CN110521097B - 零死区时间控制电路 - Google Patents

零死区时间控制电路 Download PDF

Info

Publication number
CN110521097B
CN110521097B CN201880023772.3A CN201880023772A CN110521097B CN 110521097 B CN110521097 B CN 110521097B CN 201880023772 A CN201880023772 A CN 201880023772A CN 110521097 B CN110521097 B CN 110521097B
Authority
CN
China
Prior art keywords
switch
reference voltage
time
dead time
side switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880023772.3A
Other languages
English (en)
Other versions
CN110521097A (zh
Inventor
D·加米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microchip Technology Inc
Original Assignee
Microchip Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microchip Technology Inc filed Critical Microchip Technology Inc
Publication of CN110521097A publication Critical patent/CN110521097A/zh
Application granted granted Critical
Publication of CN110521097B publication Critical patent/CN110521097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/24Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明题为“零死区时间控制电路”。本发明提供了一种用于控制具有高侧开关和低侧开关的电源转换器的电路和方法。该电路可以包括比较器,该比较器被配置成在第一输入处接收参考电压并在第二输出处接收斜坡电压,并且基于参考电压和斜坡电压的比较来输出延迟信号。该延迟信号可以被配置成导通高侧开关和低侧开关中的一个或多个。电路可以基于死区时间增加或减少参考电压,该死区时间等于高侧开关和低侧开关断开时的时间量。电路可以包括:第一开关,如果死区时间超过第一阈值,则控制第一开关以降低参考电压;以及第二开关,如果死区时间延迟信号低于第二阈值,则控制第二开关以提高参考电压。

Description

零死区时间控制电路
相关申请的交叉引用
本申请要求于2017年5月3日提交的美国临时专利申请号62/500,744的权益,该申请全文以引用方式并入本文。
技术领域
本公开整体涉及用于在开关电源转换器中使用的零死区时间控制器。
发明内容
在开关电源转换器(诸如图1所示的同步降压转换器)中,担心高侧开关Q1和低侧开关Q2可能同时导通,这将导致大量瞬时电流流过开关Q1和Q2。图2示出了这种场景,其中的箭头指示大电流“I”流过高侧开关Q1和低侧开关Q2。从电压源VIN流到接地的这种大瞬时电流可能导致功率和效率的损耗,并且可能损坏设备。
为了防止这种瞬时电流或“直通”,可以使用预编程的延迟来创建期间两个开关都断开的“死区时间”。可替代地,可以使用自适应定时电路,其中验证了高侧开关Q1在低侧开关Q2可导通之前断开,反之亦然。图3示出了确保开关Q1和Q2不会同时导通的自适应栅极驱动器的示例。
尽管使用延迟可以帮助防止直通电流,但它还会产生期间高侧开关Q1和低侧开关Q2都断开的死区时间。参照图1,如果电感器L1一直在传导电流,则在死区时间期间,电感器L1也必须继续传导电流。但由于在死区时间期间两个开关Q1和Q2都断开,因此唯一传导路径是通过二极管。因为跨二极管的电压降大于跨开关的电压降,因此流过二极管的电流导致效率低下和损耗。例如,关于二极管的反向恢复,存在功率损耗以及电荷损耗。随着转换器朝向更快的开关速度发展,死区时间是相对于可用性和效率的重要问题。因此,需要一种解决方案,由此防止直通电流,但限制或避免死区时间。
图4示出了若干波形图,其示出高侧开关信号和低侧开关信号。波形(a)示出了高侧开关信号HS,波形(b)示出了低侧开关信号LS,并且波形(c)示出了叠加的高侧开关信号HS和低侧开关信号LS。参照波形(c),高侧开关信号和低侧开关信号交替地导通和断开,其中“导通”状态之间的间隙表示两个开关均未导通的死区时间DT。
根据一个或多个示例性实施方案的一方面,提供了控制电路,该控制电路基本上产生其中死区时间DT接近为零的波形(d)。根据一个或多个示例性实施方案,为了实现接近为零的死区时间,存在产生负死区时间的空间,这可能导致重叠的“导通”状态,从而导致直通电流。然而,通过反馈被设计成防止这种重叠发生,但可实现负时间电势值以创建零死区时间。根据示例性实施方案,可以设置小相位延迟(即重叠),并且然后可以添加更大量的死区时间以消除该重叠。该死区时间随后缩减,直到最终结果是几乎为零的死区时间。当死区时间接近零时,相应地,缩减值逐渐减小到基于系统反馈的值。
附图说明
图1示出了根据现有技术的同步降压转换器。
图2示出了根据现有技术的同步降压转换器,其中高侧和低侧开关均传导。
图3示出了根据现有技术的自适应栅极驱动电路。
图4示出根据现有技术并且根据一个或多个示例性实施方案的高侧开关信号和低侧开关信号的波形。
图5示出了根据示例性实施方案的电路。
图6示出了根据图5的电路的参考电压的波形。
具体实施方式
现在将详细参考在附图中示出的以下示例性实施方案,其中相同的附图标号始终表示相同的元件。示例性实施方案可能以各种形式实施,而不限于本文阐述的示例性实施方案。为了清楚起见,省略了对众所周知的部分的描述。
图5示出了用于减小低侧开关信号和高侧开关信号之间的死区时间的本公开的示例性实施方案。根据示例性实施方案,动态或变化的参考电压Vref被输入到比较器50的负输入,并且斜坡信号Vramp被输入到比较器50的正端子。斜坡信号可以具有固定的周期。比较器基于Vramp信号达到参考电压Vref的持续时间输出延迟信号,这会添加死区时间。更具体地,当与导通信号直接与运算时,输出延迟信号可用于控制一个或多个高侧开关和低侧开关的栅极信号的延迟量,这会影响高侧开关和低侧开关的“导通”状态之间的死区时间量。根据示例性实施方案,可以为低侧开关和高侧开关中的每一个提供图5所示的电路中的一个。为了初始地将默认死区时间设置为较大值,可以将该动态变化的参考电压Vref设置在较高启动值。这样可以确保在启动时高侧开关和低侧开关不会同时导通。
然后测量死区时间,并且基于所测量的死区时间控制开关S2。例如,可以通过测量高侧开关和低侧开关的栅极电压,以及高侧开关和低侧开关之间的开关节点的电压来测量死区时间。如果所测量的死区时间超过设定阈值,则开关S2闭合,这导致持续时间与死区时间相同的脉冲式缩减电流将电荷拉离Vref电容器(未显示),从而降低参考电压Vref。例如,当开关S2闭合时,第一基于时间的电流源51可以使参考电压Vref缩减。开关S2可以由输入信号52控制,该输入信号基于所测量的死区时间和第一基于时间的电流源51使参考电压Vref缩减的速率来闭合开关S2持续一定时间段。
然后,较低参考电压被输入到比较器50,该比较器输出与减少的参考电压Vref相对应的减少的延迟。对于每个随后的死区时间,通过降低参考电压可以缓慢减小死区时间。随着死区时间减少,脉冲式电流缩减的时间量也会减少,直到它达到几乎接近为零的重叠的消失点或已经实现接近为零的死区时间。如图6所示,参考电压Vref以相对较大值开始,并且逐渐缩减直到达到恒定参考电压。更具体地,在图6的示例性实施方案中,参考电压Vref最初约为3.3V,但减少直到其达到约1.7V的相对恒定参考电压。然而,图6所示的初始和恒定参考电压及其变化率仅是示例性的,并且这些值可以变化。这些值由系统的反馈确定。
为了防止负重叠,测量高侧开关和低侧开关的重叠,并使用其来控制开关S3。例如,可以通过测量高侧开关和低侧开关的栅极电压,以及高侧开关和低侧开关之间的开关节点的电压来测量重叠。可替代地,可以测量死区时间并将其与阈值进行比较以确定死区时间是否小于阈值。如果测量的重叠变得过大或死区时间变得过短,则开关S3闭合,这会产生脉冲式递增电流,该脉冲式递增电流为Vref电容器充电并提高参考电压,并由此增加延迟或死区时间。例如,当开关S3闭合时,第二基于时间的电流源53可以使参考电压Vref递增。开关S3可以由输入信号54控制,该输入信号基于所测量的重叠和第二基于时间的电流源53使参考电压Vref递增的速率来闭合开关S3持续一定时间段。通过防止死区时间变得过低或为负,可以防止可损坏设备的直通电流。
尽管已经相对于本公开的示例性实施方案描述和示出了本公开的发明构思,但本公开不限于本文公开的示例性实施方案,并且可以在不脱离本发明构思的范围的情况下进行修改。

Claims (15)

1.一种用于控制具有高侧开关和低侧开关的电源转换器的电路,所述电路包括:
比较器,所述比较器被配置成在第一输入处接收参考电压并在第二输入处接收斜坡电压,并且基于所述参考电压和所述斜坡电压的比较来输出延迟信号,所述延迟信号被配置成导通所述高侧开关和所述低侧开关中的一个或多个;和
第一开关,如果死区时间超过第一阈值,则控制所述第一开关以降低所述参考电压;和
第二开关,如果所述死区时间延迟信号低于第二阈值,则控制所述第二开关以提高所述参考电压;
其中所述死区时间等于所述高侧开关和所述低侧开关断开时的时间量。
2.根据权利要求1所述的电路,还包括第一基于时间的电流源,所述第一基于时间的电流源被配置成经由所述第一开关耦接到所述比较器的所述第一输入。
3.根据权利要求2所述的电路,其中所述第一开关被配置成在确定所述死区时间超过所述第一阈值时闭合,由此通过将所述第一基于时间的电流源耦接到所述比较器的所述第一输入来减少所述参考电压。
4.根据权利要求3所述的电路,其中所述第一开关由第一输入信号控制,所述第一输入信号基于所述死区时间闭合所述第一开关。
5.根据权利要求4所述的电路,其中所述第一输入信号基于所述第一基于时间的电流源使所述参考电压缩减的速率来闭合所述第一开关。
6.根据权利要求2所述的电路,还包括第二基于时间的电流源,所述第二基于时间的电流源被配置成经由所述第二开关耦接到所述比较器的所述第一输入;
其中所述第二开关被配置成在确定所述死区时间小于第二阈值时闭合,由此通过将所述第二基于时间的电流耦接到所述比较器的所述第一输入来增加所述参考电压。
7.根据权利要求6所述的电路,其中所述第二开关由第二输入信号控制,所述第二输入信号基于所述第二基于时间的电流源使所述参考电压递增的速率来闭合所述第二开关。
8.一种用于电路的设备,包括:
电源转换器,所述电源转换器包括高侧开关和低侧开关;
比较器,所述比较器被配置成在第一输入处接收参考电压并在第二输入处接收斜坡电压,并且基于所述参考电压和所述斜坡电压的比较来输出延迟信号,所述延迟信号被配置成导通所述高侧开关和所述低侧开关中的一个或多个;和
第一开关,如果死区时间超过第一阈值,则控制所述第一开关以降低所述参考电压;和
第二开关,如果所述死区时间延迟信号低于第二阈值,则控制所述第二开关以提高所述参考电压;
其中所述死区时间等于所述高侧开关和所述低侧开关断开时的时间量。
9.根据权利要求8所述的设备,还包括第一基于时间的电流源,所述第一基于时间的电流源被配置成经由所述第一开关耦接到所述比较器的所述第一输入。
10.根据权利要求9所述的设备,其中所述第一开关被配置成在确定所述死区时间超过所述第一阈值时闭合,由此通过将所述第一基于时间的电流源耦接到所述比较器的所述第一输入来减少所述参考电压。
11.根据权利要求10所述的设备,其中所述第一开关由第一输入信号控制,所述第一输入信号基于所述死区时间闭合所述第一开关。
12.根据权利要求11所述的设备,其中所述第一输入信号基于所述第一基于时间的电流源使所述参考电压缩减的速率来闭合所述第一开关。
13.根据权利要求9所述的设备,还包括第二基于时间的电流源,所述第二基于时间的电流源被配置成经由所述第二开关耦接到所述比较器的所述第一输入;
其中所述第二开关被配置成在确定所述死区时间小于第二阈值时闭合,由此通过将所述第二基于时间的电流耦接到所述比较器的所述第一输入来增加所述参考电压。
14.根据权利要求13所述的设备,其中所述第二开关由第二输入信号控制,所述第二输入信号基于所述第二基于时间的电流源使所述参考电压递增的速率来闭合所述第二开关。
15.一种控制具有高侧开关和低侧开关的电源转换器的方法,所述方法包括:
比较参考电压和斜坡电压;
基于所述参考电压和所述斜坡电压的所述比较输出延迟信号;
基于所述延迟信号导通所述高侧开关和所述低侧开关中的至少一个;
测量死区时间,其中所述死区时间等于所述高侧开关和所述低侧开关断开时的时间量;
如果所测量的死区时间超过第一阈值,则减少所述参考电压;以及
如果所测量的死区时间小于第二阈值,则增加所述参考电压。
CN201880023772.3A 2017-05-03 2018-04-26 零死区时间控制电路 Active CN110521097B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762500744P 2017-05-03 2017-05-03
US62/500,744 2017-05-03
US15/960,930 2018-04-24
US15/960,930 US10199919B2 (en) 2017-05-03 2018-04-24 Zero dead time control circuit
PCT/US2018/029564 WO2018204158A1 (en) 2017-05-03 2018-04-26 Zero dead time control circuit

Publications (2)

Publication Number Publication Date
CN110521097A CN110521097A (zh) 2019-11-29
CN110521097B true CN110521097B (zh) 2021-06-08

Family

ID=64014300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880023772.3A Active CN110521097B (zh) 2017-05-03 2018-04-26 零死区时间控制电路

Country Status (5)

Country Link
US (1) US10199919B2 (zh)
CN (1) CN110521097B (zh)
DE (1) DE112018002324T5 (zh)
TW (1) TW201843932A (zh)
WO (1) WO2018204158A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087305A1 (fr) 2018-10-15 2020-04-17 Stmicroelectronics (Rousset) Sas Alimentation a decoupage
FR3089723A1 (fr) * 2018-12-11 2020-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit retardateur
CN209545428U (zh) * 2019-03-20 2019-10-25 力智电子股份有限公司 电源切换电路
KR102182886B1 (ko) * 2019-11-11 2020-11-25 주식회사 솔루엠 컨버터의 데드타임 가변 시스템 및 데드타임 가변 방법
US11081963B2 (en) * 2019-11-27 2021-08-03 Infineon Technologies Austria Ag Slope detection and correction for current sensing using on-state resistance of a power switch
CN111884517B (zh) * 2020-07-27 2021-12-10 深圳市航嘉驰源电气股份有限公司 控制芯片及开关电源
CN111884516B (zh) * 2020-07-27 2022-02-08 深圳市航嘉驰源电气股份有限公司 频率控制芯片及开关电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232493A (ja) * 2008-03-19 2009-10-08 Tdk Corp 同期整流型dc/dcコンバータ
CN102377357A (zh) * 2010-08-09 2012-03-14 尼克森微电子股份有限公司 同步整流控制器、电源转换电路及同步整流控制方法
CN105024529A (zh) * 2015-07-28 2015-11-04 周海波 一种智能功率模块自适应死区时间产生电路及应用方法
WO2016065504A1 (en) * 2014-10-27 2016-05-06 Texas Instruments Incorporated Dc-dc converter with temperature, process and voltage compensated dead time delay

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372238B1 (en) * 2004-04-29 2008-05-13 National Semiconductor Corporation Apparatus and method for step-down switching voltage regulation
US7800350B2 (en) * 2007-05-11 2010-09-21 Freescale Semiconductor, Inc. Apparatus for optimizing diode conduction time during a deadtime interval
US7868597B2 (en) * 2007-07-23 2011-01-11 Intersil Americas Inc. Dead-time transition adjustments for synchronous power converters
TW200913445A (en) * 2007-07-23 2009-03-16 Intersil Inc Dead-time transition adjustments for synchronous power converters
US8749209B2 (en) * 2008-05-05 2014-06-10 Infineon Technologies Austria Ag System and method for providing adaptive dead times
JP2012186987A (ja) * 2011-02-17 2012-09-27 Ricoh Co Ltd スイッチング電源装置、ac電源装置、及び画像形成装置
TWI535177B (zh) * 2014-10-24 2016-05-21 財團法人工業技術研究院 轉換器的電壓補償方法
US9729061B2 (en) * 2015-07-08 2017-08-08 Qualcomm Incorporated Boost regulator having adaptive dead time

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232493A (ja) * 2008-03-19 2009-10-08 Tdk Corp 同期整流型dc/dcコンバータ
CN102377357A (zh) * 2010-08-09 2012-03-14 尼克森微电子股份有限公司 同步整流控制器、电源转换电路及同步整流控制方法
WO2016065504A1 (en) * 2014-10-27 2016-05-06 Texas Instruments Incorporated Dc-dc converter with temperature, process and voltage compensated dead time delay
CN105024529A (zh) * 2015-07-28 2015-11-04 周海波 一种智能功率模块自适应死区时间产生电路及应用方法

Also Published As

Publication number Publication date
US10199919B2 (en) 2019-02-05
DE112018002324T5 (de) 2020-01-09
US20180323696A1 (en) 2018-11-08
TW201843932A (zh) 2018-12-16
WO2018204158A1 (en) 2018-11-08
CN110521097A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN110521097B (zh) 零死区时间控制电路
US10734817B2 (en) Method for wireless power transfer using a power converter with a bypass mode
US9257908B2 (en) Systems and methods to auto-adjust zero cross circuits for switching regulators
US8299770B2 (en) Threshold voltage monitoring and control in synchronous power converters
US11539294B2 (en) Multi-level power converter with light load flying capacitor voltage regulation
CN111327201B (zh) 具有限制控制装置以控制开关周期或开关频率的变化速率的功率转换器
US9787210B2 (en) Precharging apparatus and power converter
TW200840193A (en) Synchronous rectifier control for synchronous boost converter
CN102594097A (zh) 开关电源及其控制电路和控制方法
US10218258B1 (en) Apparatus and method for driving a power stage
TW201005461A (en) Voltage regulator and control method thereof
KR101642761B1 (ko) Dc-dc 컨버터용 소프트 스타트 장치 및 방법
US20180219545A1 (en) Switching rate monitoring and control
US9496788B2 (en) Multi-phase boost converter with phase self-detection and detecting circuit thereof
US9559593B2 (en) Synchronous rectification converter and control method of synchronous rectification converter
US9628073B2 (en) Current control circuit
CN109274073B (zh) 短路保护电路及应用其的开关变换器
US10784775B1 (en) Switching converter with reduced dead-time
US10075076B1 (en) Voltage converter with current steering
CN115833542A (zh) 开关变换器的驱动控制电路及驱动方法
KR101289727B1 (ko) Rc 시정수에 의해 출력전압을 제어하는 차지펌프회로
US10680521B1 (en) Boost DC-DC converter circuit with smart anti-ring circuit actuation
US20080266911A1 (en) Current sensing circuits and methods for a converter
EP3627679A1 (en) Electronic device and associated power supply circuit with improved power factor
CN116032103B (zh) 升压电路的关断时间控制电路、控制方法及升压电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant