CN110511944A - 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用 - Google Patents

一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用 Download PDF

Info

Publication number
CN110511944A
CN110511944A CN201910912426.7A CN201910912426A CN110511944A CN 110511944 A CN110511944 A CN 110511944A CN 201910912426 A CN201910912426 A CN 201910912426A CN 110511944 A CN110511944 A CN 110511944A
Authority
CN
China
Prior art keywords
seed
gene
cabbage type
mutant
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910912426.7A
Other languages
English (en)
Inventor
范楚川
翟云孤
周永明
蔡胜利
杨阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201910912426.7A priority Critical patent/CN110511944A/zh
Publication of CN110511944A publication Critical patent/CN110511944A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于油菜分子育种技术领域,尤其涉及一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用。本发明利用CRISPR/Cas9技术靶向BnTT8同源基因,通过遗传转化得到突变体单株,经过自交分离,获得了不含T‑DNA插入的双拷贝纯合突变体。该突变体的种子表现为黄籽,显微观察种子的横切面发现,双纯合突变体的内种皮没有原花色素的积累,而单纯合突变体和野生型的内种皮中均包含有清晰可见的原花色素积累。对这些突变体进行品质分析发现,BnTT8基因的双拷贝纯合突变体含油量显著增加。BnTT8基因对于油菜种子的品质改良具有巨大的应用潜力和前景,为油菜品质育种提供新的种质资源。

Description

一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽 突变体材料的获取方法及其应用
技术领域
本发明属于油菜分子育种技术领域,尤其涉及一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用。
背景技术
甘蓝型油菜是仅次于大豆和油棕的世界第三大油料作物,约占全球植物油总产量的 16%。它不仅为人类饮食提供食用油和高品质的动物饲料蛋白,而且还为生物柴油生产等工业生产过程提供原料。因此,提高含油量及品质一直是油菜生产的主要育种目标。目前,大多数商业油菜品种的种子颜色都是棕黑色。已有研究表明,黄籽甘蓝型油菜具有种皮薄、纤维素含量低、含油量高、饼粕蛋白质含量高等诸多优点。虽然甘蓝型油菜的二倍体祖先均具有黄色种子表型,且表型稳定,可以稳定遗传,但天然缺乏甘蓝型油菜黄籽突变体,因此,高含油量育种逐渐成为现代油菜的重要组成部分。开发高含油量高品质油菜品种将带来显著的经济效益。
与拟南芥类似,油菜种皮颜色的形成主要是由于一种被称为原花色素的黄酮类化合物氧化产生。在芸薹属植物中原花色素位于内种皮的内皮层,原花色素合成通过苯丙烷途径到类黄酮途径形成原花色素的前体花青素,进而形成原花色素。在种子成熟过程中,表儿茶素等无色的原花色素前体物质聚合氧化形成深褐色的原花色素,使种子颜色变成深褐色或黑色。黄籽油菜的种皮不合成积累原花色素,因此产生出黄籽的表型。
在多种作物的研究中TT8被认为是控制类黄酮积累的具有高保守性的重要基因。已有研究表明,在甘蓝型油菜中,黄籽与黑籽油菜相比,包括TT8基因的同源基因在内的大多数涉及类黄酮合成途径的基因都是下调的,表明这些基因在油菜的进化中是高度保守的。但是这些基因的功能还没被阐释清楚。
发明内容
针对现有技术存在的问题,本发明提供了一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用。本发明靶向甘蓝型油菜BnTT8基因的两个同源拷贝,快速高效的获得了能稳定遗传的黄籽表型明显的甘蓝型油菜种质资源,对黄籽甘蓝型油菜的选育具有重要的意义。该突变体不含有T-DNA插入,和野生型相比,产生的种子在不影响产量相关性状的基础上含油量和蛋白质含量提高,脂肪酸组成发生改变。
本发明是这样实现的,一种控制甘蓝型油菜种子种皮颜色的基因,所述基因为BnTT8基因,其核苷酸序列为BnA09.TT8见SEQ ID NO.1或BnC09.TT8b见SEQ ID NO.2。
进一步,所述核苷酸序列SEQ ID NO.1和SEQ ID NO.2编码的氨基酸序列分别见SEQ ID NO.3和SEQ ID NO.4。
一种甘蓝型油菜黄籽突变体材料的获取方法,所述突变体材料由上述的BnTT8的两个拷贝同时发生基因编码区内的核苷酸序列突变获得。
进一步,黄籽突变体材料的获取方法包括以下步骤:
步骤1:获取如权利要求1所述的BnTT8基因片段;
步骤2:针对如权利要求1所述的BnTT8基因的核苷酸序列设计sgRNA,并构建载体;
步骤3:将步骤2中构建的载体转化至油菜株系中,获得突变体油菜株系;
步骤4:对突变体油菜株系进行检测并测序,确定株系基因型;
步骤5:获得的突变体油菜株系种植并自交分离,获得BnA09.TT8和BnC09.TT8b基因被同时敲除的双纯合突变体。
进一步,步骤2中设计四个sgRNA,前三个sgRNA靶向MIR domain,第四个sgRNA的靶向序列在WD/AD domain。
进一步,步骤2中运用pYLCRIPSR/Cas9多重基因组靶向载体系统构建载体。
进一步,步骤3中用农杆菌介导的下胚轴遗传转化方法将构建好的载体转入半冬性甘蓝型油菜纯系J9707中。
进一步,步骤5中获得的双纯合突变体的核苷酸序列见SEQ ID NO.29-SEQ IDNO.47。
如上所述的一种控制甘蓝型油菜种子种皮颜色的基因在甘蓝型油菜品质改良中的应用。
如上所述的一种甘蓝型油菜黄籽突变体材料的获取方法在油菜育种中的应用。
本发明通过对所获突变体和野生型单株进行产量相关性状测量及种子品质分析,发现 BnTT8基因的双拷贝纯合突变体产生的种子在不影响产量相关性状的基础上含油量和蛋白质含量提高,脂肪酸组成发生改变。
本发明通过对获得的突变体和野生型种子进行表型和显微结构观察,发现与野生型相比,双纯合突变体的种子变现为黄籽表型,而野生型和单拷贝纯合突变体的种子表现为黑色种子。本发明同时测量了种皮的厚度,相较于野生型,双纯合突变体的种皮厚度比野生型降低了 27.0%,BnA09.TT8单纯合突变体的种皮厚度比野生型降低了9.8%,BnC09.TT8b单纯合突变体的种皮厚度和野生型差别不大。在种子发育不同时期用香草醛和DMACA染色发现,在开花后21天野生型和单拷贝纯合突变体的种皮均被染上红色(香草醛染色)和蓝色(DMACA 染色),并且在种子发育过程中,颜色越来越深。然而双纯合突变体在任何时期都不会被染色。番红固绿染色种子的横切面发现野生型和单突变体在种皮的内种皮都有原花色素的积累,但是在双纯合突变体中并没有明显的原花色素积累出现。
综上所述,本发明的优点及积极效果为:
本发明利用CRISPR/Cas9技术靶向BnTT8同源基因,通过遗传转化得到突变体单株,经过多代自交分离,最后获得了不含T-DNA插入的双拷贝纯合突变体,并对这些突变体表型鉴定,遗传分析及品质分析。研究结果表明,BnTT8基因的双拷贝纯合突变体可以产生黄籽表型,含油量也显著增加。BnTT8基因对于油菜品质的改良具有巨大的应用潜力和前景,为油菜品质育种提供新的种质资源。
本发明使用的CRISPR/Cas9是一种高效的定点靶向基因编辑技术,该技术针对性强,用其对油菜进行基因敲除,可以快速高效的获得突变体。将突变体种植,经过多代自交分离,可以获得不含T-DNA插入的纯合突变体。这种方法比传统的杂交育种技术更快速,比诱变育种更安全。
对获得的突变体种皮进行显微观察发现,野生型和单突变体在种皮的内种皮都有原花色素的积累,但是在双纯合突变体中并没有明显的原花色素积累出现。对获得的突变体及野生型进行了产量相关性状的考察,同时对收获的的种子进行了含油量等品质分析,结果发现双纯合突变体在不影响产量相关性状的基础上产生的种子的含油量及蛋白质含量有所提高,脂肪酸组成发生改变,表明BnTT8基因的双拷贝纯合突变体符合育种目标。
本发明获得了具有黄籽表型的甘蓝型油菜突变体种质资源,相较于野生型,双纯合突变体种皮更薄,含油量和蛋白质含量增加。该材料为油菜品质育种提供了宝贵的资源。
附图说明
图1是BnTT8的基因结构图及利用CRISPR/CAS9技术构建的载体图;
图2是野生型和突变体的表型图;
图3是BnTT8基因突变影响种皮发育及种皮厚度的测定结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,各实施例及试验例中所用的设备和试剂如无特殊说明,均可从商业途径得到。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明披露了一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用,具体如下实施例所示。
实施例
本发明利用CRISPR/Cas9技术靶向BnTT8的同源基因,原理图见图1,其中(a)白色方框和黑色实线代表该基因包含七个外显子,六个内含子,图中标出了该基因的MIRdomain、 WD/AD domain和BHLH domain。基因模型中的垂直虚线表示靶位点,箭头表示sgRNA的方向。S1-S4展示了靶点序列,带下划线的PAM区;(b)SBnTT8载体的构建图。通过遗传转化得到突变体单株,经过自交分离,最后获得纯合突变体;并对获得的突变体表型鉴定,含油量脂肪酸测定及遗传分析。具体过程如下。
步骤1,基因克隆:种植半冬性油菜纯系J9707(种子来自中国武汉油菜籽国家工程研究中心),从鲜嫩叶片中提取基因组DNA,具体制备方法参照一种有效提取油菜叶片总DNA的方法,华中农业大学学报,1994,13(5):521-523,报道的方法进行,用1%的琼脂糖凝胶电泳检测DNA质量,并用紫外分光光度计检测DNA浓度。从提取的DNA中克隆分离得到BnA09.TT8和BnC09.TT8的基因组DNA和编码序列,BnA09.TT8和BnC09.TT8的核苷酸序列分别见SEQ ID NO.1和SEQ ID NO.2,其编码的氨基酸序列分别见SEQ ID NO.3和SEQ IDNO.4。基因克隆的实验条件参照朱恺毓(2017)利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体[硕士学位论文]。
步骤2,载体构建:对分离得到的BnA09.TT8和BnC09.TT8b的基因组DNA和编码序列进行分析,使用CRISPR-P程序在BnTT8的两个拷贝上设计了四个sgRNA。sgRNA1:AAGGCGGTGGTGCAATCTGTGGG;sgRNA2:TACGGCTGAAGAGGCTGCGTCGG; sgRNA3:GAGAATCATCGATGGAAGCGAGG;sgRNA4: TTGGAGACGTCATCGTCATCAGG。
前三个sgRNA靶向MIR domain,第四个sgRNA的靶向序列在WD/AD domain,四个sgRNA序列在两个拷贝上完全一样。运用pYLCRIPSR/Cas9多重基因组靶向载体系统进行载体构建,过程参照具体构建流程参照文献Ma(2015b)A Robust CRISPR/Cas9 System forConvenient,High-Efficiency Multiplex Genome Editing in Monocot and DicotPlants.Mol Plant, 2015b,8:1274-1284。通过测序验证构建的载体。
步骤3,用农杆菌介导的下胚轴遗传转化方法将构建好的载体转入半冬性甘蓝型油菜纯系J9707中,具体操作流程参照武语笛(2015)白菜型油菜多室基因BrCLV3的功能研究。
步骤4,突变体的检测:
(1)用特异性引物BnTT8S2-F/PB-R对突变单株进行转基因的阳性鉴定,挑选出含有 T-DNA插入的阳性单株。PCR体系及程序参照朱恺毓(2017)利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体[硕士学位论文]。
PB-R:GCGCGCggtctcTACCGACGCGTATCC,见SEQ ID NO.5;
BnTT8S2-F:gtcATACGGCTGAAGAGGCTGCGT,见SEQ ID NO.6。
(2)根据目标片段附近的序列用primer premier5设计引物,引物确定后进行blast分析,保证没有其他同源序列。
(3)用设计的目标片段引物进行PCR扩增。PCR体系及程序参照朱恺毓(2017)利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体[硕士学位论文]。
(4)1%琼脂糖水平电泳对PCR扩增效果进行检测。
(5)Sanger测序法和HI-TOM测序对PCR扩增产物进行测序,确定转基因植株的基因型。
编辑鉴定引物为:
BnA09.TT8编辑鉴定引物为
BnTT8-132 ggagtgagtacggtgtgcAGAGAGAGATAGAGATAGAGAGAGG,见SEQ ID NO.15;
BnTT8-133 gagttggatgctggatggagaaagtgaaccttcgttgag,见SEQ ID NO.16;
BnTT8-125 ggagtgagtacggtgtgcGAGTAGTGGATACTACAACGCC,见SEQ ID NO.9;
BnTT8-127 gagttggatgctggatggcagaaggaggttcgaaagagtaag,见SEQ ID NO.11;
BnTT8-128 ggagtgagtacggtgtgcgcatgaagaagacgaacaa,见SEQ ID NO.12;
BnTT8-130 gagttggatgctggatggACCAGACATGAGAACCAGTTTA,见SEQ ID NO.14;
BnC09.TT8b编辑鉴定引物为
BnTT8-123 ggagtgagtacggtgtgcGAGAGAGAGAGAGAGGATAATACAAG,见SEQ ID NO.7;
BnTT8-124 gagttggatgctggatggCTGTGAGAGATGGATGAAATGAA,见SEQ ID NO.8;
BnTT8-126 ggagtgagtacggtgtgcggagtagtggaaactataacgct,见SEQ ID NO.10;
BnTT8-127 gagttggatgctggatggcagaaggaggttcgaaagagtaag,见SEQ ID NO.11;
BnTT8-129 ggagtgagtacggtgtgcgcgtgaagaagacgaacac,见SEQ ID NO.13;
BnTT8-130 gagttggatgctggatggACCAGACATGAGAACCAGTTTA,见SEQ ID NO.14;
基因克隆引物为:
BnA09.TT8克隆引物为
BnTT8-4 cagaaggaggttcgaaagagtaag,见SEQ ID NO.17;
BnTT8-9 AGAGAGAGATAGAGATAGAGAGAGG,见SEQ ID NO.18;
BnTT8-25 gcatgaagaagacgaacaa,见SEQ ID NO.20;
BnTT8-27 ttctcaactctccacgagac,见SEQ ID NO.21;
BnTT8-39 taaggcggtggtgcaatctg,见SEQ ID NO.22;
BnTT8-40 cttgttcgttgtgcctagttcc,见SEQ ID NO.23;
BnTT8-42F cgtggagagttgagaatgtcaa,见SEQ ID NO.24;
BnTT8-CX2R ctgcgaatggttgatgtttct,见SEQ ID NO.25;
BnTT8-CX3F actaggcacaacgaacaagg,见SEQ ID NO.26;
BnC09.TT8b克隆引物为
BnTT8-4 cagaaggaggttcgaaagagtaag,见SEQ ID NO.17;
BnTT8-11 gagagagagagagaggataatacaag,见SEQ ID NO.19;
BnTT8-39 taaggcggtggtgcaatctg,见SEQ ID NO.22;
BnTT8-40 cttgttcgttgtgcctagttcc,见SEQ ID NO.23;
BnTT8-F1 ctcggggaaagatggatgaatta,见SEQ ID NO.27;
BnTT8-R1 ggttagaatctcggaactagagttt,见SEQ ID NO.28。
步骤5,自交纯合:获得的T0代编辑单株自花授粉产生T1代和T2代,通过靶位点附近的PCR产物测序得到单拷贝纯合和双拷贝纯合的突变体,这些纯合突变体都会引起移码突变产生功能丧失的蛋白质。经过PCR测序验证获得了一批不含T-DNA插入的双纯合突变体。
步骤6,表型观察和测定:对野生型和突变体产生的种子表型观察,发现双纯合突变体为黄籽表型,单纯合突变体和野生型均表现为黑色种子。将种皮和胚分离开发现种子颜色不同主要是种皮颜色引起的。对种子不同发育时期的种皮进行香草醛和DMACA染色,结果在开花21天后野生型和单拷贝纯合突变体的种皮均被染上红色(香草醛染色)和蓝色(DMACA 染色),并且在种子发育过程中,颜色越来越深。然而双纯合突变体在任何时期都未被染色。结果见图2,其中(a)图表示的是野生型和突变体成熟种子的表型图;(b)图表示的整个种子及其胚和种皮的表型图;(c-d)分别表示的野生型和突变体在开花后不同时期的种皮经过香草醛和DMACA染色后的效果图。
表型测定中,获得的双纯合突变体的sgRNA序列为:
TT8-96-3-2 aacc
S1 AAGGCGGTGGTGCAATCTGTGGG wt
a AAGGCGGTGGTGC----TGTGGG -4bp,见SEQ ID NO.29;
S2 TACGGCTGAAGAGGCTG-CGTCGG wt
a TACGGCTGAAGAGGCTGACGTCGG +A,见SEQ ID NO.30;
S4 TTGGAGACGTCATCGTC-ATCAGG wt
c TTGGAGACGTCATCGTCAATCAGG +A,见SEQ ID NO.31;
TT8-148-5-7 aacc
S2 TACGGCTGAAGAGGCTG-CGTCGG wt
a TACGGCTGAAGAGGCTGTCGTCGG +T,见SEQ ID NO.32;
c TACGGCTGAAGAGGCT-CGTCGG -G,见SEQ ID NO.33;
S1 AAGGCGGTGGTGCAATC-TGTGGG wt
c AAGGCGGTGGTGCAATCATGTGGG +A,见SEQ ID NO.34;
TT8-148-9-2 aacc
S1 AAGGCGGTGGTGCAATCTGTGGG wt
a AAGGCGGTGGTGCAA-------- -9bp,+31bp,见SEQ ID NO.35;
c AAGGCGGTGGTGC----TGTGGG -4bp,见SEQ ID NO.36;
S2 TACGGCTGAAGAGGCTGCGTCGG wt
a TACGGCTGAAGAGGCT-CGTCGG -G,见SEQ ID NO.37;
TT8-281-5-5 aacc
S1 AAGGCGGTGGTGCAATC-TGTGGG wt
a AAGGCGGTGGTGCAATCTTGTGGG +T,见SEQ ID NO.38;
c AAGGCGGTGGTGCAATC------- -6bp,见SEQ ID NO.39;
TT8-299-12-2 aacc
S1 AAGGCGGTGGTGCAATC-TGTGGG wt
a AAGGCGGTGGTGCAATC-AC---- -263bp,+2bp,见SEQ ID NO.40;
c AAGGCGGTGGTGCAATCTTGTGGG +T,见SEQ ID NO.41;
S2 TACGGCTGAAGAGGCTG-CGTCGG wt
a TACGGCTGAAGAGGCTGTCGTCGG +T,见SEQ ID NO.42;
TT8-270-1-9 aacc
S1 AAGGCGGTGGTGCAATC-TGTGGG wt
a AAGGCGGTGGTGCAATC-AC---- -263bp,+2bp,见SEQ ID NO.43;
c AAGGCGGTGGTGCAATCTTGTGGG +T,见SEQ ID NO.44;
TT8-384-4-10
S2 TACGGCTGAAGAGGCTG-CGTCGG wt
a TACGGCTGAAGAGGCTGGCGTCGG +G,见SEQ ID NO.45;
c TACGGCTGAAGAGGCTGACGTCGG +A,见SEQ ID NO.46;
S1 AAGGCGGTGGTGCAATCTGTGGG wt
c AAGGCGGTGGTGCA----GTGGG -4bp,见SEQ ID NO.47;
(七)、石蜡切片显微观察:在开花期标记花,开花后28天和42天收集种子用于石蜡切片的显微观察。将种子固定并包埋在石蜡中。使用Leica RM 2016切片机获得8μm厚的横切面。对种子横切面进行原花色素积累分析,将切片用番红固绿染色后使用Nikon ECLIPSE80i复合显微镜拍照获得图像。
结果见图3,番红固绿染色两个发育时期(28DAF和42DAF)的种子横切面表明双纯合突变体的原花色素积累消失;种皮厚度测量数据表明,双纯合突变体的种皮厚度比野生型降低了27.0%,BnA09.TT8单纯合突变体的种皮厚度比野生型降低了9.8%,BnC09.TT8b单纯合突变体的种皮厚度和野生型差别不大。
(八)、产量相关性状及品质性状的测定:选取稳定遗传的突变体株系和野生型一起种植小区,在成熟期测定野生型和不同株系的千粒重,每角果粒数,单株产量等一系列产量相关性状及种子的含油量、蛋白质及脂肪酸组分。
利用近红外光谱技术(Near Infrared Spectrum,NIRS)可以快速、无损分析整粒带壳作物种子含油量、蛋白质含量、硫苷总含量等品质性状,简便快捷。采用Foss公司NIRSystem-5000 型近红外分析仪测定野生型及突变体自由种的含油量、蛋白质含量等品质性状。
气相色谱(gas chromatography,GC)分析甘蓝型油菜种子脂肪酸含量的具体步骤参照郭彦丽(2017)甘蓝型油菜种子含油量遗传及油脂合成相关基因功能分析[博士论文]。GC 分析的单株为野生型和突变体的自交种,分单株检测,每个单株设置三个技术重复。
结果见下表,其中表1是本发明实施例提供的在T0代测量的野生型和突变体种子的含油量,蛋白质及脂肪酸组分。表2是本发明实施例提供的在T2代测量的野生型和突变体种子的含油量,蛋白质及脂肪酸组分。
表1本发明实施例提供的在T0代测量的野生型和突变体种子的含油量,蛋白质及脂肪酸组分
续表1
表2本发明实施例提供的在T2代测量的野生型和突变体种子的含油量,蛋白质及脂肪酸组分
续表2
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
序列表
<110> 华中农业大学
<120> 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用
<160> 47
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3553
<212> DNA
<213> BnA09.TT8(BnA09.TT8)
<400> 1
atggatgaat taagtattat accgttatgg aaagtgatcg gggctgagaa agaagagatt 60
caagggctac ttaaggcggt ggtgcaatct gtggggtgga cttatggtgt cttctggcaa 120
ctttgtcctc aacgaaggtt cactttcttt tcatttcatc catctctcac agtatataaa 180
gcaatatagt tatctttatt aattataata agtagaagtg actaaatgtt aaatcgatta 240
ggaaattgat gtggagtagt ggatactaca acggcgcaat aaagactaga aagacaactc 300
agccggcgga agttacggct gaagaggctg cgtcggagag aagccaacag ctcatggagc 360
tttacgagac gctttttgct ggagaatcat cgatggaagc gagggcttgc acagcactgt 420
cgccggagga tttgacagat cctgaatggt tttatgtgct gtgtttcact tactctttcg 480
aacctccttc tgggtacaac aactctctct ctgtcttcaa agtttttttt ttcttttcaa 540
aaagactact cagagtttct taatttgtct ttttcatctt ctcttagaga agacaaaaat 600
agtattgtgt gtgaaatgcg aatcacaaat actatggaag cattaaagac aaactgggga 660
gtttaagtta ctgaaagtag aaatgtattg aagtttgtaa aaacgtacac ttcattttgg 720
tgaacataat tggaccgttg agattcttat tggtttgttt attgattatc taaagtagga 780
gcatatatag atgataaatg catataaaag tgtgttagtt atcggtataa ttaatgtttt 840
ttctctatgg aggaacaaat caaaatataa tgtggaagta ttaatttgta ggatgccagg 900
aaaagcgtat gcgaggagga agcacatatg gctacgtggt gcaaatgagg ttgacaataa 960
aatcttctct agggctattt ctgcaaaggt tcacatcttt tattcattca ccactacact 1020
gtgcatctac ttctacttat ttagatatat gcaattttat acatctcatt ctgcaaacta 1080
attaatttta tcttcttctt tacttgaatg ctctttccac attagagtgc caaaattcag 1140
gtaaattttg ctttattaat tatttattta tttttcgtag aaatgaaagg tatcaattaa 1200
taaagttatt ttacatattt gacaattgtt ttgtgatgaa aaaaaaaaca aaaaaaaatc 1260
agacagtggt ttgcattccc gtgcttgatg gcgttttgga actaggcaca acgaacaagg 1320
taaaaatctc tatttatgtc ggtacccaaa atgtagtcga atatattcag ctcattctat 1380
atgttactta gatcatctcc aaaaagacta tatatggtaa agtttccaaa attctatatt 1440
caaagcttca aagtgctttt ctccaaaaac aaaattttaa atttaacttc aaaattattt 1500
gtaatttaca gtatgatctt tatacttatc ataattaata taaatacata aaacttttat 1560
aaataactag cacatataaa aaatattata ataatattaa ttaataaatt cttacactaa 1620
aatataaaat tattaacaaa aatacataat taaatattaa aatacaagca aaatatcaca 1680
ttagtcaata aaattatttc tgcaatgctc catcttcggt tacacaaaat ttgtttggaa 1740
aatattctag agcttctgga gaaaatttac tagactatta gtgttattgt aatatttaaa 1800
tttgtgcaat aactatgtct tcatgtattt tttaaaaaat gtttatttat tgagtttttt 1860
ttgtaatatc ttgttgtgta attttagtta taaaatatta taaatcttaa cttaaaattt 1920
ttatttaatt ttatgtgtaa attttgaatt taaaaagtaa ttttgaaata tttatgaaat 1980
aaaaatgttt taaagattaa taagataaat gagaaaatat ttaaaaatta ttaatataat 2040
gtgtaattaa ttaaagacca aaatacaaat aaaaagaaga aattccaaat ttggagtttt 2100
gagtagtgaa cttcaaatat gaagtttcat tctttaaaac tctaaattct aagtttgaag 2160
ttttgaagtt atttttttga gagaaaaaac tctatatttg aagttataga gtttcatttg 2220
gagatattct tagagaaata aaaaaaaaaa tatacagaaa catcaaccat tcgcagtcat 2280
atgataaaaa aatatagttt tcgattacat taaatacaca accaaattat gtaaaactat 2340
acaacctaat gaaaatatgc ataagcggga gaaccaggga gatgaatgta tgatatattg 2400
tgtttgtatg tgaaggtcaa agagagtgaa gagtttgttg agcacataaa gagtttcttc 2460
cacaaccacc cgaagtcaaa cactaagcct actctttctg aacacttcat caacgaagag 2520
catgaagaag acgaagaaga agtagaagaa gaagaaatga caatgtcaga agagataaga 2580
cttggttctc ctgatgacga tgacgtctcc aatcaaaatc tactctctga tttccatata 2640
gaagcaacca atagtttagg tataccgtac acacctttct tattacatta aattagttaa 2700
caatatcatt ataattaatt ttctaataat aaatttttta aactggttct catgtctggt 2760
aattctaaca tctatcattg tataaataga tacacacatg gacatgatga atctaatgga 2820
ggaaggcgga aattattctc agacagtatc aacacttctc atgtcacaac ccacaagtct 2880
tctttcagat tcagtttcca catcttctta cgttcaatca tcgtttgtct cgtggagagt 2940
tgagaatgtc aaagagcatc agcaatatca gcgagtggag aaagcggcgt ggtcatcgtc 3000
gcaatggatg ctcaaacaca taatcttgaa agttcctttc ctccacgaca acactaaaaa 3060
taagaggcta ccgcgagaag agcttaacca tgtggtggcc gagcgacgca gaagagagaa 3120
gctaaatgag agattcataa cgttgagatc attggttcca tttgtgacca agatggataa 3180
agtctcgatc cttggagaca ccattgaata cgtaaaccat ctttctaaga ggatacatga 3240
gctggaatct actcatcacg agccaaacca aaagcggatg cgtatcggta agggaagaac 3300
ttgggaagag gtggaggttt ccattataga gagcgatgtt ttgttagaga tgagatgcga 3360
gtaccgagat ggtttattgc tcaacattct tcaggtactt aaggagctgg gtatagagac 3420
cactgcggtt cacactgcct tgaacgacaa tcattttgag gcagagataa gggcgaaagt 3480
gagagggaag aaaccaacca ttgctgaggt taaaatagcc atccatcaaa tcatatataa 3540
taataaactc tag 3553
<210> 2
<211> 2746
<212> DNA
<213> BnC09.TT8b(BnC09.TT8b)
<400> 2
atggatgaat taagtattat accgttatgg aaagtgatcg gggctgagaa agaagagatt 60
caagggctac ttaaggcggt ggtgcaatct gtggggtgga cttatagtgt cttctggcaa 120
ctttgtcctc aacgaaggtt ctcttttcat ttcatccatc tctcacaata tataaagcaa 180
tatatttatc tttattaatt ataataagta gaagttacta aatgttaaat cgattaggaa 240
attgttgtgg agtagtggaa actataacgg tgcaataaag actagaaaga caactcagcc 300
ggcggaagtt acggctgaag aggctgcgtc ggaaagaagc caacagctca tggagcttta 360
cgagacgctt tttgctggag aatcatcgat ggaagcgagg gcttgcacag cactgtcgcc 420
ggaggatttg acggatcctg aatggtttta tgtgctgtgt ttcacttact ctttcgaacc 480
tccttctggg tacaacagct ctctctctgt cttcaaagtt tttttttctt ttcaaaaaga 540
ctctacccag agtttcttaa tttgtccttt tcatcttctc ttagagaaga caaaaatagt 600
attgtgtgtt aaatgtgaat cacaaatact acggaagcat taaagacaaa ctggggactt 660
taagttactg aaagtagaaa tgtattgaat ttagtgaaaa cgtacacttc attttggtga 720
acataattgg accgttgaga ttcttattgg tttgtttatt gattatctaa agtaggagca 780
tatatagatg ataaatgcat aacaaagtgt ggtagttatc ggtataatta atgttttttc 840
tctatggagg aaaaaatcaa aatataatgc ggaagtatta atttgtagga tgccaggaaa 900
ggcgtatgcg aggaggaagc acatatggct aagtggtgca aatgaggttg acaataaaat 960
cttctctagg gctatttctg caaaggttta tttcctttta ttcattcacc actacactgt 1020
gcatctattt ctacttattt agatatacgc aattttatat atatctcatt cttcaaacta 1080
attaatttta tcttcgtctt tacttgaatg ctcgctcttt ccacattaga gtgccaaaat 1140
tcaggtaaat ttcgccgtca ttaattaatt atttaatttt cgtagaaacg aaggtatcaa 1200
ttaataaaag ttattttaca tgttgacaaa aaagaagaag ttattttaca tatttgagaa 1260
tttttttgtg atgaaaaaaa aaaacaaata aaaaaacaga cagtggtttg cattcccgtg 1320
cttgatggcg ttttggaact aggcacaacg aacaaggtaa aaatctctat ttatgtcggt 1380
acccaaaatg tagacgaata tagtcagctc attctatgtt acttagagaa ataaagaaaa 1440
ataatataca gaaacatcaa ccattcgcag tcatatgata aaaaatatag tttttcgatt 1500
acattatata cacaaccaaa tgatgtaaaa tatacaacct aatgaaaata tgcataagag 1560
gaagaaccag ggagatggat gcatgatata ttgtgtttgt atgtgaaggt caaagagagt 1620
gaagagtttg ttgaccacat aaagagtttc ttccacaact acccgaagtc aaacactaag 1680
cctactcttt ctgaacactt catcaacgaa gagcgtgaag aagacgaaga cgaagtagaa 1740
gaagaagaaa tgacaatgtc agaggagata agacttggtt ctcctgatga cgatgacgtc 1800
tccaatcaaa atctactctc tgatttccat atagaagcaa ccaatagttt aggtataccg 1860
tacacacctt tcttattaca ttaaattagt taacaatatc attataataa attttctaat 1920
aataaattat ttaaactggt tctcatgtct ggtaattcta acatctatca ttgtatatat 1980
agatacacac atggacatga tgaatctaat ggaggaaggc ggaaattatt ctcagacagt 2040
atcaacactt ctcatgtcac aacccaccag tcttctttca gattcagttt ccacatcttc 2100
ttacgttcaa tcatcgttta tatcgtggag agttgagaat gtcaaagagc atcagcaata 2160
tcagcgagtg gaaaaagcgg cgtcttcgtc gtcgcaatgg atgctcaaac acataatctt 2220
gaaagttcct ttcctccacg acaacactaa aaataagagg ctgccgcgag aagagcttaa 2280
ccatgtggtg gccgagcgac gcagaagaga gaagctaaat gagagattca taacgttgag 2340
atcattggtt ccatttgtga ccaagatgga taaagtctcg atccttggag acaccattga 2400
gtacgtaaac catctttcta agaggatcca tgagctggaa tctactcatc acgagccaaa 2460
ccaaaagcgg atgcgtatcg gtaagggaag aacttgggaa gaggtggagg tttccattat 2520
agagagcgat gttttgttag agatgagatg cgagtaccga gatggtttat tgctcaacat 2580
tcttcaggta cttaaggagc taggtataga gaccactgcg gttcacaccg ccttgaacga 2640
ccaccatttt gaggcagaga taagggcgaa agtgagaggg aagaaaccaa ccattgctga 2700
ggttaaaata gccatccatc aaatcatata taataataaa ctctag 2746
<210> 3
<211> 521
<212> PRT
<213> BnA09.TT8(BnA09.TT8)
<400> 3
Met Asp Glu Leu Ser Ile Ile Pro Leu Trp Lys Val Ile Gly Ala Glu
1 5 10 15
Lys Glu Glu Ile Gln Gly Leu Leu Lys Ala Val Val Gln Ser Val Gly
20 25 30
Trp Thr Tyr Gly Val Phe Trp Gln Leu Cys Pro Gln Arg Arg Lys Leu
35 40 45
Met Trp Ser Ser Gly Tyr Tyr Asn Gly Ala Ile Lys Thr Arg Lys Thr
50 55 60
Thr Gln Pro Ala Glu Val Thr Ala Glu Glu Ala Ala Ser Glu Arg Ser
65 70 75 80
Gln Gln Leu Met Glu Leu Tyr Glu Thr Leu Phe Ala Gly Glu Ser Ser
85 90 95
Met Glu Ala Arg Ala Cys Thr Ala Leu Ser Pro Glu Asp Leu Thr Asp
100 105 110
Pro Glu Trp Phe Tyr Val Leu Cys Phe Thr Tyr Ser Phe Glu Pro Pro
115 120 125
Ser Gly Met Pro Gly Lys Ala Tyr Ala Arg Arg Lys His Ile Trp Leu
130 135 140
Arg Gly Ala Asn Glu Val Asp Asn Lys Ile Phe Ser Arg Ala Ile Ser
145 150 155 160
Ala Lys Ser Ala Lys Ile Gln Thr Val Val Cys Ile Pro Val Leu Asp
165 170 175
Gly Val Leu Glu Leu Gly Thr Thr Asn Lys Val Lys Glu Ser Glu Glu
180 185 190
Phe Val Glu His Ile Lys Ser Phe Phe His Asn His Pro Lys Ser Asn
195 200 205
Thr Lys Pro Thr Leu Ser Glu His Phe Ile Asn Glu Glu His Glu Glu
210 215 220
Asp Glu Glu Glu Val Glu Glu Glu Glu Met Thr Met Ser Glu Glu Ile
225 230 235 240
Arg Leu Gly Ser Pro Asp Asp Asp Asp Val Ser Asn Gln Asn Leu Leu
245 250 255
Ser Asp Phe His Ile Glu Ala Thr Asn Ser Leu Asp Thr His Met Asp
260 265 270
Met Met Asn Leu Met Glu Glu Gly Gly Asn Tyr Ser Gln Thr Val Ser
275 280 285
Thr Leu Leu Met Ser Gln Pro Thr Ser Leu Leu Ser Asp Ser Val Ser
290 295 300
Thr Ser Ser Tyr Val Gln Ser Ser Phe Val Ser Trp Arg Val Glu Asn
305 310 315 320
Val Lys Glu His Gln Gln Tyr Gln Arg Val Glu Lys Ala Ala Trp Ser
325 330 335
Ser Ser Gln Trp Met Leu Lys His Ile Ile Leu Lys Val Pro Phe Leu
340 345 350
His Asp Asn Thr Lys Asn Lys Arg Leu Pro Arg Glu Glu Leu Asn His
355 360 365
Val Val Ala Glu Arg Arg Arg Arg Glu Lys Leu Asn Glu Arg Phe Ile
370 375 380
Thr Leu Arg Ser Leu Val Pro Phe Val Thr Lys Met Asp Lys Val Ser
385 390 395 400
Ile Leu Gly Asp Thr Ile Glu Tyr Val Asn His Leu Ser Lys Arg Ile
405 410 415
His Glu Leu Glu Ser Thr His His Glu Pro Asn Gln Lys Arg Met Arg
420 425 430
Ile Gly Lys Gly Arg Thr Trp Glu Glu Val Glu Val Ser Ile Ile Glu
435 440 445
Ser Asp Val Leu Leu Glu Met Arg Cys Glu Tyr Arg Asp Gly Leu Leu
450 455 460
Leu Asn Ile Leu Gln Val Leu Lys Glu Leu Gly Ile Glu Thr Thr Ala
465 470 475 480
Val His Thr Ala Leu Asn Asp Asn His Phe Glu Ala Glu Ile Arg Ala
485 490 495
Lys Val Arg Gly Lys Lys Pro Thr Ile Ala Glu Val Lys Ile Ala Ile
500 505 510
His Gln Ile Ile Tyr Asn Asn Lys Leu
515 520
<210> 4
<211> 521
<212> PRT
<213> BnC09.TT8b(BnC09.TT8b)
<400> 4
Met Asp Glu Leu Ser Ile Ile Pro Leu Trp Lys Val Ile Gly Ala Glu
1 5 10 15
Lys Glu Glu Ile Gln Gly Leu Leu Lys Ala Val Val Gln Ser Val Gly
20 25 30
Trp Thr Tyr Ser Val Phe Trp Gln Leu Cys Pro Gln Arg Arg Lys Leu
35 40 45
Leu Trp Ser Ser Gly Asn Tyr Asn Gly Ala Ile Lys Thr Arg Lys Thr
50 55 60
Thr Gln Pro Ala Glu Val Thr Ala Glu Glu Ala Ala Ser Glu Arg Ser
65 70 75 80
Gln Gln Leu Met Glu Leu Tyr Glu Thr Leu Phe Ala Gly Glu Ser Ser
85 90 95
Met Glu Ala Arg Ala Cys Thr Ala Leu Ser Pro Glu Asp Leu Thr Asp
100 105 110
Pro Glu Trp Phe Tyr Val Leu Cys Phe Thr Tyr Ser Phe Glu Pro Pro
115 120 125
Ser Gly Met Pro Gly Lys Ala Tyr Ala Arg Arg Lys His Ile Trp Leu
130 135 140
Ser Gly Ala Asn Glu Val Asp Asn Lys Ile Phe Ser Arg Ala Ile Ser
145 150 155 160
Ala Lys Ser Ala Lys Ile Gln Thr Val Val Cys Ile Pro Val Leu Asp
165 170 175
Gly Val Leu Glu Leu Gly Thr Thr Asn Lys Val Lys Glu Ser Glu Glu
180 185 190
Phe Val Asp His Ile Lys Ser Phe Phe His Asn Tyr Pro Lys Ser Asn
195 200 205
Thr Lys Pro Thr Leu Ser Glu His Phe Ile Asn Glu Glu Arg Glu Glu
210 215 220
Asp Glu Asp Glu Val Glu Glu Glu Glu Met Thr Met Ser Glu Glu Ile
225 230 235 240
Arg Leu Gly Ser Pro Asp Asp Asp Asp Val Ser Asn Gln Asn Leu Leu
245 250 255
Ser Asp Phe His Ile Glu Ala Thr Asn Ser Leu Asp Thr His Met Asp
260 265 270
Met Met Asn Leu Met Glu Glu Gly Gly Asn Tyr Ser Gln Thr Val Ser
275 280 285
Thr Leu Leu Met Ser Gln Pro Thr Ser Leu Leu Ser Asp Ser Val Ser
290 295 300
Thr Ser Ser Tyr Val Gln Ser Ser Phe Ile Ser Trp Arg Val Glu Asn
305 310 315 320
Val Lys Glu His Gln Gln Tyr Gln Arg Val Glu Lys Ala Ala Ser Ser
325 330 335
Ser Ser Gln Trp Met Leu Lys His Ile Ile Leu Lys Val Pro Phe Leu
340 345 350
His Asp Asn Thr Lys Asn Lys Arg Leu Pro Arg Glu Glu Leu Asn His
355 360 365
Val Val Ala Glu Arg Arg Arg Arg Glu Lys Leu Asn Glu Arg Phe Ile
370 375 380
Thr Leu Arg Ser Leu Val Pro Phe Val Thr Lys Met Asp Lys Val Ser
385 390 395 400
Ile Leu Gly Asp Thr Ile Glu Tyr Val Asn His Leu Ser Lys Arg Ile
405 410 415
His Glu Leu Glu Ser Thr His His Glu Pro Asn Gln Lys Arg Met Arg
420 425 430
Ile Gly Lys Gly Arg Thr Trp Glu Glu Val Glu Val Ser Ile Ile Glu
435 440 445
Ser Asp Val Leu Leu Glu Met Arg Cys Glu Tyr Arg Asp Gly Leu Leu
450 455 460
Leu Asn Ile Leu Gln Val Leu Lys Glu Leu Gly Ile Glu Thr Thr Ala
465 470 475 480
Val His Thr Ala Leu Asn Asp His His Phe Glu Ala Glu Ile Arg Ala
485 490 495
Lys Val Arg Gly Lys Lys Pro Thr Ile Ala Glu Val Lys Ile Ala Ile
500 505 510
His Gln Ile Ile Tyr Asn Asn Lys Leu
515 520
<210> 5
<211> 27
<212> DNA
<213> 人工序列(PB-R)
<400> 5
gcgcgcggtc tctaccgacg cgtatcc 27
<210> 6
<211> 24
<212> DNA
<213> 人工序列(BnTT8S2-F)
<400> 6
gtcatacggc tgaagaggct gcgt 24
<210> 7
<211> 44
<212> DNA
<213> 人工序列(BnTT8-123)
<400> 7
ggagtgagta cggtgtgcga gagagagaga gaggataata caag 44
<210> 8
<211> 41
<212> DNA
<213> 人工序列(BnTT8-124)
<400> 8
gagttggatg ctggatggct gtgagagatg gatgaaatga a 41
<210> 9
<211> 40
<212> DNA
<213> 人工序列(BnTT8-125)
<400> 9
ggagtgagta cggtgtgcga gtagtggata ctacaacgcc 40
<210> 10
<211> 41
<212> DNA
<213> 人工序列(BnTT8-126)
<400> 10
ggagtgagta cggtgtgcgg agtagtggaa actataacgc t 41
<210> 11
<211> 42
<212> DNA
<213> 人工序列(BnTT8-127)
<400> 11
gagttggatg ctggatggca gaaggaggtt cgaaagagta ag 42
<210> 12
<211> 37
<212> DNA
<213> 人工序列(BnTT8-128)
<400> 12
ggagtgagta cggtgtgcgc atgaagaaga cgaacaa 37
<210> 13
<211> 37
<212> DNA
<213> 人工序列(BnTT8-129)
<400> 13
ggagtgagta cggtgtgcgc gtgaagaaga cgaacac 37
<210> 14
<211> 40
<212> DNA
<213> 人工序列(BnTT8-130 )
<400> 14
gagttggatg ctggatggac cagacatgag aaccagttta 40
<210> 15
<211> 43
<212> DNA
<213> 人工序列(BnTT8-132)
<400> 15
ggagtgagta cggtgtgcag agagagatag agatagagag agg 43
<210> 16
<211> 39
<212> DNA
<213> 人工序列(BnTT8-133)
<400> 16
gagttggatg ctggatggag aaagtgaacc ttcgttgag 39
<210> 17
<211> 24
<212> DNA
<213> 人工序列(BnTT8-4)
<400> 17
cagaaggagg ttcgaaagag taag 24
<210> 18
<211> 25
<212> DNA
<213> 人工序列(BnTT8-9)
<400> 18
agagagagat agagatagag agagg 25
<210> 19
<211> 26
<212> DNA
<213> 人工序列(BnTT8-11)
<400> 19
gagagagaga gagaggataa tacaag 26
<210> 20
<211> 19
<212> DNA
<213> 人工序列(BnTT8-25)
<400> 20
gcatgaagaa gacgaacaa 19
<210> 21
<211> 20
<212> DNA
<213> 人工序列(BnTT8-27)
<400> 21
ttctcaactc tccacgagac 20
<210> 22
<211> 20
<212> DNA
<213> 人工序列(BnTT8-39)
<400> 22
taaggcggtg gtgcaatctg 20
<210> 23
<211> 22
<212> DNA
<213> 人工序列(BnTT8-40)
<400> 23
cttgttcgtt gtgcctagtt cc 22
<210> 24
<211> 22
<212> DNA
<213> 人工序列(BnTT8-42F)
<400> 24
cgtggagagt tgagaatgtc aa 22
<210> 25
<211> 21
<212> DNA
<213> 人工序列(BnTT8-CX2R)
<400> 25
ctgcgaatgg ttgatgtttc t 21
<210> 26
<211> 20
<212> DNA
<213> 人工序列(BnTT8-CX3F)
<400> 26
actaggcaca acgaacaagg 20
<210> 27
<211> 23
<212> DNA
<213> 人工序列(BnTT8-F1)
<400> 27
ctcggggaaa gatggatgaa tta 23
<210> 28
<211> 25
<212> DNA
<213> 人工序列(BnTT8-R1)
<400> 28
ggttagaatc tcggaactag agttt 25
<210> 29
<211> 20
<212> DNA
<213> TT8-96-3-2 aacc-S1(TT8-96-3-2 aacc-S1)
<400> 29
aaaggcggtg gtgctgtggg 20
<210> 30
<211> 25
<212> DNA
<213> TT8-96-3-2 aacc-S2(TT8-96-3-2 aacc-S2)
<400> 30
atacggctga agaggctgac gtcgg 25
<210> 31
<211> 25
<212> DNA
<213> TT8-96-3-2 aacc-S4(TT8-96-3-2 aacc-S4)
<400> 31
cttggagacg tcatcgtcaa tcagg 25
<210> 32
<211> 25
<212> DNA
<213> TT8-148-5-7 aacc-S2(TT8-148-5-7 aacc-S2)
<400> 32
atacggctga agaggctgtc gtcgg 25
<210> 33
<211> 23
<212> DNA
<213> TT8-148-5-7 aacc-S2’(TT8-148-5-7 aacc-S2’)
<400> 33
ctacggctga agaggctcgt cgg 23
<210> 34
<211> 25
<212> DNA
<213> TT8-148-5-7 aacc-S1(TT8-148-5-7 aacc-S1)
<400> 34
caaggcggtg gtgcaatcat gtggg 25
<210> 35
<211> 16
<212> DNA
<213> TT8-148-9-2 aacc-S1(TT8-148-9-2 aacc-S1)
<400> 35
aaaggcggtg gtgcaa 16
<210> 36
<211> 14
<212> DNA
<213> TT8-148-9-2 aacc-S1’(TT8-148-9-2 aacc-S1’)
<400> 36
caaggcggtg gtgc 14
<210> 37
<211> 23
<212> DNA
<213> TT8-148-9-2 aacc-S2(TT8-148-9-2 aacc-S2)
<400> 37
atacggctga agaggctcgt cgg 23
<210> 38
<211> 25
<212> DNA
<213> TT8-281-5-5 aacc-S1(TT8-281-5-5 aacc-S1)
<400> 38
aaaggcggtg gtgcaatctt gtggg 25
<210> 39
<211> 18
<212> DNA
<213> TT8-281-5-5 aacc-S1’(TT8-281-5-5 aacc-S1’)
<400> 39
caaggcggtg gtgcaatc 18
<210> 40
<211> 20
<212> DNA
<213> TT8-299-12-2 aacc-S1(TT8-299-12-2 aacc-S1)
<400> 40
aaaggcggtg gtgcaatcac 20
<210> 41
<211> 25
<212> DNA
<213> TT8-299-12-2 aacc-S1’(TT8-299-12-2 aacc-S1’)
<400> 41
caaggcggtg gtgcaatctt gtggg 25
<210> 42
<211> 25
<212> DNA
<213> TT8-299-12-2 aacc-S2(TT8-299-12-2 aacc-S2)
<400> 42
atacggctga agaggctgtc gtcgg 25
<210> 43
<211> 20
<212> DNA
<213> TT8-270-1-9 aacc-S1(TT8-270-1-9 aacc-S1)
<400> 43
aaaggcggtg gtgcaatcac 20
<210> 44
<211> 25
<212> DNA
<213> TT8-270-1-9 aacc-S1’(TT8-270-1-9 aacc-S1’)
<400> 44
caaggcggtg gtgcaatctt gtggg 25
<210> 45
<211> 25
<212> DNA
<213> TT8-384-4-10-S2(TT8-384-4-10-S2)
<400> 45
atacggctga agaggctggc gtcgg 25
<210> 46
<211> 25
<212> DNA
<213> TT8-384-4-10-S2’(TT8-384-4-10-S2’)
<400> 46
ctacggctga agaggctgac gtcgg 25
<210> 47
<211> 20
<212> DNA
<213> TT8-384-4-10-S1(TT8-384-4-10-S1)
<400> 47
caaggcggtg gtgcagtggg 20

Claims (10)

1.一种控制甘蓝型油菜种子种皮颜色的基因,其特征在于:所述基因为BnTT8基因,其核苷酸序列为BnA09.TT8见SEQ ID NO.1或BnC09.TT8b见SEQ ID NO.2。
2.根据权利要求1所述的一种控制甘蓝型油菜种子种皮颜色的基因,其特征在于:所述核苷酸序列SEQ ID NO.1和SEQ ID NO.2编码的氨基酸序列分别见SEQ ID NO.3和SEQ IDNO.4。
3.一种甘蓝型油菜黄籽突变体材料的获取方法,其特征在于:所述突变体材料由如权利要求1所述的BnTT8的两个拷贝同时发生基因编码区内的核苷酸序列突变获得。
4.根据权利要求3所述的一种甘蓝型油菜黄籽突变体材料的获取方法,其特征在于,包括以下步骤:
步骤1:获取如权利要求1所述的BnTT8基因片段;
步骤2:针对如权利要求1所述的BnTT8基因的核苷酸序列设计sgRNA,并构建载体;
步骤3:将步骤2中构建的载体转化至油菜株系中,获得突变体油菜株系;
步骤4:对突变体油菜株系进行检测并测序,确定株系基因型;
步骤5:获得的突变体油菜株系种植并自交分离,获得BnA09.TT8和BnC09.TT8基因被同时敲除的双纯合突变体。
5.根据权利要求4所述的一种甘蓝型油菜黄籽突变体材料的获取方法,其特征在于:步骤2中设计四个sgRNA,前三个sgRNA靶向MIR domain,第四个sgRNA的靶向序列在WD/ADdomain。
6.根据权利要求4所述的一种甘蓝型油菜黄籽突变体材料的获取方法,其特征在于:步骤2中运用pYLCRIPSR/Cas9多重基因组靶向载体系统构建载体。
7.根据权利要求4所述的一种甘蓝型油菜黄籽突变体材料的获取方法,其特征在于:步骤3中用农杆菌介导的下胚轴遗传转化方法将构建好的载体转入半冬性甘蓝型油菜纯系J9707中。
8.根据权利要求4所述的一种甘蓝型油菜黄籽突变体材料的获取方法,其特征在于:步骤5中获得的双纯合突变体的核苷酸序列见SEQ ID NO.29-SEQ ID NO.47。
9.如权利要求1或2所述的一种控制甘蓝型油菜种子种皮颜色的基因在甘蓝型油菜品质改良中的应用。
10.如权利要求3-8任一所述的一种甘蓝型油菜黄籽突变体材料的获取方法在油菜育种中的应用。
CN201910912426.7A 2019-09-25 2019-09-25 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用 Pending CN110511944A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910912426.7A CN110511944A (zh) 2019-09-25 2019-09-25 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910912426.7A CN110511944A (zh) 2019-09-25 2019-09-25 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用

Publications (1)

Publication Number Publication Date
CN110511944A true CN110511944A (zh) 2019-11-29

Family

ID=68633887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910912426.7A Pending CN110511944A (zh) 2019-09-25 2019-09-25 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用

Country Status (1)

Country Link
CN (1) CN110511944A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982838A (zh) * 2019-12-18 2020-04-10 华中农业大学 一种利用基因编辑技术改变油菜种子脂肪酸组成的方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101342A1 (en) * 2007-02-21 2008-08-28 University Of Manitoba Brassica rapa transparent testa genes for controlling seed colour in brassica species
CN101912454A (zh) * 2010-07-26 2010-12-15 周新成 一种治疗腰痛的药物及其制备方法
CN101942457A (zh) * 2010-09-15 2011-01-12 西南大学 甘蓝型油菜及其亲本物种白菜和甘蓝tt8基因家族及其应用
EP2410056A1 (en) * 2005-07-20 2012-01-25 Agriculture Victoria Services Pty Ltd Modification of flavonoid biosynthesis in plants with transparent testa glabra 1
CN102559701A (zh) * 2012-01-19 2012-07-11 西南大学 白菜tt8基因家族及其应用
US20140073504A1 (en) * 2012-07-19 2014-03-13 University Of Kentucky Use of microbial based soil additive to modulate the phenylpropanoid pathway in plants
CN109266646A (zh) * 2018-09-27 2019-01-25 中国农业科学院油料作物研究所 利用CRISPR-Cas9系统敲除甘蓝型油菜BnMAX1基因的方法及应用
CN110257421A (zh) * 2019-06-20 2019-09-20 华中农业大学 一种甘蓝型油菜基因突变体ptg8的构建方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410056A1 (en) * 2005-07-20 2012-01-25 Agriculture Victoria Services Pty Ltd Modification of flavonoid biosynthesis in plants with transparent testa glabra 1
WO2008101342A1 (en) * 2007-02-21 2008-08-28 University Of Manitoba Brassica rapa transparent testa genes for controlling seed colour in brassica species
CN101912454A (zh) * 2010-07-26 2010-12-15 周新成 一种治疗腰痛的药物及其制备方法
CN101942457A (zh) * 2010-09-15 2011-01-12 西南大学 甘蓝型油菜及其亲本物种白菜和甘蓝tt8基因家族及其应用
CN102559701A (zh) * 2012-01-19 2012-07-11 西南大学 白菜tt8基因家族及其应用
US20140073504A1 (en) * 2012-07-19 2014-03-13 University Of Kentucky Use of microbial based soil additive to modulate the phenylpropanoid pathway in plants
CN109266646A (zh) * 2018-09-27 2019-01-25 中国农业科学院油料作物研究所 利用CRISPR-Cas9系统敲除甘蓝型油菜BnMAX1基因的方法及应用
CN110257421A (zh) * 2019-06-20 2019-09-20 华中农业大学 一种甘蓝型油菜基因突变体ptg8的构建方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YUNGU ZHAI ET AL.: "Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L.", 《PLANT BIOTECHNOLOGY JOURNAL》 *
刘忠松等: "油菜黄籽形成的分子机制研究", 《作物研究》 *
熊秋芳等: "华中农业大学油菜遗传育种研究五十年", 《中国农业科技导报》 *
高永同等: "甘蓝型黄籽油菜种子发育的研究", 《作物学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982838A (zh) * 2019-12-18 2020-04-10 华中农业大学 一种利用基因编辑技术改变油菜种子脂肪酸组成的方法及其应用

Similar Documents

Publication Publication Date Title
Luo et al. Control of organ asymmetry in flowers of Antirrhinum
Lun et al. A CsYcf54 variant conferring light green coloration in cucumber
CN109402141A (zh) 小麦雄性不育基因wms及其花药特异性启动子的应用
Gijzen et al. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface
EP2897453B1 (en) Management of corn rootworm and other insect pests
CN105837670B (zh) 百子莲生长素响应因子ApARF2及其编码基因和探针
Alamin et al. Characterization and fine mapping of SFL1, a gene controlling screw flag leaf in rice
CN110511944A (zh) 一种控制甘蓝型油菜种子种皮颜色的基因、甘蓝型油菜黄籽突变体材料的获取方法及其应用
CN108603198A (zh) 操纵植物发育的组合物和方法
CN108024518A (zh) 具有抗裂荚性的芸薹属植物
CN106544425B (zh) 一种dna芯片及其在玉米品种鉴定和育种中的应用
CN106793762A (zh) 具有粉红色光泽果实的番茄植物
CN116536333A (zh) 甘蓝型油菜BnaTT7基因及其突变体的制备与应用
Yu et al. Fine mapping of a novel defective glume 1 (dg1) mutant, which affects vegetative and spikelet development in rice
Tanksley et al. Dissecting quantitative trait variation—examples from the tomato
Xiao et al. Phenotypical and gene co-expression network analyses of seed shattering in divergent sorghum (Sorghum spp.)
CN109679967A (zh) 一个抗大豆花叶病毒基因GmRDBM的应用
CN104961814B (zh) 百子莲生长素信号转录调控蛋白Aux/IAA3及其编码基因和探针
CN105085642B (zh) 百子莲生长素信号转录调控蛋白Aux/IAA2及其编码基因和探针
CN104961815B (zh) 百子莲生长素信号转录调控蛋白Aux/IAA1及其编码基因和探针
Liu et al. Molecular mapping and candidate gene analysis of the semi-dominant gene Vestigial glume1 in maize
CN107090516A (zh) 一种芝麻抗裂蒴性检测引物、检测试剂盒及检测方法
SHI et al. Cloning and characterization of a somatic embryogenesis receptor-like kinase gene in cotton (Gossypium hirsutum)
CN100535120C (zh) 生产改变含油量的植物
Sakaguchi et al. Ribes fujisanense (Grossulariaceae): A New Obligate Epiphytic Species of Gooseberry Discovered in Central Japan

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination