CN108585796A - 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法 - Google Patents

一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法 Download PDF

Info

Publication number
CN108585796A
CN108585796A CN201810445305.1A CN201810445305A CN108585796A CN 108585796 A CN108585796 A CN 108585796A CN 201810445305 A CN201810445305 A CN 201810445305A CN 108585796 A CN108585796 A CN 108585796A
Authority
CN
China
Prior art keywords
carbon
sic
slag
ultra
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810445305.1A
Other languages
English (en)
Inventor
马北越
张亚然
任鑫明
苏畅
于敬雨
石明东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Jia Ai Mstar Technology Ltd
Original Assignee
Suzhou Jia Ai Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Jia Ai Mstar Technology Ltd filed Critical Suzhou Jia Ai Mstar Technology Ltd
Priority to CN201810445305.1A priority Critical patent/CN108585796A/zh
Publication of CN108585796A publication Critical patent/CN108585796A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,属于钢铁冶金用耐火材料制备技术领域。本发明将SiO2基天然矿物或废渣与碳源充分混匀后,置于高温炉中,在惰性气氛下制备SiC基合成料;然后按照一定的配比,将SiC基合成料添加到超低碳镁材料原料中充分混合,经成型、干燥、高温热处理后,得到碳化硅基合成料改善的超低碳镁碳材料;最后,采用静态坩埚法进行抗渣性实验。该方法在降低MgO‑C材料碳含量的前提下,改善了其抗渣性,达到了炼钢和连铸工艺对相关耐火材料部件的质量要求。工艺简便易行,原料廉价易得,易于实现大批量生产。

Description

一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法
技术领域
本发明属于钢铁冶金用耐火材料制备技术领域,涉及一种高性能超低碳MgO-C耐火材料的制备方法,具体是指一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性。
背景技术
镁碳材料因具有良好的抗热震性、抗渣侵蚀性等特点,普遍应用于转炉、电炉和精炼炉内衬以及钢包渣线等部位。然而,钢包MgO-C耐火材料碳含量(质量分数)一般在15%左右,在浇铸过程中会出现热传导快、热量损失、释放温室气体等严重问题,因此开发和研究低碳镁碳材料在生态环境和超低碳钢材生产方面尤为重要。
为了降低碳对钢水的污染,提高钢材质量,在钢铁冶金行业,应选用C含量≤8%的低碳MgO-C材料,甚至是C含量≤4%的超低碳MgO-C材料。而超低碳/低碳MgO-C材料因石墨含量的减少,导致耐火材料制品的抗热震性和抗渣侵蚀性下降。因此,降低MgO-C耐火材料含碳量的同时,增强耐火材料的抗渣侵蚀性和抗热震性对于炼钢连铸过程尤为重要。
SiC具有良好的耐高温性能,由SiO2基天然矿物或废渣制备的SiC基复合微粉,添加到超低碳镁碳材料中,可有效地提高超低碳镁碳材料的抗渣侵蚀性和抗热震性。
发明内容
在降低MgO-C耐火材料含碳量的前提下,改善耐火材料的抗渣侵蚀性,本发明提出了一种引入SiC基合成料改善超低碳镁碳材料抗渣性的方法。
本发明先将SiO2基天然矿物或废渣、碳源充分混匀后,置于高温炉中,在惰性气氛下制备SiC基合成料;然后按照一定的配比,将SiC基合成料与电熔镁砂细粉充分混匀,按照镁碳耐火制品的生产方法,经成型、干燥、高温热处理后,得到抗渣性良好的SiC基合成料改善的超低碳镁碳材料。
一种引进碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,按以下步骤进行:
步骤1:SiC基合成料的制备
(1)将SiO2基天然矿物或废渣与碳源充分混匀;SiO2基天然矿物或废渣与碳源的质量配比,应根据原料的纯度和碳热还原反应需要的碳量计算,为促进碳热还原反应充分进行,通常加入过量的碳源。
(2)将混匀后的原料放入高温炉内,通过碳热还原反应,在惰性气氛下制备SiC基合成料。
(3)SiC基合成料随炉冷却后,于700℃空气条件下保温2h,以去除多余的碳源;
步骤2:SiC基合成料改善的超低碳镁碳坩埚的制备
(1)将电熔镁砂、天然石墨、SiC基合成料、酚醛树脂按照(92%~95%):(1%~2%):(3%~7%):1%的配比混合均匀;
(2)将混匀后的原料压制成坩埚;
(3)将坩埚于120℃充分干燥后,于1300~1600℃惰性或还原气氛下热处理2~8h。
步骤3:SiC基合成料改善的超低碳镁碳材料抗渣性的测试
(1)将1kg炉渣置于SiC基合成料改善的超低碳镁碳坩埚中;
(2)将坩埚置于1500~1600℃惰性气氛下的高温炉中热处理2~8h;
(3)坩埚随炉自然冷却置室温,将坩埚沿直径方向纵向切开,观察炉渣与坩埚内壁反应情况,分析炉渣渗透层的微观结构与炉渣组成。
所述的步骤1(1)中,所述的SiO2基天然矿物或废渣为叶蜡石、粘土、红柱石、硅线石、蓝晶石、锆英石和粉煤灰中的一种;
所述的步骤1(1)中,所述的碳源为石墨粉、活性炭和炭黑中的一种;
所述的高温炉为可通保护气体的箱式电阻炉、管式电阻炉和隧道窑中的一种;
所述的步骤1(2)中,所述的碳热还原反应过程,需要通入Ar、N2保护气,其流量为1.0~3.0L·min-1
所述的步骤1(2)中,所述的高温炉中碳热还原反应合成温度为1500~1800℃,保温时间为4~10h;
所述的步骤1(3)中,所述的高温炉为箱式电阻炉、管式电阻炉或隧道窑中的一种;
所述的步骤2(1)中,添加剂SiC基合成料为SiC-Al2O3、SiC-ZrO2、SiC-ZrC中的一种,其添加的质量分数为3%~7%;
所述的步骤2(1)中,所述的天然石墨的质量分数为1%~2%,电熔镁砂的质量分数为92%~95%,酚醛树脂的质量分数(外加)为1%。
所述的步骤2(2)中,所述压制坩埚的压力为150~250MPa;
所述的步骤3(1)中,所述的炉渣成分(质量分数):40%CaO,40%SiO2,10%Na2O,4%MgO,2%Fe2O3和4%Al2O3
所述的炉渣渗透层的微观结构通过金相显微镜分析;
所述的炉渣渗透层内的炉渣组成和SiC基合成料的组成通过X射线衍射分析;
本发明的一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,降低了MgO-C耐火材料的含碳量,改善了耐火材料的抗渣侵蚀性,达到了炼钢和连铸工艺对相关耐火材料部件的质量要求。以SiO2基天然矿物或废渣(叶蜡石、粘土、红柱石、硅线石、蓝晶石、锆英石、粉煤灰)和碳源(活性炭、炭黑和石墨粉)为主要原料,利用碳热还原法制备SiC基合成料,进而生产抗渣性良好的超低碳镁碳材料,工艺简便易行,利于大批量生产。
附图说明
图1是本发明的工艺流程图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
以下实施例中,一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法的工艺流程图如图1所示。
实施例1
一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,按以下步骤进行:
步骤1:SiC-Al2O3复合微粉的合成
(1)将粘土、石墨粉按照1000:200的质量比称量,并进行搅拌混匀;
(2)将混匀后的原料放入高温炉中,于1550℃保温4h、氩气下进行碳热还原反应,合成SiC-Al2O3复合微粉。
(3)将SiC-Al2O3复合微粉于700℃空气条件下保温2h,以去除多余的碳;
步骤2:SiC-Al2O3改善的超低碳镁碳坩埚的制备
(1)将电熔镁砂、天然石墨、SiC-Al2O3复合微粉按照930:20:50的质量比称料,外加上述原料1%(质量分数)的液体酚醛树脂,并搅拌混合均匀;
(2)将混匀后的原料压制成坩埚;
(3)将坩埚于120℃充分干燥后,于1400℃氩气气氛下热处理2h。
步骤3:SiC-Al2O3复合微粉改善的超低碳镁碳材料抗渣性的测试
(1)将1kg炉渣置于SiC-Al2O3改善后的超低碳镁碳坩埚中;
(2)将坩埚置于1500℃氩气气氛下热处理3h;
(3)坩埚随炉自然冷却置室温,将坩埚沿直径方向纵向切开,观察炉渣与坩埚内壁反应情况,分析炉渣渗透层的微观结构与炉渣组成。
经检测,所得复合微粉的主要晶相为石墨、方石英(SiO2)和莫来石(Al6Si2O13),同时有少量的α-Al2O3生成,仅有少量的β-SiC,说明碳热还原反应不充分。将其添加到超低碳镁碳材料中,发现所制耐火制品的抗渣性较差。
实施例2
一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,同实施例1,不同之处在于,制备SiC-Al2O3复合微粉的温度为1700℃。
经检测,所得的SiC-Al2O3复合微粉的主要晶相是β-SiC和α-Al2O3;微粉颗粒尺寸为1~2μm;炉渣与坩埚内壁表面比较光滑,覆有一层很薄的渣层;炉渣渗透层中含有MgAl2O4和β-SiC;炉渣中含有β-SiC与α-Al2O3颗粒,增加了炉渣的表观粘度,延缓了炉渣对超低碳镁碳材料的侵蚀。
实施例3
一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,同实施例1,不同之处在于:制备SiC基合成料的原料是粉煤灰和活性炭,其质量配比为1000:450。
经检测,所得的SiC-Al2O3复合微粉的主要晶相是β-SiC、α-Al2O3、Al6Si2O13,还含有少量的SiO2和FeSi;晶粒均匀性稍差,晶粒多以片状存在,平均粒径为1~2μm;炉渣与坩埚内壁表面比较光滑,覆有一层很薄的渣层;炉渣渗透层中含有MgAl2O4;炉渣中含有α-Al2O3颗粒,增加了炉渣的表观粘度,一定程度上延缓了炉渣对超低碳镁碳材料的侵蚀。
实施例4
一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,同实施例1,不同之处在于:
(1)合成料为SiC-ZrO2复合微粉;
(2)制备SiC基合成料的原料是锆英石(ZrSiO4)和炭黑,其质量配比为1000:200。
经检测,所得的SiC-ZrO2复合微粉的主要晶相是β-SiC、m-ZrO2和ZrSiO4,晶粒多以类球状存在,平均粒径约为1μm;炉渣与坩埚内壁表面比较光滑,覆有一层很薄的渣层;炉渣渗透层中含有CaZrO3和β-SiC;炉渣中含有β-SiC与c-ZrO2颗粒,增加了炉渣的表观粘度,延缓了炉渣对超低碳镁碳材料的侵蚀。
实施例5
一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,同实施例1,不同之处在于:
(1)合成料为SiC-ZrC复合微粉;
(2)合成温度为1700℃;
(3)制备SiC基合成料的原料是锆英石和活性炭,其质量配比为1000:550。
经检测,所得的SiC-ZrC复合微粉的主要晶相是β-SiC和ZrC,微粉颗粒尺寸约为1μm;炉渣与坩埚内壁表面比较光滑,覆有一层很薄的渣层;炉渣渗透层中含有CaZrO3和β-SiC;炉渣中含有β-SiC与c-ZrO2颗粒,增加了炉渣的表观粘度,延缓了炉渣对超低碳镁碳材料的侵蚀。

Claims (10)

1.一种引进碳化硅基合成料改善超低碳镁碳材料抗渣性的方法,其特征在于,按以下步骤进行:
步骤1:SiC基复合微粉的合成
(1)将SiO2基天然矿物或废渣、碳源充分混匀;
(2)将混匀后的原料放入高温炉内充分进行碳热还原反应,在惰性气氛下制备SiC基合成料;
(3)SiC基合成料于700℃空气条件下保温2h,去除多余的碳。
步骤2:SiC基合成料改善的超低碳镁碳坩埚的制备
(1)将电熔镁砂、天然石墨、SiC基合成料按照(92%~95%):(1%~2%):(3%~7%)配比混合均匀;
(2)将混匀后的原料压制成坩埚;
(3)坩埚于120℃下充分干燥后,于1300~1600℃惰性或还原气氛下热处理2~8h。
步骤3:SiC基合成料改善的超低碳镁碳材料抗渣性的测试
(1)将1kg炉渣置于热处理且改善后的超低碳镁碳坩埚中;
(2)将坩埚置于高温炉中,在1500~1600℃、惰性气氛下保温2~8h,进行侵蚀实验;
(3)坩埚随炉自然冷却置室温,将坩埚沿直径方向纵向切开,观察炉渣与坩埚内壁反应情况,分析炉渣渗透层的微观结构与炉渣组成。
2.如权利要求1所述的制备方法,其特征在于,所述的步骤1(1)中,所述的SiO2基天然矿物或废渣为叶蜡石、粘土、红柱石、硅线石、蓝晶石、粉煤灰和锆英石中的一种。
3.如权利要求1或2所述的制备方法,其特征在于,所述的步骤1(1)中,所述的碳源为天然石墨、活性炭和炭黑中的一种。
4.如权利要求1或者2所述的制备方法,其特征在于,所述的高温炉为可通保护气体的箱式电阻炉、管式电阻炉和隧道窑中的一种。
5.如权利要求1或2所述的制备方法,其特征在于,所述的步骤1(2)中,所述的碳热还原反应过程,需要通入Ar、N2保护气,其流量为1.0~3.0L·min-1
6.如权利要求1或2所述的制备方法,其特征在于,所述的步骤1(2)中,所述的高温炉中碳热还原反应合成温度为1500~1800℃,保温时间为4~10h。
7.如权利要求1或2所述的制备方法,其特征在于,所述的步骤2(1)中,添加剂SiC基合成料为SiC-Al2O3、SiC-ZrO2、SiC-ZrC中的一种,其质量分数为3%~7%。
8.如权利要求1所述的制备方法,其特征在于,所述的步骤2(1)中,所述的天然石墨的质量分数1%~2%,电熔镁砂的质量分数为92%~95%,酚醛树脂的质量分数(外加)为1%。
9.如权利要求1所述的制备方法,其特征在于,所述的步骤2(2)中,所述压制坩埚的压力为150~250MPa。
10.如权利要求1所述的制备方法,其特征在于,所述的步骤3(1)中,所述的炉渣成分(质量分数):40%CaO,40%SiO2,10%Na2O,4%MgO,2%Fe2O3和4%Al2O3
CN201810445305.1A 2018-05-10 2018-05-10 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法 Withdrawn CN108585796A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810445305.1A CN108585796A (zh) 2018-05-10 2018-05-10 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810445305.1A CN108585796A (zh) 2018-05-10 2018-05-10 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法

Publications (1)

Publication Number Publication Date
CN108585796A true CN108585796A (zh) 2018-09-28

Family

ID=63636525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810445305.1A Withdrawn CN108585796A (zh) 2018-05-10 2018-05-10 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法

Country Status (1)

Country Link
CN (1) CN108585796A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256050A (zh) * 2019-07-05 2019-09-20 中钢集团洛阳耐火材料研究院有限公司 一种高温冶炼用镁碳质自流修补料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374274A (zh) * 2002-04-05 2002-10-16 清华大学 用煤矸石制备β-赛隆结合碳化硅复相粉体的方法
CN1919792A (zh) * 2006-09-04 2007-02-28 青岛大学 一种碳化硅耐火陶瓷材料的制备方法
JP2011184217A (ja) * 2010-03-05 2011-09-22 Tokyo Yogyo Co Ltd 溶鋼取鍋内張り用MgO−C質レンガ
CN106495718A (zh) * 2016-10-27 2017-03-15 北京利尔高温材料股份有限公司 一罐制铁水包用MgO‑SiC‑C工作衬砖及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374274A (zh) * 2002-04-05 2002-10-16 清华大学 用煤矸石制备β-赛隆结合碳化硅复相粉体的方法
CN1919792A (zh) * 2006-09-04 2007-02-28 青岛大学 一种碳化硅耐火陶瓷材料的制备方法
JP2011184217A (ja) * 2010-03-05 2011-09-22 Tokyo Yogyo Co Ltd 溶鋼取鍋内張り用MgO−C質レンガ
CN106495718A (zh) * 2016-10-27 2017-03-15 北京利尔高温材料股份有限公司 一罐制铁水包用MgO‑SiC‑C工作衬砖及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何恩广等: "用硅质煤矸石合成SiC的研究", 《硅酸盐学报》 *
李志辉,罗旭东编著: "《无机非金属材料工程专业创新实验》", 31 December 2016, 北京:冶金工业出版社 *
林育炼: "《耐火材料与洁净钢生产技术》", 30 April 2012, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256050A (zh) * 2019-07-05 2019-09-20 中钢集团洛阳耐火材料研究院有限公司 一种高温冶炼用镁碳质自流修补料

Similar Documents

Publication Publication Date Title
Liang et al. Dynamic slag/refractory interaction of lightweight Al2O3–MgO castable for refining ladle
Ghosh et al. Sintering behaviour and hydration resistance of reactive dolomite
CN105819875A (zh) 一种澳斯麦特炼铜炉烟道用耐火浇注料及其制备方法
Fan et al. Study on physicochemical properties of Al2O3SiCC castable for blast furnace
Pan et al. Corrosion mechanism of spray refractory in COREX slag with varying basicity
CN105777160B (zh) 一种钢包渣线用MgO-Cr7C3砖及其制备方法
Qi et al. Slag resistance mechanism of MgO–Mg2SiO4–SiC–C refractories containing porous multiphase aggregates
Zhong et al. Post-mortem analysis of MgO–Al2O3–C bricks containing bauxite used in steel ladle walls
Li et al. Restructuring-diffusion mechanism of calcium alumino-titanate in CaAl12O19–MgAl2O4–Al2O3 castables
Xu et al. Corrosion behavior of alumina containing refractory in blast furnace hearth by CaO–SiO2–MgO–Al2O3–Cr2O3 slags
CN108440004A (zh) 一种引入碳化硅基合成料改善超低碳镁碳材料抗热震性的方法
Long et al. Effect of pretreated Al-Si alloy powder on the microstructure and properties of Al2O3-SiC-C castables for iron runner
CN108585796A (zh) 一种引入碳化硅基合成料改善超低碳镁碳材料抗渣性的方法
Wang et al. Green synthesis of MgAlON refractories with high strength and excellent slag corrosion resistance
Zhao et al. Physical properties and corrosion resistance of magnesia-calcium hexaaluminate refractories to molten steel
Mukherjee et al. A comprehensive review of recent advances in magnesia carbon refractories
CN107417286B (zh) 一种增强超低碳Al2O3-ZrO2-SiC-C耐火材料的制备方法
JP5967160B2 (ja) 減圧を伴う二次精錬設備用内張り耐火物
Jiao et al. Properties and Application of a New Type Carbon Composite Brick Used for Blast Furnace Hearth
CN108585896A (zh) 一种高性能超低碳镁碳材料的制备方法
Sun et al. A novel route to enhance high-temperature mechanical property and thermal shock resistance of low-carbon MgO–C bricks by introducing ZrSiO4
Chu et al. Corrosion behaviour of MgO-based refractories by different existence states of manganese-containing volatile phases
CN109206144A (zh) 一种超低碳铝碳耐火材料的制备及检测方法
JP2022161032A (ja) キャスタブル耐火物および溶鋼鍋
An et al. Effects of Al–Si alloy powders on mechanical properties and slag resistance of unfired magnesia refractories: In air and carbon-embedded atmospheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180928

WW01 Invention patent application withdrawn after publication