CN110508281B - 一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法 - Google Patents

一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法 Download PDF

Info

Publication number
CN110508281B
CN110508281B CN201910882368.8A CN201910882368A CN110508281B CN 110508281 B CN110508281 B CN 110508281B CN 201910882368 A CN201910882368 A CN 201910882368A CN 110508281 B CN110508281 B CN 110508281B
Authority
CN
China
Prior art keywords
workpiece
graphene
photocatalytic coating
preparation
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910882368.8A
Other languages
English (en)
Other versions
CN110508281A (zh
Inventor
简明德
刘成武
黄卫东
许明三
黄旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN201910882368.8A priority Critical patent/CN110508281B/zh
Publication of CN110508281A publication Critical patent/CN110508281A/zh
Application granted granted Critical
Publication of CN110508281B publication Critical patent/CN110508281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法,所述方法如下:1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;2)制备石墨烯掺杂Cu/Cu2O复合浆料;3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;5)对所述预置层进行电子束焊覆,即得石墨烯掺杂Cu/Cu2O纳米光催化涂层。本发明方法提供太阳能聚光装置日光辐照石墨烯掺杂Cu/Cu2O纳米光催化涂层,能够解决缩短催化剂的禁带宽度使吸收光谱向可见光扩展来提高太阳能利用率的问题。

Description

一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法
技术领域
本发明涉及光催化涂层领域,尤其涉及一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层及其制备方法。
背景技术
随着全球工业化进程的不断推进,环境污染问题日益突出,已经严重影响到人们日常的生产和生活。特别是水体污染已经成为全世界普遍关注的问题,极大的威胁了人们的生活水源。为了有效的解决自然环境中的水污染,各国的专家学者都在积极地开发新的污水处理技术和方法。传统的污水处理方法主要有物理分离(如沉降、吸附、过滤、絮凝等)、生物降解和化学分解等几种方法,这几种方法都不同程度的存在着能耗高、降解不彻底、存在二次污染等方面的缺陷。。因此,寻求高效、经济的水处理方法已经成为水处理领域的一个重要目标。含酚废水是一种污染范围广、危害性大的工业废水,它广泛地存在于炼钢厂、树脂厂和制陶厂等工业废水中,如果不经处理任意排放,对人体、鱼体以及农作物有严重危害。因此,含酚废水在排放前要经过处理,以降低酚类物质的含量。
随着科技的不断进步,一些新的水处理技术开始显现出其特有的优势,纳米半导体材料光催化技术就是其中之一。与其他技术相比,光催化技术能够利用取之不尽的太阳能直接完成污水的催化降解,反应条件相对温和,最重要的是可以再生和循环利用光催化剂;另外,污染物的降解比较充分,几乎可以完全降解为CO2、H2O 等简单的无机物,特别是对水中的有机污染物有很好的去除效果,不会造成二次污染,而且所需设备简单,易于操作。这些传统处理方法无法比拟的优势,推动着光催化技术不断的更新完善。
近年来,纳米光催化技术降解有机污染物的研究已经有了突破,特别是对于 TiO2的研究已经逐渐成熟。由于 TiO2的催化活性高、氧化能力强、稳定性好等优势一直是专家学者的研究重点,但是由于其禁带宽度较宽(3.2eV),决定其只能利用太阳光中很短的一段光波,实际工作中要用到耗能较高的紫外灯,无形中增加了成本。如果能够开发出一种催化剂能够高效的利用太阳光将会更具有现实和经济意义。Cu2O 是一种重要的 p 型直接带隙半导体,其禁带宽度为 2.17eV,完全可以被 400-600nm 的可见光驱动引发光催化反应,能更充分的利用太阳光。本发明提出太阳能聚光装置日光辐照, 提高太阳能去污效率的技术关键之一在于装置研制、改进催化剂 ,使反应能在弱紫外辐射下有效地进行 ,或使反应的响应光谱向可见光扩展,从而使含有机废水快速、彻底地降解.
纯态 Cu2O 实际光催化效率不高,在于其光生电子无法有效地转移进而导致电子-空穴容易再复合。由于在贵金属-异质结复合结构中,研究证实其优异的光催化活性,为了克服Cu2O缺点,半导体-贵金属异质结引起研究人员的极大兴趣。因此对 Cu2O 进行表面修饰Cu纳米颗粒是一种行之有效的方法。石墨烯(graphene)是近年来关注度很高的一种新型纳米材料,比表面积可高达 2630 m 2 g -1,理论强度约 130 GPa,能够通过吸附方式去除水体中的重金属、放射性元素,且吸附容量大、吸附速率高。光解是甲基橙、苯酚在水环境中降解的主要途径,但有关石墨烯掺杂 Cu/Cu2O 纳米光催化涂层对甲基橙、苯酚的光解研究却很少报导。
发明内容
针对现有Cu2O光生电子-空穴对具有容易复合、易发生光腐蚀、稳定性不好等特性,使其在实际应用上面临很大的挑战,因此如何有效地提高Cu2O的光催化性能成为国内外研究者关注的焦点。本发明的目的在于提供一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层及其制备方法。
为了达到上述目的,本发明采用以下技术方案:
一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂 Cu/Cu2O复合浆料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;
5)对所述预置层进行电子束焊覆,即得石墨烯掺杂 Cu/Cu2O纳米光催化涂层。
步骤2)所述石墨烯掺杂 Cu/Cu2O复合浆料的制备方法如下:(1)取Cu2O粉末分散于醇水溶液中,在磁力搅拌条件下进行超声处理;(2)超声结束后,加入粘接剂溶液和Cu粉,继续搅拌均匀;(3)滴加氧化石墨烯粉末,将溶液继续磁力搅拌均匀,得到石墨烯掺杂 Cu/Cu2O复合浆料。
进一步的,所述Cu2O粉末、Cu粉、氧化石墨烯粉末的质量比为75:20:5。
所述粘接剂溶液为质量百分比为3- 5%的聚乙烯醇水溶液或环氧聚酯粉末涂料。
步骤4)所述烧结的工艺参数如下:加热功率 10~50kW,升温速率 10~30℃/min,烧结温度 980~1200℃,基体预热温度200~400℃,峰值温度保温时间 20~360min;
步骤5)所述电子束焊覆的工艺参数如下:加速电压25-300kV,聚焦电流200-500mA,电子束流20-100 mA,焊接速度10-50 mm/s,扫描频率 50-300 Hz,后热处理温度 500~650℃。
本发明采用以上技术方案,利用石墨烯优异的导电性、高比表面积及特殊的单原子层二维平面结构等特性与金属颗粒(M)负载在半导体表面(SC), M/SC 接触面可以形成肖特基结而促进光生电子和空穴对的分离。同时,纳米金属颗粒的一个非常重要的光学特性,即局域表面等离子体共振效应可以使入射的光能耦合进入金属颗粒及其周围空间,从而增强整个体系的光吸收、光转换与光传递效率。 Cu/Cu2O 是廉价、储量丰富、容易制备的p 型半导体,其禁带宽度为 2.17eV,可被波长小于 571nm 的光子激发,在可见光(380-780nm)范围内即可发生光催化反应。同时,石墨烯掺杂Cu/ Cu2O 可以吸附空气中的 O2,促进光生电子的俘获,从而抑制电子与空穴的复合,是一种极具有潜力的催化剂。本发明提出太阳能聚光装置日光辐照石墨烯掺杂 Cu/Cu2O 纳米光催化涂层,能够解决缩短催化剂的禁带宽度使吸收光谱向可见光扩展来提高太阳能利用率的问题。
甲基橙、苯酚是环境有机废水中常见的污染物, 酚也是一种公认的致癌物,有效治理染料和含酚废水一直是环保领域的一个重要课题。光催化法能有效地将烃类、芳烃类、表面活性剂、染料、农药、酚类等有机物降解,最终矿化为CO2和 H2O ,而污染物中含有的卤原子、硫原子、磷原子和氮原子等则相应地转化为 X-、SO 42-、PO 43 -、NH 4+、NO 3-等离子,达到无二次污染去除有机污染物的目的。
本发明提出太阳能聚光装置日光辐照石墨烯掺杂 Cu/Cu2O 纳米光催化涂层不仅能将废水中的有机污染物催化降解为 H2O和 CO2,对有机废水中如甲基橙、苯酚等有机废水污染物同样具有较好的降解效果。本发明具有很强的可见光响应,利用光子晶体的慢光子效应,增强了可见光化学反应,异相结结构有利于光生载流子的分离,提高了可见光催化能力,催化剂重复利用 4 次后对苯酚的降解率均在 95%以上。
具体实施方式
一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂 Cu/Cu2O复合浆料:(1)取Cu2O粉末分散于醇水溶液中,在磁力搅拌条件下进行超声处理;(2)超声结束后,加入粘接剂溶液和Cu粉,继续搅拌均匀;(3)滴加氧化石墨烯粉末,将溶液继续磁力搅拌均匀,得到石墨烯掺杂 Cu/Cu2O复合浆料;
其中,Cu2O粉末、Cu粉、氧化石墨烯粉末的质量比为75:20:5,粘接剂溶液为质量百分比为3- 5%的聚乙烯醇水溶液或环氧聚酯粉末涂料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;其中,烧结的工艺参数如下:加热功率 10~50kW,升温速率 10~30℃/min,烧结温度 980~1200℃,基体预热温度200~400℃,峰值温度保温时间 20~360min;
5)对所述预置层进行电子束焊覆,即得石墨烯掺杂 Cu/Cu2O纳米光催化涂层,电子束焊覆的工艺参数如下:加速电压25-300kV,聚焦电流200-500 mA,电子束流20-100 mA,焊接速度10-50 mm/s,扫描频率 50-300 Hz,后热处理温度 500~650℃。
实施例1
一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂 Cu/Cu2O复合浆料:(1)取Cu2O粉末分散于醇水溶液中,在磁力搅拌条件下进行超声处理;(2)超声结束后,加入粘接剂溶液和Cu粉,继续搅拌均匀;(3)滴加氧化石墨烯粉末,将溶液继续磁力搅拌均匀,得到石墨烯掺杂 Cu/Cu2O复合浆料;
其中,Cu2O粉末、Cu粉、氧化石墨烯粉末的质量比为75:20:5,粘接剂溶液为质量百分比为3%的聚乙烯醇水溶液;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;其中,烧结的工艺参数如下:加热功率30kW,升温速率 20℃/min,烧结温度 1100℃,基体预热温度300℃,峰值温度保温时间180min。
5)对所述预置层进行电子束焊覆,即得石墨烯掺杂 Cu/Cu2O纳米光催化涂层,电子束焊覆的工艺参数如下:加速电压150kV,聚焦电流350 mA,电子束流60 mA,焊接速度30mm/s,扫描频率 175 Hz,后热处理温度 500~650℃。
实施例2
一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂 Cu/Cu2O复合浆料:(1)取Cu2O粉末分散于醇水溶液中,在磁力搅拌条件下进行超声处理;(2)超声结束后,加入粘接剂溶液和Cu粉,继续搅拌均匀;(3)滴加氧化石墨烯粉末,将溶液继续磁力搅拌均匀,得到石墨烯掺杂 Cu/Cu2O复合浆料;
其中,Cu2O粉末、Cu粉、氧化石墨烯粉末的质量比为75:20:5,粘接剂溶液为质量百分比为5%的聚乙烯醇水溶液;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;其中,烧结的工艺参数如下:加热功率 10kW,升温速率 10℃/min,烧结温度 980℃,基体预热温度200℃,峰值温度保温时间 100min;
5)对所述预置层进行电子束焊覆,即得石墨烯掺杂 Cu/Cu2O纳米光催化涂层,电子束焊覆的工艺参数如下:加速电压25kV,聚焦电流200mA,电子束流20mA,焊接速度10 mm/s,扫描频率 50 Hz,后热处理温度 500~650℃。
实施例3
一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备石墨烯掺杂 Cu/Cu2O复合浆料:(1)取Cu2O粉末分散于醇水溶液中,在磁力搅拌条件下进行超声处理;(2)超声结束后,加入粘接剂溶液和Cu粉,继续搅拌均匀;(3)滴加氧化石墨烯粉末,将溶液继续磁力搅拌均匀,得到石墨烯掺杂 Cu/Cu2O复合浆料;
其中,Cu2O粉末、Cu粉、氧化石墨烯粉末的质量比为75:20:5,粘接剂溶液为环氧聚酯粉末涂料;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成形烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;其中,烧结的工艺参数如下:加热功率50kW,升温速率30℃/min,烧结温度1200℃,基体预热温度400℃,峰值温度保温时间360min。
5)对所述预置层进行电子束焊覆,即得石墨烯掺杂 Cu/Cu2O纳米光催化涂层,电子束焊覆的工艺参数如下:加速电压300kV,聚焦电流500 mA,电子束流100 mA,焊接速度50mm/s,扫描频率300 Hz,后热处理温度 500~650℃。
取石墨烯掺杂 Cu/Cu2O纳米光催化涂层的用量为 0.200-1 g分别置于200ml浓度为 10-50mg /L 的苯酚, 甲基橙水溶液中,置于光反应器中, 电磁搅拌10min后,开启反应器中心的光源为 250 W 日光色镝灯, 进行光催化实验。考察纳米光催化涂层对苯酚, 甲基橙染料的降解率。
实验结果显示:1、石墨烯掺杂 Cu/Cu2O复合浆料可以实现对苯酚在光照 1h 后降解率达到 95%。催化剂重复使用 4次后,苯酚的降解率仍在 90%以上。
2、石墨烯掺杂 Cu/Cu2O纳米光催化涂层可以实现对甲基橙染料分子在 20min内达到 98% 以上的降解效果。此外,该催化涂层在循环使用 5 次以上后,光催化性能依然能够保持降解率为 95% 以上。
本发明与现有技术比较还具有以下优点:
1. 本发明制备石墨烯掺杂 Cu/Cu2O复合浆料可以实现太阳能聚光装置日光辐照,提高太阳能去污效率、改进催化剂,使反应的响应光谱向可见光扩展,从而使含有机废水快速、彻底地降解。
2. 本发明制备的石墨烯掺杂 Cu/Cu2O光催化涂层,既可以有效增加对可见光的吸收能力,又可以增强光生电子和空穴的分离效率,提高载流子的迁移速率。

Claims (4)

1.一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,其特征在于:其包括以下步骤:
1)对工件进行预处理,清理掉工件表面的灰尘、油垢和锈蚀;
2)制备氧化石墨烯掺杂 Cu/Cu2O复合浆料;
2-1)取Cu2O粉末分散于醇水溶液中,在磁力搅拌条件下进行超声处理;
2-2)超声结束后,加入粘结剂溶液和Cu粉,继续搅拌均匀;
2-3)滴加氧化石墨烯粉末,将溶液继续磁力搅拌均匀,得到氧化石墨烯掺杂Cu/Cu2O复合浆料;
所述Cu2O粉末、Cu粉、氧化石墨烯粉末的质量比为75:20:5;
3)将上述浆料通过机械滚轮压制在预处理后的工件表面上,形成基层;
4)采用真空感应烧结法,将形成基层后的工件置于石墨一体化成型烧结模具中,待压坯密度不再变化后,保持压力,并开始烧结,在工件表面形成预置层;
所述烧结的工艺参数如下:加热功率 10~50kW,升温速率 10~30℃/min,烧结温度980~1200℃, 基体预热温度 200~400℃,峰值温度保温时间 20~360min;
5)对所述预置层进行电子束焊覆,即得石墨烯掺杂 Cu/Cu2O纳米光催化涂层。
2.根据权利要求1所述的一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,其特征在于:所述粘结剂溶液为质量百分比为3- 5%的聚乙烯醇水溶液或环氧聚酯粉末涂料。
3.根据权利要求1所述的一种石墨烯掺杂 Cu/Cu2O 纳米光催化涂层的制备方法,其特征在于:步骤5)所述电子束焊覆的工艺参数如下:加速电压25-300kV, 聚焦电流200-500mA,电子束流20-100 mA,焊接速度10-50 mm/s,扫描频率 50-300 Hz,后热处理温度 500~650℃。
4. 一种根据权利要求1-3任一项所述的制备方法得到的石墨烯掺杂 Cu/Cu2O 纳米光催化涂层。
CN201910882368.8A 2019-09-18 2019-09-18 一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法 Active CN110508281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910882368.8A CN110508281B (zh) 2019-09-18 2019-09-18 一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910882368.8A CN110508281B (zh) 2019-09-18 2019-09-18 一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110508281A CN110508281A (zh) 2019-11-29
CN110508281B true CN110508281B (zh) 2022-08-30

Family

ID=68632696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910882368.8A Active CN110508281B (zh) 2019-09-18 2019-09-18 一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110508281B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036234B (zh) * 2019-12-05 2023-05-02 福建工程学院 一种光催化剂复合涂层及其制备工艺
CN111117720B (zh) * 2019-12-30 2021-10-22 齐鲁工业大学 石墨烯负载球形铜/氧化亚铜/氧化铜复合材料及其制备方法与用途
CN111451491B (zh) * 2020-04-29 2022-04-19 西安稀有金属材料研究院有限公司 一种石墨烯增强铜基复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201140886A (en) * 2010-05-11 2011-11-16 Advanced Semiconductor Eng Package structure and package process of light emitting diode
CN102618868A (zh) * 2012-04-05 2012-08-01 昆明理工大学 以挤压法预置粉末进行激光熔覆得到复合涂层的方法
CN105382251A (zh) * 2015-11-07 2016-03-09 大连理工大学 一种固结预置碳纳米管共混金属纳米粉末的激光熔覆涂层方法
CN107020081A (zh) * 2017-04-18 2017-08-08 浙江大学 一种以混凝土为基体的可见光催化涂层及其制备方法
TWI641723B (zh) * 2017-08-11 2018-11-21 簡明德 Method for preparing a cladding layer having boron nitride on the surface of a food container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201140886A (en) * 2010-05-11 2011-11-16 Advanced Semiconductor Eng Package structure and package process of light emitting diode
CN102618868A (zh) * 2012-04-05 2012-08-01 昆明理工大学 以挤压法预置粉末进行激光熔覆得到复合涂层的方法
CN105382251A (zh) * 2015-11-07 2016-03-09 大连理工大学 一种固结预置碳纳米管共混金属纳米粉末的激光熔覆涂层方法
CN107020081A (zh) * 2017-04-18 2017-08-08 浙江大学 一种以混凝土为基体的可见光催化涂层及其制备方法
TWI641723B (zh) * 2017-08-11 2018-11-21 簡明德 Method for preparing a cladding layer having boron nitride on the surface of a food container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rapid Discoloration of Methyl Orange in Water by Conductive Cu/Cu2O/rGO Modified Polyester Fabric;Atousa Moazami etal.;《Journal of Polymers and the Environment》;20171117;第2502-2513页 *

Also Published As

Publication number Publication date
CN110508281A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
Wudil et al. Tuning of graphitic carbon nitride (g-C3N4) for photocatalysis: A critical review
CN110508281B (zh) 一种石墨烯掺杂Cu/Cu2O纳米光催化涂层及其制备方法
Fan et al. Coupling of Bi2O3 nanoparticles with g-C3N4 for enhanced photocatalytic degradation of methylene blue
He et al. Distinctive binary g-C3N4/MoS2 heterojunctions with highly efficient ultrasonic catalytic degradation for levofloxacin and methylene blue
Wu et al. Promising materials for photocatalysis‐self‐Fenton system: properties, modifications, and applications
CN103785434B (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
Lin et al. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C3N4 for enhanced visible light photocatalytic degradation of phenanthrene
Zheng et al. Recent advances of photocatalytic coupling technologies for wastewater treatment
CN103191766A (zh) CdS/g-C3N4复合可见光催化剂、制备方法及应用
Gao et al. In situ growth of 2D/3D Bi2MoO6/CeO2 heterostructures toward enhanced photodegradation and Cr (VI) reduction
CN102580742A (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
Jin et al. Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for Rhodamine B
CN110252326B (zh) 一种钨酸铜@氧化锌复合光催化剂及其制备方法与应用
Peng et al. Construction of a Z-scheme gC 3 N 4/NBGO/BiVO 4 heterostructure with visible-light driven photocatalytic degradation of tetracycline: efficiency, reaction pathway and mechanism
Li et al. Co–Fe quantum dots coupled with ultrathin g-C3N4 nanosheets as efficient and stable photo-Fenton catalysts
CN114105280A (zh) 一种基于非金属复合催化材料活化过二硫酸盐处理有机废水的方法
Liu et al. S-scheme heterojunction ZnO/g-C3N4 shielding polyester fiber composites for the degradation of MB
Margaret et al. Enhanced Photocatalytic Degradation of Phenol Using Urchin‐Like ZnO Microrod‐Reduced Graphene Oxide Composite under Visible‐Light Irradiation
Lv et al. Efficient photocatalytic degradation of ciprofloxacin by graphite felt-supported MnS/Polypyrrole composite: Dominant reactive species and reaction mechanisms
Shen et al. Boosted photo-self-Fenton degradation activity by Fe-doped carbon dots as dual-function active sites for in-situ H2O2 generation and activation
Chen et al. Construction and investigation of graphitic carbon nitride/expanded perlite composite photocatalyst with floating ability
Fu et al. Critical review on modified floating photocatalysts for emerging contaminants removal from landscape water: problems, methods and mechanism
Nallaselvam et al. High efficient COVID-19 waste co-pyrolysis char/TiO2 nanocomposite for photocatalytic reduction of Cr (VI) under visible light
Mohammadzadeh Kakhki Polymeric organic–inorganic C3N4/ZnO high-performance material for visible light photodegradation of organic pollutants
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant