CN110511032A - 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法 - Google Patents

一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法 Download PDF

Info

Publication number
CN110511032A
CN110511032A CN201910891154.7A CN201910891154A CN110511032A CN 110511032 A CN110511032 A CN 110511032A CN 201910891154 A CN201910891154 A CN 201910891154A CN 110511032 A CN110511032 A CN 110511032A
Authority
CN
China
Prior art keywords
silicon carbide
carbide material
pure
combined silicon
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910891154.7A
Other languages
English (en)
Other versions
CN110511032B (zh
Inventor
王佳平
黄志刚
王文武
李�杰
吴吉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority to CN201910891154.7A priority Critical patent/CN110511032B/zh
Priority to ES19945876T priority patent/ES2941998T3/es
Priority to DK19945876.1T priority patent/DK3988518T3/da
Priority to PCT/CN2019/111453 priority patent/WO2021051465A1/zh
Priority to EP19945876.1A priority patent/EP3988518B1/en
Publication of CN110511032A publication Critical patent/CN110511032A/zh
Application granted granted Critical
Publication of CN110511032B publication Critical patent/CN110511032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,属于耐火材料技术领域,其方法为:在氮化物结合碳化硅材料完成氮化烧结后,在1100℃~1400℃温度范围内,先通入纯O2/H2O混合气体,并保温1~15小时进行“湿氧”保护性氧化,之后,开始通入纯O2气体,并保温1~10小时进行“干氧”保护性氧化,氧化过程中炉内保持正压。本发明所述提高氮化物结合碳化硅材料抗氧化性能的烧结方法,工艺设计简单,工艺过程易于控制,且该方法是在氮化物/氮氧化物结合碳化硅材料完成氮化烧结以后直接进行保护性氧化,属于一次完成制品的烧结,节省能源,适用于工业化生产。

Description

一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法
技术领域
本发明涉及一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,尤其是涉及一种通过控制气氛,并使氮化、保护性氧化连续一次完成的高抗氧化性氮化物结合碳化硅材料烧结方法。
背景技术
氮化物结合碳化硅材料因其具有热导率大、线膨胀系数小、常温和高温强度高、抗热震性好、耐化学腐蚀和高温耐磨性优良等优异性能,在钢铁、有色冶金、化学、电力、陶瓷和垃圾焚烧发电等领域均有广泛应用。
氮化物结合碳化硅材料属于非氧化物耐火材料,易氧化,因此上述材料的烧结过程必须是采用非氧化烧结气氛,目前在耐火材料工业中普遍采用金属硅和碳化硅为原料的氮化反应烧结法,但仅通过氮化反应烧结法生产出来的氮化物结合碳化硅材料在高温使用的过程中经常遇到氧化损毁的问题,尤其是在水蒸气含量较高的工况环境中,氧化损坏的情况更明显,损毁速度更快。因此,如何提高氮化物结合碳化硅材料的抗氧化性能,尤其是抗高温水蒸气氧化性能,一直是行业亟待解决的问题。美国专利US8003557B2中报道通过添加硼化物的方法来提高氮化物/氮氧化物结合碳化硅材料的抗高温水蒸气氧化性能,专利中介绍的烧结气氛为氮气气氛或氧气和氮气的混合气氛。
然而,在氮化物结合碳化硅材料完成烧结以后,再采用“湿氧-干氧”气氛(湿氧即氧气和水蒸气的混合气体)来提高氮化物结合碳化硅材料抗氧化性能的方法却十分少见。为了便于理解上述方法,下面简要分析该方法的原理和可行性。氮化物结合碳化硅材料在使用过程中氧化损坏主要是由于Si3N4、Si2N2O、SiC分别与O2、H2O (g)发生了以下反应:
Si3N4(s) + 3O2 (g) = 3SiO2(s) + 2N2 (g)
Si2N2O(s) +1.5 O2 (g) = 2SiO2(s) + N2 (g)
SiC (s) + 2 O2 (g) = SiO2(s) +CO2 (g)
Si3N4(s) + 6H2O (g) =3SiO2(s) + 6H2 (g) + 2N2 (g)
Si2N2O(s) + 3H2O (g) =2SiO2(s) + 3H2 (g) + N2 (g)
SiC(s) + 3H2O (g) =SiO2(s) + CO (g)+3H2(g)
从上述反应中可以看到SiO2在高氧高水蒸气含量的环境中是稳定相,之所以在高温使用过程中氧化产物SiO2未能对材料形成保护,主要原因是在于生成的SiO2不是连续的,而且在高温使用过程中,有时候会因为冲刷等原因不断的产生剥落。
发明内容
如果氮化物结合碳化硅材料在使用之前就在材料的表面覆盖上一层连续的、合适厚度的SiO2氧化膜层,在高温使用过程中就能有效的阻碍氧气和水蒸气对氮化物结合碳化硅材料的氧化破坏。但如何能使氮化物结合碳化硅材料的表面生成连续的、合适厚度的SiO2氧化膜层:在集成电路半导体行业,就是利用二氧化硅的掩蔽作用来实现部件的绝缘,工艺上对硅片进行热氧化,即在硅片的表面形成一层结构致密、厚度合适的二氧化硅层,为了兼顾效率和质量,通常采用“干氧-湿氧-干氧”氧化相结合的工艺方式。Si3N4、Si2N2O、SiC的氧化和Si的氧化原理相通。
本发明的目的是提出一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,通过控制气氛,采用“湿氧-干氧”相结合方式来提高氮化物结合碳化硅材料抗氧化性能的方法,且该方法是在氮化物结合碳化硅材料完成氮化烧结以后直接进行保护性氧化,无须重复从常温加热。
本发明提出了一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,包括在氮化物结合碳化硅材料完成氮化烧结后,向装有氮化物结合碳化硅材料的窑炉内,通入纯O2/H2O混合气体或纯O2气体经历“湿氧-干氧”过程进行保护性氧化,用流量计控制气体的流量以及混合气体的比例,同时观测U型管内水柱高度差,确保窑内处于正压状态,其烧结过程如下:在氮化物结合碳化硅材料完成氮化烧结后,在1100℃~1400℃温度范围内,先通入纯O2/H2O混合气体,并保温1~15小时进行“湿氧”保护性氧化,之后,开始通入纯O2气体,并保温1~10小时进行“干氧”保护性氧化,其中所述纯O2气体是指O2含量≥99%的干氧气体;所述纯O2/H2O混合气体中,按体积百分数计算,纯O2(O2含量≥99%)2~98%,H2O(g)2~98%;所述正压力范围在10~30毫米水柱。
本发明所述的提高氮化物结合碳化硅材料抗氧化性能烧结方法,其中所述正压力范围在15~25毫米水柱,所述纯O2/H2O混合气体中,按体积百分数计算,纯O2(O2含量≥99%)5~95%,H2O(g)5~95%;
本发明所述提高氮化物结合碳化硅材料抗氧化性能的烧结方法,工艺设计简单,工艺过程易于控制,且该方法是在氮化物结合碳化硅材料完成氮化烧结以后直接进行保护性氧化,属于一次完成材料的烧结,节省能源,适用于工业化生产。
附图说明
图1是本发明的高抗氧化性氮化物结合碳化硅材料烧结设备示意图。
图中:1:空气流量计、2:水蒸气流量计,3:气体混合装置,4:窑炉,5:氮化物结合碳化硅材料,6: U型管,7:水柱。
具体实施方式
下面结合图1,对本发明所述的烧结方法在实施例中进行详细描述。其中本发明所述的氮化物结合碳化硅材料不限于实施例中提到的几种物质,只要该材料中以氮化物或氮氧化物或氮化物/氮氧化物为结合相,碳化硅含量≥50%(按百分比重量计),都属于本发明所述的氮化物结合碳化硅材料,都属于本发明的保护范围。
实施例1
氮化物结合碳化硅材料选用的原料及原料组成(按百分比重量计)为:SiC颗粒75%,SiC细粉10%,Si粉15%,经压制成型后装入窑炉内,经1300℃氮化烧结后,待炉内温度降到1100℃,经过流量计控制,向窑内通入2%纯O2和98%H2O(g)的混合气体,观察U型管内水柱高度差,使窑内压力保持在10mm水柱,在1100℃保温15小时进行“湿氧”保护性氧化,随后通入纯O2气体,观察U型管内水柱高度差,使窑内压力保持在10mm水柱,在1100℃保温10小时进行“干氧”保护性氧化。比较例1为相同试样仅经1300℃氮化烧结、不经历保护性氧化处理过程,比较例1氮化过程与实施例1保持一致。
从实施例1和比较例1烧成后的材料上各切取3个尺寸为165×114×22mm的试样,测试试样的体积和质量,然后放入试验炉。按照ASTM-C863标准升温至1000℃,以32kg/(m3.h)的速率通入水蒸汽,保温500小时。待停炉降温后,取出试样测试其氧化后体积和质量,计算体积变化率和质量变化率,取平均值。以测试前后试样的体积变化率作为评判材料抗氧化性能的标准,体积变化率越小,其抗氧化性能越好,测试前后试样的重量变化率仅为参考指标。结果见表1。
实施例2
氮化物结合碳化硅材料选用的原料及原料组成(按百分比重量计)为:SiC颗粒70%,SiC细粉11.5%,Si粉16%,SiO2微粉2.5%,经压制成型后装入电炉窑内,经1350℃氮化烧结后,待炉内温度降到1100℃,经过流量计控制,向窑内通入60%纯O2和40%H2O(g)的混合气体,观察U型管内水柱高度差,使窑内压力保持在20mm水柱,在1100℃保温8小时进行“湿氧”保护性氧化,随后停止通气将炉内温度升高至1300℃,通入纯O2气体,观察U型管内水柱高度差,使窑内压力保持在25mm水柱,在1300℃保温6小时进行“干氧”保护性氧化。比较例2为相同试样仅经1350℃氮化烧结、不经历保护性氧化处理过程,比较例2氮化过程与实施例2保持一致。
从实施例2和比较例2烧成后的材料上各切取3个尺寸为165×114×22mm的试样,测试试样的体积和质量,然后放入试验炉。按照ASTM-C863标准升温至1000℃,以32kg/(m3.h)的速率通入水蒸汽,保温500小时。待停炉降温后,取出试样测试其氧化后体积和质量,计算体积变化率和质量变化率,取平均值。以测试前后试样的体积变化率作为评判材料抗氧化性能的标准,体积变化率越小,其抗氧化性能越好,测试前后试样的重量变化率仅为参考指标。结果见表2。
实施例3
氮化物结合碳化硅材料选用的原料及原料组成(按百分比重量计)为:SiC颗粒70%,SiC细粉22%,Si粉6%,SiO2微粉2%,经压制成型后装入电炉窑内,经1420℃氮化烧结后,待炉内温度降到1400℃,经过流量计控制,向窑内通入70%纯O2和30%H2O(g)的混合气体,观察U型管内水柱高度差,使窑内压力保持在15mm水柱,在1400℃保温1小时进行“湿氧”保护性氧化,随后通入纯O2气体,观察U型管内水柱高度差,使窑内压力保持在15mm水柱,在1400℃保温1小时进行“干氧”保护性氧化。比较例3为相同试样仅经1420℃氮化烧结、不经历保护性氧化处理过程,比较例3氮化过程与实施例3保持一致。
从实施例3和比较例3烧成后的材料上各切取3个尺寸为165×114×22mm的试样,测试试样的体积和质量,然后放入试验炉。按照ASTM-C863标准升温至1000℃,以32kg/(m3.h)的速率通入水蒸汽,保温500小时。待停炉降温后,取出试样测试其氧化后体积和质量,计算体积变化率和质量变化率,取平均值。以测试前后试样的体积变化率作为评判材料抗氧化性能的标准,体积变化率越小,其抗氧化性能越好,测试前后试样的重量变化率仅为参考指标。结果见表3。
实施例4
氮化物结合碳化硅材料选用的原料及原料组成(按百分比重量计)为:SiC颗粒65%,SiC细粉10%,Si粉20%,SiO2微粉5%,经压制成型后装入电炉窑内,经1350℃氮化烧结后,待炉内温度将至1200℃,经过流量计控制,向窑内通入98%纯O2和2%H2O(g)的混合气体,观察U型管内水柱高度差,使窑内压力保持在30mm水柱,在1200℃保温10小时进行“湿氧”保护性氧化,随后通入纯O2气体,观察U型管内水柱高度差,使窑内压力保持在30mm水柱,在1200℃保温6小时进行“干氧”保护性氧化。比较例4为相同试样仅经1350℃氮化烧结、不经历保护性氧化处理过程,比较例4氮化过程与实施例4保持一致。
从实施例4和比较例4烧成后的材料上各切取3个尺寸为165×114×22mm的试样,测试试样的体积和质量,然后放入试验炉。按照ASTM-C863标准升温至1000℃,以32kg/(m3.h)的速率通入水蒸汽,保温500小时。待停炉降温后,取出试样测试其氧化后体积和质量,计算体积变化率和质量变化率,取平均值。以测试前后试样的体积变化率作为评判材料抗氧化性能的标准,体积变化率越小,其抗氧化性能越好,测试前后试样的重量变化率仅为参考指标。结果见表4。
实施例5
氮化物结合碳化硅材料选用的原料及原料组成(按百分比重量计)为:SiC颗粒60%,SiC细粉20%,Si粉15%,SiO2微粉5%,经压制成型后装入电炉窑内,经1380℃氮化烧结后,待温度降至1300℃,经过流量计控制,向窑内通入50%纯O2和50%H2O(g)的混合气体,观察U型管内水柱高度差,使窑内压力保持在25mm水柱,在1300℃保温6小时进行“湿氧”保护性氧化,随后通入纯O2气体,观察U型管内水柱高度差,使窑内压力保持在20mm水柱,在1300℃保温8小时进行“干氧”保护性氧化。比较例5为相同试样仅经1380℃氮化烧结、不经历保护性氧化处理过程,比较例5氮化过程与实施例5保持一致。
从实施例5和比较例5烧成后的材料上各切取3个尺寸为165×114×22mm的试样,测试试样的体积和质量,然后放入试验炉。按照ASTM-C863标准升温至1000℃,以32kg/(m3.h)的速率通入水蒸汽,保温500小时。待停炉降温后,取出试样测试其氧化后体积和质量,计算体积变化率和质量变化率,取平均值。以测试前后试样的体积变化率作为评判材料抗氧化性能的标准,体积变化率越小,其抗氧化性能越好,测试前后试样的重量变化率仅为参考指标。结果见表5。
从以上5个实施例检测结果可以看出,相同的碳化硅材料,经过本发明所提供的烧结方法处理后,其抗氧化性能明显提高。

Claims (4)

1.一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,其特征在于:在氮化物结合碳化硅材料完成氮化烧结后,向装有氮化物结合碳化硅材料的窑炉内,通入纯O2/H2O混合气体或纯O2气体经历“湿氧-干氧”过程进行保护性氧化,用流量计控制气体的流量以及混合气体的比例,同时观测U型管内水柱高度差,确保窑内处于正压状态,其烧结过程如下:在氮化物结合碳化硅材料完成氮化烧结后,在1100℃~1400℃温度范围内,先通入纯O2/H2O混合气体,并保温1~15小时进行“湿氧”保护性氧化,之后,开始通入纯O2气体,并保温1~10小时进行“干氧”保护性氧化,其中所述纯O2气体是指O2含量≥99%的干氧气体;所述纯O2/H2O混合气体中,按体积百分数计算,纯O2 2~98%,H2O(g)2~98%;所述正压状态的压力范围在10~30毫米水柱。
2.如权利要求1所述一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,其特征在于:所述氮化物结合碳化硅材料,包括所有以氮化物或氮氧化物或氮化物/氮氧化物为结合相,碳化硅含量≥50%(按百分比重量计)的材料。
3.如权利要求1所述一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,其特征在于:所述正压状态的压力范围在15~25毫米水柱。
4.如权利要求1所述一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法,其特征在于:所述纯O2/H2O混合气体中,按体积百分数计算,纯O2 (O2含量≥99%)5~95%,H2O(g)5~95%。
CN201910891154.7A 2019-09-20 2019-09-20 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法 Active CN110511032B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910891154.7A CN110511032B (zh) 2019-09-20 2019-09-20 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法
ES19945876T ES2941998T3 (es) 2019-09-20 2019-10-16 Método de sinterización para mejorar la resistencia a la oxidación del material de carburo de silicio con nitruro
DK19945876.1T DK3988518T3 (da) 2019-09-20 2019-10-16 Fremgangsmåde til sintring til forbedring af antioxidationsydeevnen for nitridbundne siliciumcarbidmaterialer
PCT/CN2019/111453 WO2021051465A1 (zh) 2019-09-20 2019-10-16 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法
EP19945876.1A EP3988518B1 (en) 2019-09-20 2019-10-16 Sintering method for improving antioxidant performance of nitride bonded silicon carbide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910891154.7A CN110511032B (zh) 2019-09-20 2019-09-20 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法

Publications (2)

Publication Number Publication Date
CN110511032A true CN110511032A (zh) 2019-11-29
CN110511032B CN110511032B (zh) 2020-09-04

Family

ID=68633002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910891154.7A Active CN110511032B (zh) 2019-09-20 2019-09-20 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法

Country Status (5)

Country Link
EP (1) EP3988518B1 (zh)
CN (1) CN110511032B (zh)
DK (1) DK3988518T3 (zh)
ES (1) ES2941998T3 (zh)
WO (1) WO2021051465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781086A (zh) * 2020-08-11 2020-10-16 中钢集团洛阳耐火材料研究院有限公司 一种快速检测碳化硅耐火材料高温抗氧化性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555161A (zh) * 2008-04-11 2009-10-14 中国科学院金属研究所 一种提高碳化硅泡沫陶瓷高温抗氧化性能的表面改性方法
KR20150030872A (ko) * 2013-09-13 2015-03-23 한국기계연구원 나노급 금속, 탄화물 또는 질화물 분말의 산화를 방지하거나 산소와의 반응을 방지하기 위한 분말 처리방법
CN107602153A (zh) * 2017-08-03 2018-01-19 彩虹(合肥)液晶玻璃有限公司 一种SiC板表面氧化层快速增厚的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE029210T2 (en) 2008-06-13 2017-02-28 Saint-Gobain Ceram & Plastics Inc Volume Resistant Silicon Oxynitride Bound Silicon Carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555161A (zh) * 2008-04-11 2009-10-14 中国科学院金属研究所 一种提高碳化硅泡沫陶瓷高温抗氧化性能的表面改性方法
KR20150030872A (ko) * 2013-09-13 2015-03-23 한국기계연구원 나노급 금속, 탄화물 또는 질화물 분말의 산화를 방지하거나 산소와의 반응을 방지하기 위한 분말 처리방법
CN107602153A (zh) * 2017-08-03 2018-01-19 彩虹(合肥)液晶玻璃有限公司 一种SiC板表面氧化层快速增厚的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王黎 等: "Si3N4结合SiC复相材料的高温氧化行为", 《兵器材料科学与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781086A (zh) * 2020-08-11 2020-10-16 中钢集团洛阳耐火材料研究院有限公司 一种快速检测碳化硅耐火材料高温抗氧化性的方法

Also Published As

Publication number Publication date
CN110511032B (zh) 2020-09-04
ES2941998T3 (es) 2023-05-29
EP3988518A1 (en) 2022-04-27
EP3988518B1 (en) 2023-03-15
EP3988518A4 (en) 2022-07-20
WO2021051465A1 (zh) 2021-03-25
DK3988518T3 (da) 2023-05-15

Similar Documents

Publication Publication Date Title
US2618565A (en) Manufacture of silicon nitride-bonded articles
Ren et al. Green synthesis of porous SiC ceramics using silicon kerf waste in different sintering atmospheres and pore structure optimization
CN107324809A (zh) 多孔碳化硅陶瓷及其制备方法和应用
Jin et al. Preparation of reactive sintering Si3N4-Si2N2O composites ceramics with diamond-wire saw powder waste as raw material
CN103833336A (zh) 用于工业高温管道的耐磨抗蚀复合陶瓷及其制备方法
Lao et al. Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering
CN110511032A (zh) 一种提高氮化物结合碳化硅材料抗氧化性能的烧结方法
CN106966699B (zh) 一种高温复合材料全温度段热匹配涂层的制备方法
CN109231972B (zh) 轻质电熔刚玉砖
Wang et al. Oxidation mechanism of Si3N4-bonded SiC ceramics by CO, CO2 and steam
CN105506735A (zh) 一种多晶硅铸锭用碳材料结构件及其制备方法
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
CN105236988B (zh) 一种高纯高密重结晶碳化硅器件及其制备方法
CN105967755B (zh) 一种碳/碳复合材料莫来石晶须增韧莫来石抗氧化涂层及其制备方法
Han et al. Oxidation mechanism of Al–Si–SiC composite at elevated temperature
CN108863408A (zh) 一种ZrN-SiAlON-SiC-C复相耐火材料的制备方法
Li et al. Growth and characterization of silicon oxide films formed in the presence of Si, SiC, and Si3N4
Sun et al. Oxidation mechanism of Al-TiO2-MgO-Al2O3 composites after the treatment at 1500 C in N2-blowing
Xiang et al. Research on Oxidation Resistance of Silicon Carbide Refractories to High Temperature Steam
Komeya et al. Liquid phase sintering of aluminum nitride
Park et al. Chemical reactions in mullite matrix SiC whisker reinforced composites in RF plasma
CN109206144A (zh) 一种超低碳铝碳耐火材料的制备及检测方法
Hou et al. Research on reaction between SiC and Fe2O3
JP5351426B2 (ja) 窒化アルミニウム粉末の処理方法
CN108585796A (zh) 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant