CN110530906A - 一种乏燃料溶液中钚浓度的测定方法 - Google Patents

一种乏燃料溶液中钚浓度的测定方法 Download PDF

Info

Publication number
CN110530906A
CN110530906A CN201910747617.2A CN201910747617A CN110530906A CN 110530906 A CN110530906 A CN 110530906A CN 201910747617 A CN201910747617 A CN 201910747617A CN 110530906 A CN110530906 A CN 110530906A
Authority
CN
China
Prior art keywords
concentration
plutonium
uranium
measuring method
intercept
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910747617.2A
Other languages
English (en)
Other versions
CN110530906B (zh
Inventor
郑维明
邵少雄
刘联伟
范德军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201910747617.2A priority Critical patent/CN110530906B/zh
Publication of CN110530906A publication Critical patent/CN110530906A/zh
Application granted granted Critical
Publication of CN110530906B publication Critical patent/CN110530906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • G01N2223/04Investigating materials by wave or particle radiation by transmission and measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/633Specific applications or type of materials thickness, density, surface weight (unit area)

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于放射性物质测量技术领域,涉及一种乏燃料溶液中钚浓度的测定方法。所述的测定方法包括如下步骤:(1)用含已知浓度铀、钚的溶液确定计算公式:对各相同铀浓度,不同铀钚浓度比的溶液分别测定铀钚荧光强度比Iu/IPu后,进行铀钚浓度比CU/CPu与Iu/IPu的线性拟合,记录各线性方程的斜率和截距,将各线性方程的斜率和截距分别对铀浓度CU作线性回归,分别得到斜率和截距与CU的函数关系,并进而得到钚浓度的计算公式;(2)样品测定:测定样品中的铀浓度CU及铀钚荧光强度比Iu/IPu,代入步骤(1)得到的计算公式得到样品中的钚浓度。利用本发明的乏燃料溶液中钚浓度的测定方法,能够更大应用范围、更准确的测定乏燃料溶液中的钚浓度。

Description

一种乏燃料溶液中钚浓度的测定方法
技术领域
本发明属于放射性物质测量技术领域,涉及一种乏燃料溶液中钚浓度的测定方法。
背景技术
混合式K边界密度计是乏燃料后处理厂同时测量铀和钚浓度的核心设备。铀和钚浓度的混合式K边界/X射线荧光测量技术是K边界能量吸收测量技术和X射线荧光测量技术的结合,其技术原理是:通过K边界吸收法测量乏燃料溶液中铀元素的浓度,同时利用X射线荧光法测量溶液中铀和钚浓度之比,从而计算出钚浓度。
以往基于混合式K边界/X射线荧光测量技术的文献中,钚浓度的计算是基于以下公式:
CU/CPu=RIu/IPu…………(1)
利用此公式,用一系列标准样品对仪器进行刻度,从而计算出刻度因子R值:R=(CU/CPu)/(Iu/IPu)。
R值的物理意义是:铀和钚元素的各自特征X射线的受激发发射几率之比。在传统的数据处理方法中,认为R值只与铀/钚的浓度比,即CU/CPu有关。然而,当样品的化学成分、浓度不同时,样品对同一能量的入射光子的吸收几率也不相同,因此R值并不是一个常数,而是与样品化学成分有一定的函数关系,即实际上R值和CU及CU/CPu都有关系。当铀浓度即CU变化不大时(一般不超过±20g/L),可以忽略其影响,认为R值与铀浓度即CU无关;而一旦CU变化超过该值(±20g/L),就必须考虑CU对R值的贡献,否则钚测量的准确度将受到严重影响,甚至错误。
以下表1是钚测量时的刻度因子R值。
表1钚测量的刻度因子
序号 U浓度(g/L) Pu浓度(g/L) ρ<sub>U/Pu</sub> 谱名称 R
1 298.5 3.061 97.5 KP1-1 300_4_1 1.678
2 244.8 2.510 97.5 KP1-2 250_3_1 1.651
3 197.0 2.020 97.5 KP1-3 200_2_1 1.715
4 149.2 1.530 97.5 KP1-4 150_1_1 1.782
5 101.5 1.041 97.5 KP1-5 100_0_1 2.016
6 298.5 1.531 195.0 KP2-1 300_4_1 1.748
7 244.8 1.255 195.1 KP2-2 250_3_1 1.971
8 197.0 1.010 195.0 KP2-3 200_2_1 1.997
9 149.2 0.765 195.0 KP2-4 150_1_1 2.098
10 101.5 0.520 195.2 KP2-5 100_0_1 2.634
发明内容
本发明的目的是提供一种乏燃料溶液中钚浓度的测定方法,以能够更大应用范围、更准确的测定乏燃料溶液中的钚浓度。
为实现此目的,在基础的实施方案中,本发明提供一种乏燃料溶液中钚浓度的测定方法,所述的测定方法包括如下步骤:
(1)用含已知浓度铀、钚的溶液确定计算公式:对各相同铀浓度,不同铀钚浓度比的溶液分别测定铀钚荧光强度比Iu/IPu后,进行铀钚浓度比CU/CPu与Iu/IPu的线性拟合,记录各线性方程的斜率和截距,将各线性方程的斜率和截距分别对铀浓度CU作线性回归,分别得到斜率和截距与CU的函数关系,并进而得到钚浓度的计算公式;
(2)样品测定:测定样品中的铀浓度CU及铀钚荧光强度比Iu/IPu,代入步骤(1)得到的计算公式得到样品中的钚浓度。
在一种优选的实施方案中,本发明提供一种乏燃料溶液中钚浓度的测定方法,其中所述的计算公式为CU/CPu=(aCU+b)IU/IPu+cCU+d……。
在一种优选的实施方案中,本发明提供一种乏燃料溶液中钚浓度的测定方法,其中通过K边界吸收法测定铀浓度CU
在一种优选的实施方案中,本发明提供一种乏燃料溶液中钚浓度的测定方法,其中通过X射线荧光法测定铀钚荧光强度比Iu/IPu
本发明的有益效果在于,利用本发明的乏燃料溶液中钚浓度的测定方法,能够更大应用范围、更准确的测定乏燃料溶液中的钚浓度。
具体实施方式
以下通过实施例对本发明的具体实施方式作出进一步的说明。
实施例1:
(1)用含已知浓度铀、钚的溶液确定计算公式
对各相同铀浓度,不同铀钚浓度比的溶液分别测定铀钚荧光强度比Iu/IPu后,进行铀钚浓度比CU/CPu与Iu/IPu的线性拟合,记录各线性方程的斜率和截距,将各线性方程的斜率和截距分别对铀浓度CU作线性回归,分别得到斜率和截距与CU的函数关系,并进而得到钚浓度的计算公式CU/CPu=(aCU+b)IU/IPu+cCU+d……。
如:CU=300g/L,拟合结果为:
CU/CPu=0.5920×IU/IPu+26.4476,R2=0.9961
同样处理不同铀浓度下的IU/IPu~CU/CPu,结果汇总如下表2。
表2 IU/IPu~CU/CPu的线性关系拟合参数
C<sub>U</sub>(g/L) 斜率(k) 截距(b) 相关系数(r)
300 0.5920 26.4476 0.9980
250 0.5754 27.261 0.9990
100 0.4742 43.691 0.9957
采用截距和斜率分别对铀浓度进行线性拟合,得:
k=0.000609CU+0.04153,r2=0.9875
b=0.0916CU+52.313,r2=0.9602
根据以上结果,得到:
CU/CPu=(0.000609CU+0.04153)IU/IPu+0.0916CU+52.313
(2)样品测定
测定样品中的铀浓度CU(K边界吸收法测定)及铀钚荧光强度比Iu/IPu(X射线荧光法测定),代入步骤(1)得到的计算公式得到样品中的钚浓度。具体测定结果如下表3所示。
表3不同样品钚浓度(g/L)测定结果
样品序号 本发明方法测定结果 分离XRF法测定结果
1 0.760 0.770
2 0.780 0.770
3 0.333 0.342
4 0.346 0.349
5 0.345 0.350
6 0.384 0.376
7 0.337 0.325
8 0.347 0.340
9 0.318 0.325
10 0.319 0.326
由表3可见,采用本发明方法的测定结果和1AF分离后,用石墨晶体预衍射-XRF测定结果一致,证明本发明方法有效可靠。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

Claims (4)

1.一种乏燃料溶液中钚浓度的测定方法,其特征在于,所述的测定方法包括如下步骤:
(1)用含已知浓度铀、钚的溶液确定计算公式:对各相同铀浓度,不同铀钚浓度比的溶液分别测定铀钚荧光强度比Iu/IPu后,进行铀钚浓度比CU/CPu与Iu/IPu的线性拟合,记录各线性方程的斜率和截距,将各线性方程的斜率和截距分别对铀浓度CU作线性回归,分别得到斜率和截距与CU的函数关系,并进而得到钚浓度的计算公式;
(2)样品测定:测定样品中的铀浓度CU及铀钚荧光强度比Iu/IPu,代入步骤(1)得到的计算公式得到样品中的钚浓度。
2.根据权利要求1所述的测定方法,其特征在于:所述的计算公式为CU/CPu=(aCU+b)IU/IPu+cCU+d……。
3.根据权利要求1所述的测定方法,其特征在于:通过K边界吸收法测定铀浓度CU
4.根据权利要求1所述的测定方法,其特征在于:通过X射线荧光法测定铀钚荧光强度比Iu/IPu
CN201910747617.2A 2019-08-14 2019-08-14 一种乏燃料溶液中钚浓度的测定方法 Active CN110530906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910747617.2A CN110530906B (zh) 2019-08-14 2019-08-14 一种乏燃料溶液中钚浓度的测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910747617.2A CN110530906B (zh) 2019-08-14 2019-08-14 一种乏燃料溶液中钚浓度的测定方法

Publications (2)

Publication Number Publication Date
CN110530906A true CN110530906A (zh) 2019-12-03
CN110530906B CN110530906B (zh) 2020-11-10

Family

ID=68663178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910747617.2A Active CN110530906B (zh) 2019-08-14 2019-08-14 一种乏燃料溶液中钚浓度的测定方法

Country Status (1)

Country Link
CN (1) CN110530906B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054863A1 (en) * 2004-09-14 2006-03-16 Sheng Dai Composite scintillators for detection of ionizing radiation
WO2013055449A2 (en) * 2011-08-22 2013-04-18 Lawrence Livermore National Security, Llc Isotope specific arbitrary material sorter and flow meter
CN103105322A (zh) * 2011-11-11 2013-05-15 中核四0四有限公司 一种用于测定二氧化钚粉末中铀含量的分析方法
CN103257148A (zh) * 2012-02-17 2013-08-21 中国原子能科学研究院 一种铀浓度的分析方法
CN103308475A (zh) * 2013-07-09 2013-09-18 中国原子能科学研究院 一种同时测量后处理料液中Pu(Ⅳ)及HNO3含量的方法
CN103900990A (zh) * 2014-02-28 2014-07-02 中国原子能科学研究院 同时快速测定有机相中钚和硝酸含量的方法
CN106932423A (zh) * 2015-12-29 2017-07-07 中核四○四有限公司 一种用于样品中低浓铀、镎、钚直接测定的分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054863A1 (en) * 2004-09-14 2006-03-16 Sheng Dai Composite scintillators for detection of ionizing radiation
WO2013055449A2 (en) * 2011-08-22 2013-04-18 Lawrence Livermore National Security, Llc Isotope specific arbitrary material sorter and flow meter
CN103105322A (zh) * 2011-11-11 2013-05-15 中核四0四有限公司 一种用于测定二氧化钚粉末中铀含量的分析方法
CN103257148A (zh) * 2012-02-17 2013-08-21 中国原子能科学研究院 一种铀浓度的分析方法
CN103308475A (zh) * 2013-07-09 2013-09-18 中国原子能科学研究院 一种同时测量后处理料液中Pu(Ⅳ)及HNO3含量的方法
CN103900990A (zh) * 2014-02-28 2014-07-02 中国原子能科学研究院 同时快速测定有机相中钚和硝酸含量的方法
CN106932423A (zh) * 2015-12-29 2017-07-07 中核四○四有限公司 一种用于样品中低浓铀、镎、钚直接测定的分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICOLAS DACHEUX等: "Determination of Uranium, Thorium, Plutonium,Americium, and Curium Ultratraces by Photon Electron Rejecting α Liquid Scintillation", 《ANALYTICAL CHEMISTRY》 *
马精德等: "混合K边界(HKED)仪器稳定性标样及工作标准研制及应用", 《核化学与放射化学分卷》 *

Also Published As

Publication number Publication date
CN110530906B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN102033239B (zh) 加速器x射线能量测量系统
CN109406552B (zh) 一种在线测定浓度的γ吸收-模拟标准加入法
CN104316510A (zh) 一种六价铀的拉曼光谱分析方法
Abousahl et al. Applicability and limits of the MGAU code for the determination of the enrichment of uranium samples
Hamermesh et al. The thermal neutron capture cross section of hydrogen
CN110530906A (zh) 一种乏燃料溶液中钚浓度的测定方法
EP1927995A2 (en) System and method for stabilizing the measurement of radioactivity
Wood Europium Activation Studies with Monochromatic Neutrons
CN106645991B (zh) 一种星载超轻合金材料的电子辐射试验装置及方法
CN115575435A (zh) 一种气态流出物中放射性碘的分析方法
Smith et al. Fast neutron total and scattering cross sections of plutonium-240
Zhang et al. Density measurement through elastic electron scattering with a gaseous target at the Jefferson Lab
De Volpi et al. Absolute calibration of neutron sources having a wide range of emission spectra
CN114707393A (zh) 一种考虑大气湿度影响的中子吸收剂量快速获取方法
US8817939B2 (en) Method to process fission chamber measurement signals
Fujii et al. Radioassay of dual-labeled samples by sequential Cherenkov counting and liquid scintillation efficiency tracing technique
Kobayashi et al. Measurement and covariance analysis of californium-252 spectrum averaged cross sections
CN109100000B (zh) 一种uf6大罐中铀质量和丰度的核实测量装置和方法
Radu et al. Transfer of detector efficiency calibration from a point source to other geometries using ETNA software
Strittmatter A gas-phase UF6 enrichment monitor
CN109507718B (zh) 基于α/γ能谱逐个测量222Rn/220Rn室中子体参考水平的方法
Macklin et al. The 292.4-eV Neutron Resonance Parameters of Zirconium-91
CN108919334A (zh) 一种uf6大罐中铀质量和丰度的核实测量方法
Edwards A comparison between etched fission track densities on internal and external glass surfaces after neutron irradiation
CN115685361A (zh) 一种地层密度测量方法、存储介质和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant