SO4的质量比为0.02:1.5:5。
2.如权利要求1所述的一种功能化碳纳米片/WO3纳米棒复合材料的制备方法,其特征在于:功能化碳纳米片/WO3纳米棒复合材料尺寸均匀,一维WO3纳米棒的长度为800nm,碳纳米片的厚度为20nm。
3.如权利要求1所述的一种功能化碳纳米片/WO3纳米棒复合材料的制备方法,其特征在于,所述的功能化碳纳米片悬浮液的浓度为0.4g/L;盐酸浓度为3mol/L。
4.如权利要求1所述的功能化碳纳米片/WO3纳米棒复合材料的制备方法,其特征在于,持续搅拌的时间为1h,超声的时间为1h,继续搅拌的时间为30min;干燥温度为60℃,干燥时间为12h。
5.如权利要求1所述的一种功能化碳纳米片/WO3纳米棒复合材料的制备方法,其特征在于,所述的功能化的碳纳米片的制备步骤如下:
(1)称取C6H5K3O7•H2O用瓷舟装好,放入到管式炉中,氩气氛围下,以一定升温速率,升温至设定温度并保温一定时间,自然冷却后将样品收集,得到的粉末用稀盐酸溶液清洗,然后用去离子水和乙醇各洗涤离心三次,并在真空干燥箱中烘干,烘干得到的粉末备用;
(2)将步骤(1)得到的粉末放入浓硝酸、浓硫酸和双氧水的混合溶液中,在水浴环境下进行搅拌,搅拌一定时间后静置,然后用去离子水和无水乙醇洗至中性,并在真空干燥箱中烘干,得到功能化碳纳米片。
6.如权利要求5所述的一种功能化碳纳米片/WO3纳米棒复合材料的制备方法,其特征在于,步骤(1)中,所述的C6H5K3O7•H2O的质量为6g;升温速率为5℃/min,设定温度为850℃,保温时间为1h;稀盐酸溶液的浓度为1mol/L;所述烘干指放在真空干燥箱中65℃的温度条件下干燥24h。
7.如权利要求5所述的一种功能化碳纳米片/WO3纳米棒复合材料的制备方法,其特征在于,步骤(2)中,所述的浓硝酸、浓硫酸和双氧水的体积比为3:1:1;水浴温度为80℃,搅拌时间为10h;静置时间为12h;所述烘干指放在真空干燥箱中65℃的温度条件下干燥24h。
CN201910778688.9A 2019-08-22 2019-08-22 一种功能化碳纳米片/wo3纳米棒复合材料及制备方法 Active CN110534350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910778688.9A CN110534350B (zh) 2019-08-22 2019-08-22 一种功能化碳纳米片/wo3纳米棒复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910778688.9A CN110534350B (zh) 2019-08-22 2019-08-22 一种功能化碳纳米片/wo3纳米棒复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN110534350A CN110534350A (zh) 2019-12-03
CN110534350B true CN110534350B (zh) 2022-03-22

Family

ID=68664026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910778688.9A Active CN110534350B (zh) 2019-08-22 2019-08-22 一种功能化碳纳米片/wo3纳米棒复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN110534350B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927353B (zh) * 2022-02-16 2024-01-26 上海应用技术大学 一种CF/WO3/TiO2复合材料及其制备与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2879143A1 (en) * 2012-07-26 2015-06-03 W.L. Gore & Associates, Co., Ltd. Polarizable electrode material and electric double layer capacitor using same
CN105600825A (zh) * 2015-12-25 2016-05-25 江西理工大学 一种由碳纳米管调节氧化钨形貌与尺寸的方法
CN105826539A (zh) * 2016-06-02 2016-08-03 南阳师范学院 一种wo3-x/c复合材料、制备方法及其用途
CN108328601A (zh) * 2017-12-29 2018-07-27 镇江海利新材料科技有限公司 电化学应用的分级多孔碳纳米薄片及制备方法
CN108364794A (zh) * 2018-01-10 2018-08-03 青岛大学 一种基于碳布原位生长三氧化钨超级电容器电极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2879143A1 (en) * 2012-07-26 2015-06-03 W.L. Gore & Associates, Co., Ltd. Polarizable electrode material and electric double layer capacitor using same
CN105600825A (zh) * 2015-12-25 2016-05-25 江西理工大学 一种由碳纳米管调节氧化钨形貌与尺寸的方法
CN105826539A (zh) * 2016-06-02 2016-08-03 南阳师范学院 一种wo3-x/c复合材料、制备方法及其用途
CN108328601A (zh) * 2017-12-29 2018-07-27 镇江海利新材料科技有限公司 电化学应用的分级多孔碳纳米薄片及制备方法
CN108364794A (zh) * 2018-01-10 2018-08-03 青岛大学 一种基于碳布原位生长三氧化钨超级电容器电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor;Pragati A. Shinde等;《Journal of Alloys and Compounds》;20180822(第770期);第1131页左栏倒数第2段,第1132页左栏第2段,第1134段左栏第1段-右栏第1段,图4、6(C) *
用于超级电容器的氧化钨及氧化钨@碳材料;刘旭东;《2018年版中国工程物理研究院科技年报》;20181130;全文 *

Also Published As

Publication number Publication date
CN110534350A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Zhang et al. A review of porous carbons produced by template methods for supercapacitor applications
US10889497B2 (en) Sheet-shaped nitrogen-phosphorus co-doped porous carbon material and method for preparation thereof and use thereof
Liu et al. Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges
CN105869924B (zh) 一种石墨烯基厚密电极的制备方法
CN102013330B (zh) 石墨烯/多孔氧化镍复合超级电容器薄膜及其制备方法
CN108630920A (zh) 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法
CN108054020B (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
Zhang et al. Biosorption-directed integration of hierarchical CoO/C composite with nickel foam for high-performance supercapacitor
Xiao et al. Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor
Yang et al. Cobalt–carbon derived from zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material
Fang et al. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube–RuO2 core–shell hybrid material with a high RuO2 loading
CN110010374B (zh) 一种氮硫共掺杂石墨烯泡沫电极的制备方法
Liu et al. Nitrogen/sulfur dual-doped sponge-like porous carbon materials derived from pomelo peel synthesized at comparatively low temperatures for superior-performance supercapacitors
Xi et al. Converting amorphous kraft lignin to hollow carbon shell frameworks as electrode materials for lithium-ion batteries and supercapacitors
Zhang et al. One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors
CN110078130B (zh) 一种中空结构铁基化合物的制备方法及其作为超级电容器负极材料的应用
CN111048324A (zh) 一种二氧化锰—多孔碳复合材料及其制备方法和应用
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
Qin et al. An oxidation-nitridation-denitridation approach to transform metal solids into foams with adjustable pore sizes for energy applications
CN108963237B (zh) 一种钠离子电池负极材料的制备方法
CN110534350B (zh) 一种功能化碳纳米片/wo3纳米棒复合材料及制备方法
Xiang et al. Supercapacitor properties of N/S/O co-doped and hydrothermally sculpted porous carbon cloth in pH-universal aqueous electrolytes: Mechanism of performance enhancement
CN110739159B (zh) 一种超级电容器用纳米线状二氧化锰/石墨烯气凝胶复合材料的制备方法
CN109659154A (zh) 一种碳基超级电容器电极材料的制备方法及其应用
CN111341567B (zh) 一种3D杨絮衍生碳支撑NiCo-LDH纳米片超级电容器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant