CN110531797A - 基于神经网络的超超临界机组高温过热器壁温预测方法 - Google Patents

基于神经网络的超超临界机组高温过热器壁温预测方法 Download PDF

Info

Publication number
CN110531797A
CN110531797A CN201910469410.3A CN201910469410A CN110531797A CN 110531797 A CN110531797 A CN 110531797A CN 201910469410 A CN201910469410 A CN 201910469410A CN 110531797 A CN110531797 A CN 110531797A
Authority
CN
China
Prior art keywords
neural network
extra
high temperature
wall temperature
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910469410.3A
Other languages
English (en)
Inventor
蒋蓬勃
侯德安
李其浩
孔凡义
张文鹏
邵磊
刘烨
潘广强
李峰
周宽
宋峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUADIAN POWER INTERNATIONAL Corp Ltd SHILIQUAN PLANT
Huadian International Electric Power Co Ltd Technical Services Branch
Original Assignee
HUADIAN POWER INTERNATIONAL Corp Ltd SHILIQUAN PLANT
Huadian International Electric Power Co Ltd Technical Services Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUADIAN POWER INTERNATIONAL Corp Ltd SHILIQUAN PLANT, Huadian International Electric Power Co Ltd Technical Services Branch filed Critical HUADIAN POWER INTERNATIONAL Corp Ltd SHILIQUAN PLANT
Priority to CN201910469410.3A priority Critical patent/CN110531797A/zh
Publication of CN110531797A publication Critical patent/CN110531797A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明属于电厂安全控制系统领域,尤其涉及一种基于神经网络的超超临界机组高温过热器壁温预测方法。其特征在于:包括以下步骤:1)建立测温系统;2)利用反向传播算法预测,构建神经网络结构,对数据进行预处理,建立训练模型,得到预测模型;3)把验证集标准化后,带入训练完毕的预测模型,对数据进行模型测试,最终得到验证集的预测值,并且与验证集实际值进行比较,得到残差;4)利用指导故障预警。采用BP神经网络建立了炉膛内壁温预测模型,进而识别设备的潜伏性故障,实现对高温过热器等非常规监测设备的状态预测。

Description

基于神经网络的超超临界机组高温过热器壁温预测方法
技术领域
本发明属于电厂安全控制系统领域,尤其涉及一种基于神经网络的超超临界机组高温过 热器壁温预测方法。
背景技术
大型火电机组过热器爆管是造成非计划停机的重要原因之一。过热器爆管的成因非常复 杂,主要包括:(1)过热器管长期在高温下运行,管材内壁产生氧化皮,堆积在管材弯头处 导致爆管;(2)过热器管长期在高温下运行,组织性能发生蠕变失效;(3)机组运行中管壁 频繁短时超温,降低了管材的设计寿命及安全裕度;(4)管排、管段沿炉膛宽度和深度方向 的温度分布不均匀等。
在传统研究工作中,主要是基于机理分析的方法,通过机组过热器装设的大量管壁温度 测点建立炉膛内部过热器壁温分布计算模型,得到过热器各个管屏各管圈各部位温度分布。 但目前国内大部分火电机组锅炉过热器壁温测点安装于顶棚大包内,而非于炉膛高温烟气区, 测量值并非管壁实际温度,存在较大的偏差。而且这种方法受限于人对过热器运行机理的认 识,难以准确、全面的分析过热器可能出现的全部异常。
中国专利申请201711336347.3一种超超临界机组过热汽温多目标控制方法,包括出口温 度控制方法与管壁金属温度控制方法的多目标控制方法;采用模型预测的控制方法,分别建 立汽温惰性区预测模型和壁温预测模型,并用两个预测模型与实际测量参数的偏差值的大值 作为反馈调节分量之一;根据模型预测的控制方法中的反馈调节分量将控制反馈回路中调节 过热汽温和末级过热器金属壁温两个控制目标调和为调节喷水导前区对象减温器后温度的目 标,控制器针对喷水导前区对象特性进行设计。其中涉及到了温度预测,但是存在的不足是 预测误差较大,对后续控制有较大影响。
发明内容
针对现有技术存在的问题,本发明提供了一种误差小的基于神经网络的超超临界机组高 温过热器壁温预测方法。
本发明是这样实现的,一种基于神经网络的超超临界机组高温过热器壁温预测方法,其 特征在于:包括以下步骤:
1)建立测温系统,在超超临界机组高温过热器大包内设置壁温测点,采集壁温测点的数 据,通过电缆接到电厂DCS控制系统中,将数据传输到电厂信息中心PI和平台数据,数据被 划分为训练集和验证集;
2)利用反向传播算法预测,构建神经网络结构,对数据进行预处理,建立训练模型,得 到预测模型;
3)把验证集标准化后,带入训练完毕的预测模型,对数据进行模型测试,最终得到验证 集的预测值,并且与验证集实际值进行比较,得到残差;
4)利用指导故障预警。
其中优选方案是:
所述的1)建立测温系统还包括2个炉膛内过热器壁温测点。
所述的大包内设置壁温测点数量为700个。
所述的构建神经网络结构是指建立输入层700与输出层2的网络结构,网络层数为3; 根据经验公式得到隐含层个数为30个。
所述的建立训练模型,得到预测模型是指,把数据代入模型利用BP算法对数据进行训练, 根据预测值与实际值得误差精度进行反向传播,最终达到工业应用预测精度要求,则训练结 束。
所述的隐含层的个数靠下述经验公式(9)确定;
公式(9)中,n为输入层节点个数,q为输出层节点个数,a为0-10的整数,m为隐含层节点个数,则m的取值范围为3~14。经过试验,确定预测模型的隐含层节点个数30。
一种安装有权利要求1-6所述基于神经网络的超超临界机组高温过热器壁温预测方法的 预测系统,其特征在于,包括手持测试端,手持测试端通过无线网络连接平台数据,所述的 手持测试端设置基于神经网络的超超临界机组高温过热器壁温预测方法。
本发明的优点及积极效果为:
采用BP神经网络建立了炉膛内壁温预测模型,进而识别设备的潜伏性故障,实现对高温 过热器等非常规监测设备的状态预测。可以有效解决大型火电厂锅炉高温受热面炉膛内壁温 测量及预测这一难点问题,为利用炉外壁温长期监测炉内壁温对过热器管作出进行失效预测, 识别设备潜伏性故障,实现对高温过热器等大型工业设备的非常规监测设备的状态预测奠定 基础。
附图说明
图1是本发明实施例的预测模型示意图。
图2是本发明背景技术中的BP神经网络示意图;
图3是本发明实施例的内壁测点1温度预测结果示意图;
图4是本发明实施例的内壁测点2温度预测结果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行 进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定 本发明。
下面结合附图对本发明的应用原理作详细的描述。
实施例1:
如图1、2所示,一种基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在 于:包括以下步骤:
1)建立测温系统,在超超临界机组高温过热器大包内设置壁温测点,采集壁温测点的数 据,通过电缆接到电厂DCS控制系统中,将数据传输到电厂信息中心PI和平台数据,数据被 划分为训练集和验证集;
2)利用反向传播算法预测,构建神经网络结构,对数据进行预处理,建立训练模型;
3)把验证集标准化后,带入训练完毕的预测模型,对数据进行模型测试,最终得到验证 集的预测值,并且与验证集实际值进行比较,得到残差;
4)利用指导故障预警。由于炉内壁温测点耐用性较差,因此,当炉内测点失效时,仍可 以通过预测模型非常准确预测炉内温度,根据管材设计时的耐热最高温度阈值,可以实时检 测,若超出阈值95%,则发出预警,并提醒运行人员做相应的操作调整。
所述的1)建立测温系统还包括2个炉膛内过热器壁温测点。
其中,步骤2)中反向传播算法主要是用于更新神经网络的参数,神经网络公式可简单 的表达为z=wx+b,则需要更新的参数为公式中的w和b。对于参数的更新主要是求取网络层 的损失值对于参数的导数,并且根据导数的负方向对参数进行数值的更新,设学习率为η,参 数更新公式如下所示:
对于参数梯度的求取,需要先求取当前神经网络的输出结果z的梯度,如公式3所示:
式中的σ(·)为神经网络中的激活函数,σ′(·)为激活函数的导数。为第l层的第i个神经元的 激活输出值,其中的数据关系可用如下公式表示:
从以上计算公式可以推导出通过损失值用于求取每层神经元zi梯度的递推公式:
求取神经元梯度之后,继续借助链式法则计算当前层权重和偏置的偏导数,即更新量, 用于梯度的更新:
借助当前公式,梯度就可以从前往后一层一层传播计算,从而更新网络的参数。
BP神经网络模型的传递函数通常用Sigmoid函数,经过试验,确定隐含层的传递函数表达 式见式(9)。权重学习方法为附加动量项的梯度下降法。
基于上述分析,构建的最终BP神经网络预测模型如图2所示
所述的隐含层的个数靠下述经验公式(10)确定;
公式(10)中,n为输入层节点个数,q为输出层节点个数,a为0-10的整数,m为隐含层节点个数,则m的取值范围为3~14。经过试验,确定预测模型的隐含层节点个数30。
基于图2所示的BP神经网络预测模型,给定N个样本,每个训练样本网络训练误差为:
公式(11)中,为实际输出值。为此,总误差为:
基于反向传播算法,不断修正网络权初值,直至总误差达到网络性能目标误差。权值修 正公式如公式(1)和公式(2)所示。
实施例2
一种安装上述基于神经网络的超超临界机组高温过热器壁温预测方法的预测系统,其特 征在于,包括手持测试端,手持测试端通过无线网络连接平台数据,所述的手持测试端设置 基于神经网络的超超临界机组高温过热器壁温预测方法。
通过对某660MW超超临界机组锅炉高温过热器近4个月(2018.11~2019.03)包含700 个测点的过热器大包内数据集对2个炉膛内过热器壁温测点进行预测。数据集测点数据平均 每分钟采样一条,共计约20万条数据,实验数据集被划分为训练集和验证集。训练集为2019 年3月份的真实数据集,验证集为2018.11~2019.2的三个月的真实数据。具体实验方案为, 采用本文所提出的预测模型对3月份的测点数据进行训练,得到预测模型。然后用预测模型 对测试集的数据进行预测,同时将预测结果与实测的炉膛内过热器壁温真实数据值进行对比, 计算预测结果的准确性。
模型采用R2_score评价函数来计算准确率,R2分数是将预测值跟只使用均值的情况进行 对比,通常也被称为R2决定系数或拟合优度。其取值区间通常在(0,1)之间。0表示直接 取均值的情况,1表示所有预测跟真实结果完美匹配的情况。R2_score的定义如下:
模型预测结果如图3、图4所示。
从图3和图4的实验结果中可以看出,本文提出的基于BP神经网络的炉内壁温预测模型 在根据过热器大包内壁温测点数据预测炉膛内高温烟气区域壁温测点时取得了非常好的效 果,平均预测准确率达到了95.9%,预测的平均温度偏差绝对值仅为2.25度,壁温预测模型 准确有效。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原 则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在于:包括以下步骤:
1)建立测温系统,在超超临界机组高温过热器大包内设置壁温测点,采集壁温测点的数据,通过电缆接到电厂DCS控制系统中,将数据传输到电厂信息中心PI和平台数据,数据被划分为训练集和验证集;
2)利用反向传播算法预测,构建神经网络结构,对数据进行预处理,建立训练模型;
3)把验证集标准化后,带入训练完毕的预测模型,对数据进行模型测试,最终得到验证集的预测值,并且与验证集实际值进行比较,得到残差;
4)利用指导故障预警。
2.如权利要求1所述的基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在于,所述的1)建立测温系统还包括2个炉膛内过热器壁温测点。
3.如权利要求1所述的基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在于,所述的大包内设置壁温测点数量为700个。
4.如权利要求1所述的基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在于,所述的构建神经网络结构是指建立输入层700与输出层2的网络结构,网络层数为3;根据经验公式得到隐含层个数为30个。
5.如权利要求1所述的基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在于,所述的建立训练模型,得到预测模型是指,把数据代入模型利用BP算法对数据进行训练,根据预测值与实际值得误差精度进行反向传播,最终达到工业应用预测精度要求,则训练结束,得到预测模型。
6.如权利要求4所述的基于神经网络的超超临界机组高温过热器壁温预测方法,其特征在于,所述的隐含层的个数靠下述经验公式(9)确定;
公式(9)中,n为输入层节点个数,q为输出层节点个数,a为0-10的整数,m为隐含层节点个数,则m的取值范围为3~14。经过试验,确定预测模型的隐含层节点个数30。
7.一种安装有权利要求1-6所述基于神经网络的超超临界机组高温过热器壁温预测方法的预测系统,其特征在于,包括手持测试端,手持测试端通过无线网络连接平台数据,所述的手持测试端设置基于神经网络的超超临界机组高温过热器壁温预测方法。
CN201910469410.3A 2019-05-31 2019-05-31 基于神经网络的超超临界机组高温过热器壁温预测方法 Pending CN110531797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910469410.3A CN110531797A (zh) 2019-05-31 2019-05-31 基于神经网络的超超临界机组高温过热器壁温预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910469410.3A CN110531797A (zh) 2019-05-31 2019-05-31 基于神经网络的超超临界机组高温过热器壁温预测方法

Publications (1)

Publication Number Publication Date
CN110531797A true CN110531797A (zh) 2019-12-03

Family

ID=68659554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910469410.3A Pending CN110531797A (zh) 2019-05-31 2019-05-31 基于神经网络的超超临界机组高温过热器壁温预测方法

Country Status (1)

Country Link
CN (1) CN110531797A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111582472A (zh) * 2020-04-17 2020-08-25 广西电网有限责任公司电力科学研究院 一种基于神经网络模型的喷水减温器喷水调整方法及装置
CN112016038A (zh) * 2020-08-03 2020-12-01 广西大学 一种超超临界燃煤锅炉高温再热器炉外壁温预测方法
CN112146774A (zh) * 2020-09-24 2020-12-29 广东电科院能源技术有限责任公司 一种垃圾焚烧电厂中炉膛温度的测量方法和系统
CN112307650A (zh) * 2020-11-27 2021-02-02 浙江浙能技术研究院有限公司 一种用于超超临界锅炉受热面管壁超温预警的多步预测方法
CN112381296A (zh) * 2020-11-15 2021-02-19 西安热工研究院有限公司 一种燃煤机组高温过热器壁温预测神经网络模型
CN112381210A (zh) * 2020-11-15 2021-02-19 西安热工研究院有限公司 一种燃煤机组水冷壁壁温预测神经网络模型
CN112396162A (zh) * 2020-11-15 2021-02-23 西安热工研究院有限公司 一种燃煤机组屛式过热器壁温预测神经网络模型
CN112985608A (zh) * 2021-02-01 2021-06-18 河北工业大学 一种沥青运料过程温度监测方法及系统
CN113378477A (zh) * 2021-06-29 2021-09-10 西北师范大学 一种基于深度学习方法的锅炉过热器区域高低温预测方法
CN117077839A (zh) * 2023-07-13 2023-11-17 华能国际电力股份有限公司上海石洞口第二电厂 一种基于am-boa-lstm的燃煤电厂过热器壁温预测方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460039A (zh) * 2009-06-09 2012-05-16 三照普燃料公司 用于集成的太阳能驱动的化学装置的系统和方法
CN102777879A (zh) * 2012-07-06 2012-11-14 广东电网公司电力科学研究院 一种火力发电厂超超临界机组的主汽温预测控制方法
US20130132050A1 (en) * 2011-11-21 2013-05-23 Schlumberger Technology Corporation Dynamic Prediction of Downhole Temperature Distributions
CN103309314A (zh) * 2013-05-23 2013-09-18 国家电网公司 超临界燃煤机组高温过热器金属壁温预警优化控制方法
CN103544527A (zh) * 2013-10-11 2014-01-29 广东电网公司电力科学研究院 超超临界汽轮机fcb工况下除氧器水位的预测方法
CN104504292A (zh) * 2015-01-14 2015-04-08 济南大学 基于bp神经网络预测循环流化床锅炉最佳工作温度的方法
CN104881714A (zh) * 2015-05-25 2015-09-02 上海发电设备成套设计研究院 一种锅炉高温受热面屏间热偏差模型预测方法
US20170284874A1 (en) * 2016-03-30 2017-10-05 Air Products And Chemicals, Inc. Method for Temperature Data Acquisition
CN206803122U (zh) * 2017-05-10 2017-12-26 西安西热控制技术有限公司 一种超临界锅炉屏式过热器超温控制系统
CN109583585A (zh) * 2018-11-22 2019-04-05 西安热工研究院有限公司 一种电站锅炉壁温预测神经网络模型

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460039A (zh) * 2009-06-09 2012-05-16 三照普燃料公司 用于集成的太阳能驱动的化学装置的系统和方法
US20130132050A1 (en) * 2011-11-21 2013-05-23 Schlumberger Technology Corporation Dynamic Prediction of Downhole Temperature Distributions
CN102777879A (zh) * 2012-07-06 2012-11-14 广东电网公司电力科学研究院 一种火力发电厂超超临界机组的主汽温预测控制方法
CN103309314A (zh) * 2013-05-23 2013-09-18 国家电网公司 超临界燃煤机组高温过热器金属壁温预警优化控制方法
CN103544527A (zh) * 2013-10-11 2014-01-29 广东电网公司电力科学研究院 超超临界汽轮机fcb工况下除氧器水位的预测方法
CN104504292A (zh) * 2015-01-14 2015-04-08 济南大学 基于bp神经网络预测循环流化床锅炉最佳工作温度的方法
CN104881714A (zh) * 2015-05-25 2015-09-02 上海发电设备成套设计研究院 一种锅炉高温受热面屏间热偏差模型预测方法
US20170284874A1 (en) * 2016-03-30 2017-10-05 Air Products And Chemicals, Inc. Method for Temperature Data Acquisition
CN206803122U (zh) * 2017-05-10 2017-12-26 西安西热控制技术有限公司 一种超临界锅炉屏式过热器超温控制系统
CN109583585A (zh) * 2018-11-22 2019-04-05 西安热工研究院有限公司 一种电站锅炉壁温预测神经网络模型

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
邓博 等: ""变负荷下超(超)临界机组过热器壁温预测"", 《中国电力》 *
陈斌源: ""基于人工智能的超临界直流炉受热面金属温度软测量及预测"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111582472A (zh) * 2020-04-17 2020-08-25 广西电网有限责任公司电力科学研究院 一种基于神经网络模型的喷水减温器喷水调整方法及装置
CN112016038A (zh) * 2020-08-03 2020-12-01 广西大学 一种超超临界燃煤锅炉高温再热器炉外壁温预测方法
CN112016038B (zh) * 2020-08-03 2023-07-28 广西大学 一种超超临界燃煤锅炉高温再热器炉外壁温预测方法
CN112146774A (zh) * 2020-09-24 2020-12-29 广东电科院能源技术有限责任公司 一种垃圾焚烧电厂中炉膛温度的测量方法和系统
CN112396162B (zh) * 2020-11-15 2023-04-07 西安热工研究院有限公司 一种燃煤机组屏式过热器壁温预测神经网络模型
CN112381210A (zh) * 2020-11-15 2021-02-19 西安热工研究院有限公司 一种燃煤机组水冷壁壁温预测神经网络模型
CN112396162A (zh) * 2020-11-15 2021-02-23 西安热工研究院有限公司 一种燃煤机组屛式过热器壁温预测神经网络模型
CN112381210B (zh) * 2020-11-15 2023-04-07 西安热工研究院有限公司 一种燃煤机组水冷壁壁温预测神经网络模型
CN112381296B (zh) * 2020-11-15 2023-04-07 西安热工研究院有限公司 一种燃煤机组高温过热器壁温预测神经网络模型
CN112381296A (zh) * 2020-11-15 2021-02-19 西安热工研究院有限公司 一种燃煤机组高温过热器壁温预测神经网络模型
CN112307650A (zh) * 2020-11-27 2021-02-02 浙江浙能技术研究院有限公司 一种用于超超临界锅炉受热面管壁超温预警的多步预测方法
CN112985608A (zh) * 2021-02-01 2021-06-18 河北工业大学 一种沥青运料过程温度监测方法及系统
CN112985608B (zh) * 2021-02-01 2022-08-02 河北工业大学 一种沥青运料过程温度监测方法及系统
CN113378477A (zh) * 2021-06-29 2021-09-10 西北师范大学 一种基于深度学习方法的锅炉过热器区域高低温预测方法
CN117077839A (zh) * 2023-07-13 2023-11-17 华能国际电力股份有限公司上海石洞口第二电厂 一种基于am-boa-lstm的燃煤电厂过热器壁温预测方法及系统
CN117077839B (zh) * 2023-07-13 2024-04-12 华能国际电力股份有限公司上海石洞口第二电厂 一种基于am-boa-lstm的燃煤电厂过热器壁温预测方法及系统

Similar Documents

Publication Publication Date Title
CN110531797A (zh) 基于神经网络的超超临界机组高温过热器壁温预测方法
CN107726358B (zh) 基于cfd数值模拟和智能建模的锅炉燃烧优化系统及方法
CN109583585B (zh) 一种电站锅炉壁温预测神经网络模型的构建方法
Cammarata et al. Neural prediction of combustion instability
CN103759277B (zh) 燃煤电站锅炉智能吹灰闭环控制方法、装置和系统
CN113361192A (zh) 一种锅炉内受热面壁温安全监测评估系统
CN102734783B (zh) 一种电站超临界锅炉各级受热面监测数据参数的校验方法
CN110274258A (zh) 一种基于燃烧区域温度场预测的前馈控制燃烧调整方法
KR20180073434A (ko) 연속 소둔라인의 강판 온도 패턴 제어 시스템 및 방법
CN110472274A (zh) 一种锅炉内流场热偏差模型实时预测方法
RU2691819C1 (ru) Устройство для регулирования температуры стального листа и способ регулирования температуры
CN104133506B (zh) 一种加热炉加热段炉膛温度检测值计算方法
CN112016754A (zh) 基于神经网络的电站锅炉排烟温度超前预测系统及方法
CN110207094A (zh) 基于主成分分析的iqga-svr锅炉受热面沾污特性辨识方法
CN101476734A (zh) 基于声波气体温度场测量技术的智能吹灰控制系统
CN110438331A (zh) 一种加热炉自动燃烧系统
CN112396162B (zh) 一种燃煤机组屏式过热器壁温预测神经网络模型
JP3712329B2 (ja) プロセスの制御装置
CN107621781A (zh) 油田加热炉定温加热和热效率自寻优控制方法及系统
CN111242279B (zh) 一种超超临界煤粉锅炉炉膛结渣预测系统及方法
CN103968368A (zh) 用于燃氧锅炉的再热蒸汽温度控制的方法和设备
CN104765955A (zh) 一种在线软测量方法
Sai et al. Neural Network Applications in a Power Station
CN115657466A (zh) 一种智能控制氨气输入量的锅炉系统
CN115685743A (zh) 一种智能控制燃煤锅炉及其智能预测调控烟气排放方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191203