CN110506434A - 用户终端以及无线通信方法 - Google Patents

用户终端以及无线通信方法 Download PDF

Info

Publication number
CN110506434A
CN110506434A CN201880020767.7A CN201880020767A CN110506434A CN 110506434 A CN110506434 A CN 110506434A CN 201880020767 A CN201880020767 A CN 201880020767A CN 110506434 A CN110506434 A CN 110506434A
Authority
CN
China
Prior art keywords
wave beam
signal
unit
information
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880020767.7A
Other languages
English (en)
Inventor
武田和晃
永田聪
那崇宁
李慧玲
蒋惠玲
柿岛佑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of CN110506434A publication Critical patent/CN110506434A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

即使在进行类型II反馈的情况下也适当地抑制通信吞吐量的降低。本发明的一方式涉及的用户终端的特征在于,具有:控制单元,决定表示固定的波束的集的波束模式,并决定未包含在该波束模式中的至少一个波束;以及发送单元,发送与所决定的所述波束模式和所述至少一个波束有关的反馈信息。

Description

用户终端以及无线通信方法
技术领域
本发明涉及下一代移动通信系统中的用户终端以及无线通信方法。
背景技术
在UMTS(通用移动通讯系统(Universal Mobile Telecommunications System))网络中,以进一步高速的数据速率、低延迟等为目的,长期演进(LTE:Long TermEvolution)已经被规范化(非专利文献1)。此外,以超越LTE(也称为LTE Rel.8或9)的更加宽带域化以及高速化为目的,LTE-A(也称为LTE Advanced、LTE Rel.10、11或12)被规范化,LTE的后续系统(例如也称为FRA(未来无线接入(Future Radio Access))、5G(第五代移动通信系统(5th generation mobile communication system))、NR(新无线(New Radio))、NX(新无线接入(New radio access))、FX(下一代无线接入(Future generation radioaccess))、LTE Rel.13、14或15之后等)也在探讨中。
在现有的LTE系统(例如,LTE Rel.8-13)中,使用1ms的子帧(也称为传输时间间隔(TTI:Transmission Time Interval)等)来进行下行链路(DL:Downlink)和/或上行链路(UL:Uplink)的通信。该子帧是被进行信道编码后的一个数据分组的发送时间单位,并且成为调度、链路自适应、重发控制(混合自动重发请求(HARQ:Hybrid Automatic RepeatreQuest))等的处理单位。
此外,在现有的LTE系统(例如,LTE Rel.8-13)中,用户终端(用户设备(UE:UserEquipment))使用上行控制信道(例如,PUCCH(物理上行链路控制信道(Physical UplinkControl Channel)))和/或上行数据信道(例如,PUSCH(物理上行链路共享信道(PhysicalUplink Shared Channel)))发送上行控制信息(上行链路控制信息(UCI:Uplink ControlInformation))。该上行控制信道的结构(格式)也称为PUCCH格式等。
UCI包含调度请求(SR:Scheduling Request)、对于DL数据(DL数据信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel)))的重发控制信息(也称为HARQ-ACK(混合自动重发请求-确认(Hybrid Automatic Repeat reQuest-Acknowledge))、ACK/NACK(否定ACK(Negative ACK))等)、信道状态信息(CSI:Channel StateInformation)中的至少一个。
现有技术文献
非专利文献
非专利文献1:3GPP TS 36.300V8.12.0“Evolved Universal Terrestrial RadioAccess(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN);Overall description;Stage2(Release 8)”、2010年4月
发明内容
发明要解决的课题
在将来的无线通信系统(例如,5G、NR)中,期待实现各式各样的无线通信服务以满足各不相同的要求条件(例如,超高速、大容量、超低延迟等)。
例如,在5G/NR中,正在探讨提供被称为eMBB(增强移动宽带(enhanced MobileBroad Band))、mMTC(大规模机器类通信(massive Machine Type Communication))、URLLC(超可靠低延迟通信(Ultra Reliable and Low Latency Communications))等的无线通信服务。
在NR中,以降低伴随载波频率的增大的覆盖范围确保的难度和降低电波传播损耗为主要目的,正在探讨对发送和接收双方使用波束成型(BF:Beam Forming)。
此外,在NR中,正在探讨被称为类型II反馈(Type II feedback)的、通知比现有的CSI反馈信息更详细的信息的反馈方法。然而,在UE进行类型II反馈的情况下,在基于现有的波束选择方法(现有的码本)时,会产生通信吞吐量的降低、接收质量的劣化等问题。
本发明是鉴于相关的问题而完成的,其目的之一在于提供即使在进行类型II反馈的情况下也能够适当地抑制通信吞吐量的降低的用户终端以及无线通信方法。
用于解决课题的手段
本发明的一方式涉及的用户终端的特征在于,具有:控制单元,决定表示固定的波束的集的波束模式,并决定未包含在该波束模式中的至少一个波束;以及发送单元,发送与所决定的所述波束模式和所述至少一个波束有关的反馈信息。
发明效果
根据本发明,即使在进行类型II反馈的情况下也能够适当地抑制通信吞吐量的降低。
附图说明
图1A-1C是表示二维天线端口的波束选择概率的一例的图。
图2A-2C是表示在本发明的一实施方式涉及的混合波束选择法中使用的波束模式的一例的图。
图3A-3C是表示混合波束选择法中的波束的确定的一例的图。
图4是表示基于混合波束选择法的类型II CSI报告的流程的一例的图。
图5是表示基于触发的类型II CSI报告的一例的图。
图6是表示类型II CSI报告的反馈所需要的比特数目的一例的图。
图7是表示本发明的一实施方式涉及的无线通信系统的概要结构的一例的图。
图8是表示本发明的一实施方式涉及的无线基站的整体结构的一例的图。
图9是表示本发明的一实施方式涉及的无线基站的功能结构的一例的图。
图10是表示本发明的一实施方式涉及的用户终端的整体结构的一例的图。
图11是表示本发明的一实施方式涉及的用户终端的功能结构的一例的图。
图12是表示本发明的一实施方式涉及的无线基站和用户终端的硬件结构的一例的图。
具体实施方式
在5G/NR中,以降低伴随载波频率的增大的覆盖范围确保的难度和降低电波传播损耗为主要目的,正在探讨对发送和接收双方使用波束成型(BF:Beam Forming)。BF是例如通过使用大量元件天线来控制(也称为预编码)从各元件发送/接收的信号的振幅和/或相位从而形成波束(天线指向性)的技术。另外,使用这样的大量元件天线的MIMO(多输入多输出(Multiple Input Multiple Output))也称为大规模MIMO(Massive MIMO)。
BF能够分类成数字BF和模拟BF。数字BF是在基带上(对数字信号)进行预编码信号处理的方法。在这种情况下,快速傅里叶逆变换(IFFT:快速傅里叶逆变换)/数字-模拟转换(数模转换器(DAC:Digital to Analog Converter))/RF(无线频率(Radio Frequency))的并行处理需要与天线端口(或RF链(RF chain))的个数相应的量。另一方面,能够在任意的定时形成与RF链数目对应的数目的波束。
模拟BF是在RF上使用移相器的方法。在这种情况下,由于仅使RF信号的相位旋转,因此能够容易且廉价实现结构,但却不能在相同的定时形成多个波束。
然而,也能够实现对数字BF和模拟BF进行组合后的混合BF结构。在将来的无线通信系统(例如,5G)中,正在探讨引入大规模MIMO,但若仅通过数字BF来形成庞大数目的波束,则电路结构变得昂贵。因此,设想在5G中利用混合BF结构。
另外,为了进行适当的预编码(例如,使用如接收侧的SINR(信干噪比(Signal toInterference plus Noise Ratio))提高那样的预编码权重),发送侧需要基于从发送侧到接收侧的传播路径信息来进行适当的相位和振幅调整。对于UE的发送波束形成而言,上行传播路径信道是重要的,对于基站的发送波束形成而言,下行传播路径信息是重要的。
传播路径信息例如是与信道状态信息(CSI:Channel State Information)、信道特性和/或信道矩阵有关的信息。另外,传播路径信息也可以包含UE和基站(例如也可以称为BS(Base Station)、eNB、gNB等)的发送接收器特性、用于波束形成的相位和/或振幅调整结果等。在此,发送接收器特性例如是指发送接收器的频率特性(例如,相位和/或振幅特性)。
另外,传播路径信息也可以是信道质量指示符(CQI:Channel QualityIndicator)、预编码矩阵指示符(PMI:Precoding Matrix Indicator)、预编码类型指示符(PTI:Precoding Type Indicator)、秩指示符(RI:Rank Indicator)等中的至少一个。另外,由基站决定的PMI也可以称为TPMI(发射PMI)。
在现有的LTE中,接收侧(例如,UE)基于参考信号(RS:Reference Signal)来估计(测量)CSI,并将CSI反馈到发送侧(例如,BS)。该参考信号可以是小区特定参考信号(CRS:Cell-specific Reference Signal)、信道状态信息参考信号(CSI-RS:Channel StateInformation-Reference Signal)等,也可以是另外定义的参考信号(例如,波束特定的(对各波束而言不同的)波束特定参考信号(BRS:Beam-specific Reference Signal))。
另外,也可以通过高层信令(例如,RRC(无线资源控制(Radio ResourceControl))信令、MAC(媒体访问控制(Medium Access Control))信令、广播信息(MIB(主信息块(Master Information Block))、SIB(系统信息块(System Information Block))等))、物理层信令(例如,下行控制信息(下行链路控制信息(DCI:Downlink ControlInformation)))或这些组合来预先对UE设定(通知)与该参考信号有关的信息(例如,在下行参考信号的发送中使用的资源的信息)。
然而,正在探讨在NR中支持2种类型的CSI报告。类型I反馈(Type I feedback)也被称为通常反馈,其相当于在现有的LTE中也利用的通常的空间分辨率的基于码本的PMI反馈。
类型II反馈(Type II feedback)也称为增强反馈(enhanced feedback),其相当于真实的(更详细的)反馈和/或更高的空间分辨率的基于码本的反馈。在类型II反馈中,例如也可以反馈真正的(例如,未量化的)信道状态等。设想类型II适合于使用许多波束的情况。另外,类型I和类型II都可以包含与波束相关的反馈信息。
若接收类型II CSI反馈,则BS需要判断该反馈是UE对哪一个波束进行测量后的结果。UE在CSI的计算中使用的码本可以与波束的数目、位置等进行关联。
正在探讨几种波束选择方法用于类型II反馈。一种是自由波束选择法(freelybeam selection)。在自由波束选择法中,由于对波束选择没有限制因而能够实现高性能,但波束的数目越增加,波束的通知所需要的开销越增加。
另一种是基于波束组的选择法(beam group based beam selection)。在基于波束组的选择法中,预先规定由几个波束的集构成的波束组,并且由于能够以波束组为单位进行控制,因此开销小。然而,由于波束的选择被限于预先规定的波束组,因此性能的增益被限制。
参照图1A-1C说明在组合中使用的(被合成的)可能性高的多个波束的特征。图1A-1C是表示二维天线端口的波束选择概率的一例的图。
图1A和1B示出了(N1,N2)=(2,8)的例子,图1C示出了(N1,N2)=(4,4)的例子。在此,N1和N2分别表示在规定信号(例如,参考信号)的发送中使用的、每个极化的规定方向的天线端口数目。在此,设N1对应于垂直方向(vertical)的天线端口数目,N2对应于水平方向(horizontal)的天线端口数目,但极化的方向不限于此。
发送某个波束的天线端口的坐标由(v,h)来表示,v能取1以上N1以下的整数,h能取1以上N2以下的整数。在本例中,为了简单起见,设想最强的波束(也可以称为主波束、引导波束(leading beam)等)位于(v,h)=(1,1),但引导波束的位置不限于此。
如图1A-1C所示的那样,被合成的波束(combined beam)位于引导波束的周围的概率高。例如,与(v,h)=(1,1)、(1,2)、(2,1)、(1,8)等对应的波束的选择概率高。
此外,若比较图1A和1B,则被合成的波束不是固定的。例如,(v,h)=(1,2)的波束和(v,h)=(2,1)的波束都能以相同程度的概率被选择。(v,h)=(1,3)的波束和(v,h)=(2,2)的波束都能以相同程度的概率而被选择。进一步地,若参照图1C,则能够理解为被合成的波束不是固定的。
因此,若采用基于波束组选择法,则由于不能利用在波束组中未规定的波束的组合,因此可能无法进行最佳的波束选择和/或无法进行最佳的波束的组合的CSI报告。此外,若采用自由波束选择法,则存在根据波束数目的增加而CSI报告所需要的比特数目增加的问题。因此,若在UE进行类型II反馈的情况下进行基于现有的波束选择方法(现有的码本)的CSI报告,则会产生通信吞吐量的降低、接收质量的恶化等问题。
因此,本发明人们想到了用于抑制反馈开销并且灵活地进行类型II反馈的波束选择方法。
以下,参照附图详细说明本发明涉及的实施方式。各实施方式涉及的无线通信方法可以分别单独应用,也可以组合起来应用。
(无线通信方法)
本发明的一实施方式涉及的波束选择方法是能够实现自由波束选择法和基于波束组的选择法的折衷的混合波束选择法。在该混合波束选择法中,从由第1个数(例如,L1个)的波束构成的波束模式(波束组)和第2个数(例如,L2个)的自由选择波束中,选择规定的个数(例如,L个)的波束。在此,L=L1+L2。另外,L2可以是1以上,也可以是L2=0。
波束模式是表示预先在规范中规定的或设定的固定的波束的集的模式。图2A-2C是表示在本发明的一实施方式涉及的混合波束选择法中使用的波束模式的一例的图。图2A-2C示出了分别包含2个、3个和4个波束的波束模式的一例。
图2A-2C分别示出了4个波束模式的候选。优选波束模式被构成为包含最强的波束(也可以被称为主波束、引导波束等),并且进一步包含与引导波束相邻的波束作为激活波束(也可以被称为active beam、测量对象波束等)。例如,在图2A-2C的波束模式中,在引导波束的上下左右方向上相邻的波束为激活波束。
优选与规定的波束数目对应的波束模式的候选能够通过规定的索引(波束模式索引)来确定。例如,由于图2A-2C的波束模式具有4个候选,因此可以通过2比特的波束模式索引来确定。例如,各图的最左侧起可以对应于“00”、“01”、“10”、“11”的波束模式索引。波束的集的位置与索引的对应关系不限于此。
另外,优选波束模式的候选的数目为2的乘方(例如,2、4、8)以下,特别优选为4以下。在这种情况下,能够减少波束模式索引的比特数目,并且能够抑制后述的反馈信息量的增加。
另外,波束模式不限于此。引导波束和激活波束也可以不一定相邻(可以是不连续的),并且激活波束也可以以引导波束为基准而仅位于横向、仅位于纵向、或者仅位于倾斜方向。此外,通过一个波束模式确定的(一个波束模式中包含的)波束的数目也可以是2、3和4以外的数。波束模式的候选的数目也可以根据通过波束模式所确定的波束的数目而不同。
也可以使用高层信令(例如,RRC信令、广播信息等)、物理层信令(例如,DCI或上行控制信息(上行链路控制信息(UCI:Uplink Control Information)))、或这些的组合来将波束模式的信息(例如,由规定的个数的波束构成的波束模式包含哪个位置的波束的对应关系的信息)通知给UE和/或BS。
若基站接收类型II CSI反馈,则基站需要判断该反馈是UE对哪一个波束进行测量后的结果。因此,优选UE将用于确定测量后的波束的信息包含在反馈信息中而发送。
参照图3A-3C说明报告对象的波束的确定。UE基于L1来将规定的波束模式选为报告对象。进一步地,也将该规定的波束模式中包含的波束以外的L2个波束选为报告对象。图3A-3C是表示混合波束选择法中的波束的确定的一例的图。在此,设想(N1,N2)=(2,8)且如图1A那样的波束选择概率的情况,但不限于此。在本例中,设想UE将(v,h)=(1,1)判断为引导波束。
图3A是表示在从网络对UE设定了L1=2和L2=0的情况下的报告对象的波束的一例的图。在本例中,UE从L1=2的波束模式(图2A)中将(v,h)=(1,2)是激活波束的波束模式选为报告对象。
图3B是表示从网络对UE设定了L1=2和L2=1的情况下的报告对象的波束的一例的图。在本例中,UE从L1=2的波束模式(图2A)中将(v,h)=(1,2)是激活波束的波束模式选为报告对象,并且进一步将(v,h)=(2,2)的波束选为报告对象。在L1=3的波束模式(图2B)中不能表现图3B的3个波束,另一方面,能够通过增大L2的值来增大能够支持的波束的组合。
图3C是表示从网络对UE设定了L1=4和L2=2的情况下的报告对象的波束的一例的图。在本例中,UE从L1=4的波束模式(图2C)中将(v,h)=(1,2)、(2,1)、(8,1)是激活波束的波束模式选为报告对象,并且进一步将(v,h)=(2,2)、(8,2)的波束选为报告对象。在本例中也示出了通过将与L1个波束对应的固定的波束模式和L2个自由选择波束进行组合从而能够选择的波束的自由度大的情况。
根据图3A-3C可知,即使L=L1+L2为恒定,若L2变大则能够表示的波束的组合也增加。另外,在图3A-3C中确定的波束为一例,不限定于这些。
从降低与码本选择相关的UE的负荷的观点来看,优选预先在UE中设定L1和L2,并且UE使用这些L1和L2来决定报告对象的波束。然而,UE也可以动态地判断(变更)并使用L1和/或L2。
[类型II CSI报告的流程]
图4是表示基于混合波束选择法的类型II CSI报告的流程的一例的图。另外,该流程的各步骤的顺序不限于此。此外,也可以省略部分步骤(例如,已预先规定了对应的参数的情况)。
BS对UE设定类型II CSI报告的有效/无效(步骤S101)。例如,若表示类型II CSI报告是有效的参数被设定,则UE可以判断为类型II CSI报告是有效的。
BS对UE设定CQI报告设定(例如,也可以称为CQI-ReportConfig)(步骤S102)。CQI报告设定例如包含反馈定时(反馈周期、触发设定等)的信息、在反馈信息(PMI等)的计算中使用的参数等。另外,CQI报告设定也可以称为CSI报告设定、反馈设定等。
BS对UE设定天线端口数目和过采样系数(空间的过采样率)(步骤S103)。在此,虽然将规定的方向(例如,垂直方向)和另一规定的方向(例如,水平方向)上的天线端口数分别设为N1、N2,但不限于这些方向。此外,虽然将规定的方向(例如,垂直方向)和另一规定的方向(例如,水平方向)上的过采样系数分别设为O1、O2,但不限与这些方向。
另外,基站具有的N1*N2个天线端口可以分别被连接到不同的发送单元(收发器单元(TxRU:Transceiver Unit))。也就是,可以从一个发送单元向一个天线端口供电。此外,O1*O2也可以相当于从一个发送单元发送信号的天线元件数目。
BS对UE设定与报告的波束模式中包含的波束数目(端口数目)相当的上述L1和与报告的自由选择波束的波束数目(端口数目)相当的上述L2(步骤S104)。另外,对UE设定的参数不限于L1和L2的组合,只要UE能够确定L1和L2即可。例如,BS可以对UE设定与报告的波束总数(端口总数)相当的上述L、L1和L2中的至少两个。
BS对UE设定码本子集限制(例如也可以称为codebookSubsetRestriction)(步骤S105)。码本子集限制用于将CSI(例如,PMI)的报告限制为规定的码本子集。通过码本子集限制而限定反馈比特数目等。
UE基于设定的参数来实施CSI报告(步骤S106)。UE可以发送现有的CSI(例如,CQI、PMI、RI、PTI)等作为类型II CSI报告,也可以发送与现有的CSI不同的信息(例如,规定的质量信息)作为类型II CSI报告。
另外,步骤S101-S105的设定可以通过使用高层信令(例如,RRC信令、广播信息等)、物理层信令(例如,DCI)、或这些的组合而设定(通知、指示)给UE。
另外,类型II CSI报告可以基于规定的触发来实施,也可以周期性地实施。图5是表示基于触发的类型II CSI报告的一例的图。在图5中示出了以下例子:在规定的定时触发类型II报告,在从该触发起规定的期间后UE实施测量,并且在从该测量起进一步规定的期间后(可以与从触发到信道测量的期间相同,也可以不同)进行CSI报告。该触发例如可以通过物理层信令(DCI)来通知。
[反馈的信息量]
作为应反馈的信息,可以举出以下的(1)-(5):(1)表示引导波束(的位置)的信息(例如,也可以称为引导波束索引)、(2)表示选择的波束模式的信息(例如,也可以称为波束模式索引)、(3)表示自由选择的波束的信息(例如,也可以称为自由波束索引(free beamindex))、(4)引导波束以外的波束的振幅和/或相位的信息、(5)极化间的同相(co-phasebetween polarizations)的信息。另外,(1)-(5)的信息也可以改读成用于确定该信息的信息。
这些信息的全部或一部分可以与CSI报告在相同的定时(例如,相同的子帧、时隙、TTI等)被发送,也可以在不同的定时被发送。在不同的定时被发送的情况下,UE可以以基于最后报告的上述(1)-(5)的信息的波束为前提来计算出CSI(例如,PMI、CQI等)。
另外,在仅基于自由波束选择法的类型II CSI报告的情况下,需要上述的(1)、(3)、(4)和(5)的反馈。此外,在仅基于波束组的选择法的类型II CSI报告的情况下,需要上述的(1)、(2)、(4)和(5)的反馈。
以下,说明上述(1)-(5)的信息量。在此,作为类型II用的码本W,示出了设想使用W=W1*W2的二级码本的情况,但不限于此。在这种情况下,例如,W1通过以下的公式1求得。
(公式1)
在此,bk1k2与来自被进行了过采样的网格的二维DFT波束对应,并且与波束的相位对应。
此外,Pi是相对于波束i的波束功率缩放系数(例如,Pi是0以上1以下的实数)。
另外,在天线端口是交叉极化型的情况下,两个极化的波束选择(W1)可以相同,W2可以用于表示两个极化间的同相。
接着,若参照公式1,则关于上述(1),引导波束索引为k1 (0)*k2 (0),k1 (0)是0以上N1*O1-1以下的整数,k2 (0)是0以上N2*O2-1以下的整数。也就是,为了确定引导波束,需要能够表现N1*N2*O1*O2的比特数目。
关于上述(2),波束模式索引只要表示与波束数目L1对应的波束模式的候选即可。例如,在与图1A-1C所示的各波束数目对应的波束模式的候选存在4个的情况下,能够用2比特来表现波束模式索引。
关于上述(3),自由波束索引的比特数目例如可以基于N1、N2、L1和L2来求得。该比特数目例如可以通过下述公式2来求得。
公式(2)
关于上述(4),引导波束以外的波束的振幅和/或相位的信息取决于波束数目L(=L1+L2)和量化分辨率(调制方案)。例如,在通过QPSK(正交相移键控(Quadrature PhaseShift Keying))调制在波束中发送的信号的情况下,相位的信息由2*(L-1)比特表示,在通过8-PSK调制在波束中发送的信号的情况下,相位的信息由3*(L-1)比特表示。
关于上述(5),极化间的同相的信息取决于波束数目L(=L1+L2)和量化分辨率(调制方案)。例如,在通过QPSK调制在波束中发送的信号的情况下,极化间的同相的信息由2*L比特表示,在通过8-PSK调制在波束中发送的信号的情况下,极化间的同相的信息由3*L比特表示。
图6是表示类型II CSI报告的反馈所需要的比特数目的一例的图。在本例中,设(N1、N2)=(2、8)、(O1、O2)=(4、8)。若考虑到交叉极化,则天线端口数目为2*8*2=32个。
作为波束选择方法,评价了混合波束选择法(Hybrid)和作为以往手法的自由波束选择法(自由选择)。可以说自由选择相当于在混合中被固定为L1=1的方法。作为混合的例子,图6示出了L2为1以上的例子。
由于N1*N2*O1*O2=512=29,因此在各方法中,对于引导波束索引而言都需要9比特。若设4个候选,则在L1为2以上的情况下波束模式索引需要2比特,在L1小于2的情况下波束模式索引需要0比特。自由波束索引的比特数目是基于上述公式2而计算出的。可知,将这些进行合计后的W1用的总有效载荷比特数目具有若L增加则增加,另一方面,若L1增加则减少的倾向。
此外,虽然作为W2用的有效载荷的例子而示出了调制信号为8-PSK的情况,但可知若L增加则增加。
如以上说明的那样,根据本发明的一实施方式,即使在进行类型II反馈的情况下也能够适当地实现反馈开销和性能的折衷。
另外,UE和/或BS所利用的码本可以包含与规定的波束模式的波束和/或一个以上的自由选择波束对应的码字(code word)而被生成。例如,也可以基于与选择(决定)的L(=L1+L2)个波束对应的全部天线端口的坐标(v、h)的集合来生成与该集合对应的码本。
<变形例>
在本说明书中,虽然设通过下述(1)-(8)中的至少一个来区分波束(判断多个波束的差异),但不限于此:(1)资源(例如,时间和/或频率资源)、(2)天线端口、(3)预编码(例如,预编码的有无、预编码权重)、(4)发送功率、(5)相位旋转、(6)波束宽度、(7)波束的角度(例如,倾斜角)、(8)层数。
此外,在本说明书中使用的“波束”这样的术语可以与上述(1)-(8)中的至少一个互换使用,例如“波束”也可以改读成“资源”、“天线端口”等。
(无线通信系统)
以下,说明本发明的一实施方式涉及的无线通信系统的结构。在该无线通信系统中,使用本发明的上述各实施方式涉及的无线通信方法的任意一个或者这些的组合来进行通信。
图7是表示本发明的一实施方式涉及的无线通信系统的概要结构的一例的图。在无线通信系统1中,能够应用将以LTE系统的系统带宽(例如,20MHz)为1个单位的多个基本频率块(分量载波)作为一体的载波聚合(CA)以及/或者双重连接(DC)。
另外,无线通信系统1也可以称为LTE(长期演进(Long Term Evolution))、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER3G、IMT-Advanced、4G(第四代移动通信系统(4th generation mobile communication system))、5G(第五代移动通信系统(5thgeneration mobile communication system))、FRA(未来无线接入(Future RadioAccess))、New-RAT(无线接入技术(Radio Access Technology))等,也可以称为实现这些的系统。
无线通信系统1具有无线基站11和无线基站12(12a-12c),其中无线基站11形成覆盖范围比较宽的宏小区C1,无线基站12配置在宏小区C1内并形成比宏小区C1更窄的小型小区C2。此外,在宏小区C1以及各小型小区C2中配置有用户终端20。各小区和用户终端20的配置、数量等不限于图示。
用户终端20能够与无线基站11以及无线基站12双方进行连接。设想用户终端20通过CA或者DC同时使用宏小区C1以及小型小区C2。此外,用户终端20可以使用多个小区(CC)(例如,5个以下的CC、6个以上的CC)来应用CA或者DC。
用户终端20与无线基站11之间能够在相对低的频带(例如,2GHz)中使用带宽窄的载波(也被称为现有载波、传统载波(legacy carrier)等)来进行通信。另一方面,用户终端20与无线基站12之间可以在相对高的频带(例如,3.5GHz、5GHz等)中使用带宽宽的载波,也可以使用和与无线基站11之间相同的载波。另外,各无线基站所利用的频带的结构不限于此。
无线基站11与无线基站12之间(或者2个无线基站12之间)能够设为建立有线连接(例如,遵照了CPRI(通用公共无线接口(Common Public Radio Interface))的光纤、X2接口等)或者无线连接的结构。
无线基站11以及各无线基站12分别与上位站装置30连接,并经由上位站装置30与核心网络40连接。另外,上位站装置30中例如包括接入网关装置、无线网络控制器(RNC)、移动性管理实体(MME)等,但不限定于此。此外,各无线基站12可以经由无线基站11与上位站装置30连接。
另外,无线基站11是具有相对较宽的覆盖范围的无线基站,也可以称作宏基站、汇聚节点、eNB(eNodeB)、发送接收点等。此外,无线基站12是具有局部覆盖范围的无线基站,也可以称作小型基站、微型基站、微微基站、毫微微基站、HeNB(Home eNodeB)、RRH(远程无线头(Remote Radio Head))、发送接收点等。以下,在不区分无线基站11以及12的情况下,统称为无线基站10。
各用户终端20是支持LTE、LTE-A等各种通信方式的终端,不仅包括移动通信终端(移动台),也可以包括固定通信终端(固定站)。
在无线通信系统1中,作为无线接入方式,下行链路中应用正交频分多址接入(OFDMA:Orthogonal Frequency Division Multiple Access),上行链路中应用单载波-频分多址接入(SC-FDMA:Single Carrier Frequency Division Multiple Access)。
OFDMA是将频带分割为多个窄的频带(子载波),将数据映射到各子载波来进行通信的多载波传输方式。SD-FDMA是对各终端将系统带宽分割成由1个或者连续的资源块构成的带域,且多个终端通过使用互不相同的带域从而降低终端间的干扰的单载波传输方式。另外,上行以及下行的无线接入方式不限于它们的组合,也可以使用其它的无线接入方式。
在无线通信系统1中,作为下行链路的信道,使用在各用户终端20中被共享的下行共享信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel))、广播信道(物理广播信道(PBCH:Physical Broadcast Channel))、下行L1/L2控制信道等。通过PDSCH传输用户数据、高层控制信息、SIB(系统信息块(System Information Block))等。此外,通过PBCH传输MIB(主信息块(Master Information Block))。
下行L1/L2控制信道包括PDCCH(物理下行链路控制信道(Physical DownlinkControl Channel))、EPDCCH(增强物理下行链路控制信道(Enhanced Physical DownlinkControl Channel))、PCFICH(物理控制格式指示信道(Physical Control FormatIndicator Channel))、PHICH(物理混合ARQ指示信道(Physical Hybrid-ARQ IndicatorChannel))等。通过PDCCH传输包含PDSCH以及PUSCH的调度信息的下行控制信息(下行链路控制信息(DCI:Downlink Control Information))等。通过PCFICH传输PDCCH中使用的OFDM码元数目。通过PHICH传输对于PUSCH的HARQ(混合自动重发请求(Hybrid AutomaticRepeat reQuest))的送达确认信息(例如,也称为重发控制信息、HARQ-ACK、ACK/NACK等)。EPDCCH被与PDSCH(下行共享数据信道)频分复用,与PDCCH同样被用于DCI等的传输。
在无线通信系统1中,作为上行链路的信道,使用在各用户终端20中共享的上行共享信道(物理上行链路共享信道(PUSCH:Physical Uplink Shared Channel))、上行控制信道(物理上行链路控制信道(PUCCH:Physical Uplink Control Channel))、随机接入信道(物理随机接入信道(PRACH:Physical Random Access Channel))等。通过PUSCH传输用户数据、高层控制信息等。此外,通过PUCCH传输下行链路的无线质量信息(信道质量指示符(CQI:Channel Quality Indicator))、送达确认信息等。通过PRACH传输用于建立与小区的连接的随机接入前导码。
在无线通信系统1中,作为下行参考信号,传输小区特定参考信号(CRS:Cell-specific Reference Signal)、信道状态信息参考信号(CSI-RS:Channel StateInformation-Reference Signal)、解调用参考信号(DMRS:DeModulation ReferenceSignal)、定位参考信号(PRS:Positioning Reference Signal)等。此外,在无线通信系统1中,作为上行参考信号,传输测量用参考信号(探测参考信号(SRS:Sounding ReferenceSignal))、解调用参考信号(DMRS)等。另外,DMRS也可以被称为用户终端特定参考信号(UE-specific Reference Signal)。此外,被传输的参考信号不限于这些。
(无线基站)
图8是表示本发明的一实施方式涉及的无线基站的整体结构的一例的图。无线基站10具有多个发送接收天线101、放大器单元102、发送接收单元103、基带信号处理单元104、呼叫处理单元105、传输路径接口106。另外,发送接收天线101、放大器单元102、发送接收单元103被构成为分别包括一个以上即可。
就通过下行链路从无线基站10发送到用户终端20的用户数据而言,其从上位站装置30经由传输路径接口106被输入到基带信号处理单元104。
在基带信号处理单元104中,关于用户数据,进行PDCP(分组数据汇聚协议(PacketData Convergence Protocol))层的处理、用户数据的分割/耦合、RLC(无线链路控制(Radio Link Control))重发控制等RLC层的发送处理、MAC(媒体访问控制(Medium AccessControl))重发控制(例如HARQ的发送处理)、调度、传输格式选择、信道编码、快速傅里叶逆变换(IFFT:Inverse Fast Fourier Transform)处理、预编码处理等发送处理而转发到发送接收单元103。此外,关于下行控制信号,也进行信道编码、快速傅里叶逆变换等发送处理而转发到发送接收单元103。
发送接收单元103将从基带信号处理单元104按各天线被预编码而输出的基带信号变换成无线频带并发送。在发送接收单元103被进行了频率变换的无线频率信号通过放大器单元102被放大,并从发送接收天线101被发送。发送接收单元103能够由基于本发明涉及的技术领域中的共同认识来说明的发射器/接收器、发送接收电路或者发送接收装置来构成。另外,发送接收单元103可以被构成为一体的发送接收单元,也可以由发送单元以及接收单元来构成。
另一方面,关于上行信号,在发送接收天线101中接收到的无线频率信号在放大器单元102中被放大。发送接收单元103接收在放大器单元102中被放大的上行信号。发送接收单元103将接收信号频率变换成基带信号,并输出到基带信号处理单元104。
在基带信号处理单元104中,对于被输入的上行信号所包含的用户数据进行快速傅里叶变换(FFT:Fast Fourier Transform)处理、离散傅里叶逆变换(IDFT:InverseDiscrete Fourier Transform)处理、纠错解码、MAC重发控制的接收处理、RLC层以及PDCP层的接收处理,并经由传输路径接口106转发到上位站装置30。呼叫处理单元105进行通信信道的呼叫处理(设定、释放等)、无线基站10的状态管理、无线资源的管理等。
传输路径接口106经由规定的接口与上位站装置30对信号进行发送接收。此外,传输路径接口106可以经由基站间接口(例如,遵照了CPRI(通用公共无线接口(CommonPublic Radio Interface))的光纤、X2接口)与其它的无线基站10对信号进行发送接收(回程信令)。
另外,发送接收单元103也可以还具有用于实施模拟波束成型的模拟波束成型单元。模拟波束成型单元可以由基于本发明涉及的技术领域中的共同认识来说明的模拟波束成型电路(例如,移相器、移相电路)或模拟波束成型装置(例如,移相设备)构成。此外,发送接收天线101例如也可以由阵列天线构成。
发送接收单元103可以接收与决定的波束模式和自由选择波束有关的反馈信息。发送接收单元103也可以发送L、L1、L2、N1、N2、O1、O2、波束模式的信息等。
图9是表示本发明的一实施方式涉及的无线基站的功能结构的一例的图。另外,在本例中,主要表示了本实施方式中的特征部分的功能块,设无线基站10还具有无线通信所必要的其它的功能块。
基带信号处理单元104至少具有控制单元(调度器)301、发送信号生成单元302、映射单元303、接收信号处理单元304和测量单元305。另外,这些结构只要包含在无线基站10中即可,也可以一部分或者全部的结构不包含在基带信号处理单元104中。
控制单元(调度器)301实施无线基站10整体的控制。控制单元301能够由基于本发明涉及的技术领域中的共同认识来说明的控制器、控制电路或者控制装置来构成。
控制单元301例如控制由发送信号生成单元302进行的信号的生成、由映射单元303进行的信号的分配等。此外,控制单元301控制由接收信号处理单元304进行的信号的接收处理、由测量单元305进行的信号的测量等。
控制单元301控制系统信息、下行数据信号(例如,在PDSCH中发送的信号)、下行控制信号(例如,在PDCCH和/或EPDCCH中发送的信号。送达确认信息等)的调度(例如,资源分配)。此外,控制单元301基于判定了是否需要对于上行数据信号的重发控制的结果等,控制下行控制信号、下行数据信号等的生成。此外,控制单元301进行同步信号(例如,PSS(主同步信号(Primary Synchronization Signal))/SSS(辅同步信号(SecondarySynchronization Signal)))、下行参考信号(例如,CRS、CSI-RS、DMRS)等的调度。
此外,控制单元301控制上行数据信号(例如,在PUSCH中发送的信号)、上行控制信号(例如,在PUCCH和/或PUSCH中发送的信号。送达确认信息等)、随机接入前导码(例如,在PRACH中发送的信号)、上行参考信号等的调度。
控制单元301进行控制,以便使用由基带信号处理单元104进行的数字BF(例如,预编码)和/或由发送接收单元103进行的模拟BF(例如,相位旋转)来形成发送波束和/或接收波束。控制单元301也可以进行控制,以便基于下行传播路径信息、上行传播路径信息等来形成波束。这些传播路径信息也可以从接收信号处理单元304和/或测量单元305取得。
控制单元301可以决定表示固定的波束的集的波束模式,并且可以决定不包含在该波束模式中的至少一个波束(自由选择波束)。例如,控制单元301可以决定(确定)由第1个数(例如,L1个)波束构成的波束模式和第2个数(例如,L2个)的自由选择波束。此外,控制单元301可以生成并使用与所决定的波束模式中包含的波束和自由选择波束对应的码本。
控制单元301可以基于通过波束模式而确定的波束的数目(L1)和/或自由选择波束的数目(L2)来决定上述波束模式和/或自由选择波束。
此外,控制单元301也可以进行接收与所决定的波束模式和/或自由选择波束有关的反馈信息的控制。该反馈信息可以包含表示引导波束的索引,也可以构成为包含表示所决定的波束模式的索引和表示所决定的自由选择波束的索引中的至少两个。
控制单元301可以基于规定的方向的天线端口数目(例如,N1)、另一规定的方向的天线端口数目(例如,N2)、上述L1和L2来决定表示自由选择波束的索引的比特数目。
另外,使用发送波束的发送也可以改说成应用了规定的预编码的信号的发送。
发送信号生成单元302基于来自控制单元301的指令,生成下行信号(下行控制信号、下行数据信号、下行参考信号等),并输出到映射单元303。发送信号生成单元302能够由基于本发明涉及的技术领域中的共同认识来说明的信号生成器、信号生成电路或者信号生成装置而构成。
发送信号生成单元302例如基于来自控制单元301的指令,生成用于通知下行信号的分配信息的DL分配以及用于通知上行信号的分配信息的UL许可。此外,依照基于来自各用户终端20的信道状态信息(CSI:Channel State Information)等而决定的编码率、调制方案等,对下行数据信号进行编码处理、调制处理。
映射单元303基于来自控制单元301的指令,将在发送信号生成单元302中生成的下行信号映射到规定的无线资源并输出到发送接收单元103。映射单元303能够由基于本发明涉及的技术领域中的共同认识来说明的映射器、映射电路或者映射装置而构成。
接收信号处理单元304对从发送接收单元103输入的接收信号进行接收处理(例如,解映射、解调、解码等)。在此,接收信号例如是从用户终端20发送的上行信号(上行控制信号、上行数据信号、上行参考信号等)。接收信号处理单元304能够由基于本发明涉及的技术领域中的共同认识来说明的信号处理器、信号处理电路或者信号处理装置而构成。
接收信号处理单元304将通过接收处理而被解码的信息输出到控制单元301。例如,在接收到了包含HARQ-ACK的PUCCH的情况下,将HARQ-ACK输出到控制单元301。此外,接收信号处理单元304将接收信号和/或接收处理后的信号输出到测量单元305。
测量单元305实施与接收到的信号有关的测量。测量单元305能够由基于本发明涉及的技术领域中的共同认识来说明的测量器、测量电路或者测量装置而构成。
例如,测量单元305可以基于接收到的信号来进行RRM(无线资源管理(RadioResource Management))测量、CSI(信道状态信息(Channel State Information))测量等。测量单元305也可以对接收功率(例如,RSRP(参考信号接收功率(Reference SignalReceived Power)))、接收质量(例如,RSRQ(参考信号接收质量(Reference SignalReceived Quality))、SINR(信干噪比(Signal to Interference plus Noise Ratio)))、信号强度(例如,RSSI(接收信号强度指示符(Received Signal Strength Indicator)))、传播路径信息(例如,CSI)等进行测量。测量结果可以被输出到控制单元301。
(用户终端)
图10是表示本发明的一实施方式涉及的用户终端的整体结构的一例的图。用户终端20具有多个发送接收天线201、放大器单元202、发送接收单元203、基带信号处理单元204、应用单元205。另外,发送接收天线201、放大器单元202、发送接收单元203构成为分别包括一个以上即可。
在发送接收天线201中接收到的无线频率信号在放大器单元202被放大。发送接收单元203接收在放大器单元202中被放大后的下行信号。发送接收单元203将接收信号频率变换成基带信号,并输出到基带信号处理单元204。发送接收单元203能够由基于本发明涉及的技术领域中的共同认识来说明的发射器/接收器、发送接收电路或者发送接收装置而构成。另外,发送接收单元203可以被构成为一体的发送接收单元,也可以由发送单元以及接收单元构成。
基带信号处理单元204对被输入的基带信号进行FFT处理、纠错解码、重发控制的接收处理等。下行链路的用户数据被转发到应用单元205。应用单元205进行与比物理层以及MAC层更高层有关的处理等。此外,下行链路的数据中的广播信息也可以被转发到应用单元205。
另一方面,就上行链路的用户数据而言,从应用单元205被输入到基带信号处理单元204。在基带信号处理单元204中进行重发控制的发送处理(例如,HARQ的发送处理)、信道编码、预编码、离散傅里叶变换(DFT:Discrete Fourier Transform)处理、IFFT处理等,并被转发到发送接收单元203。发送接收单元203将从基带信号处理单元204输出的基带信号变换成无线频带并发送。在发送接收单元203中被频率变换的无线频率信号通过放大器单元202被放大,并从发送接收天线201发送。
另外,发送接收单元203可以还具有用于实施模拟波束成型的模拟波束成型单元。模拟波束成型单元能够由基于本发明涉及的技术领域中的共同认识来说明的模拟波束成型电路(例如,移相器、移相电路)或模拟波束成型装置(例如,移相设备)构成。此外,发送接收天线201例如也可以由阵列天线构成。
发送接收单元203可以发送与所决定的波束模式和自由选择波束有关的反馈信息。发送接收单元203可以接收L、L1、L2、N1、N2、O1、O2、波束模式的信息等。
图11是表示本发明的一实施方式涉及的用户终端的功能结构的一例的图。另外,在本例中,主要表示了本实施方式中的特征部分的功能块,设用户终端20还具有无线通信所需要的其它的功能块。
用户终端20所具有的基带信号处理单元204至少具有控制单元401、发送信号生成单元402、映射单元403、接收信号处理单元404和测量单元405。另外,这些结构只要包含在用户终端20中即可,也可以其一部分或者全部的结构不包含在基带信号处理单元204中。
控制单元401实施用户终端20整体的控制。控制单元401能够由基于本发明涉及的技术领域中的共同认识来说明的控制器、控制电路或者控制装置构成。
控制单元401例如控制由发送信号生成单元402进行的信号的生成、由映射单元403进行的信号的分配等。此外,控制单元401控制由接收信号处理单元404进行的信号的接收处理、由测量单元405进行的信号的测量等。
控制单元401从接收信号处理单元404取得从无线基站10发送的下行控制信号和下行数据信号。控制单元401基于判定了是否需要对于下行控制信号和/或下行数据信号的重发控制的结果等,控制上行控制信号和/或上行数据信号的生成。
控制单元401可以进行控制,以便使用由基带信号处理单元204进行的数字BF(例如,预编码)和/或由发送接收单元203进行的模拟BF(例如,相位旋转)来形成发送波束和/或接收波束。控制单元401也可以进行控制以便基于下行传播路径信息、上行传播路径信息等来形成波束。这些传播路径信息可以从接收信号处理单元404和/或测量单元405取得。
控制单元401可以决定表示固定的波束的集的波束模式,并且可以决定不包含在波束模式中的至少一个波束(自由选择波束)。例如,控制单元401可以决定(确定)由第1个数(例如,L1个)的波束构成的波束模式、和第2个数(例如,L2个)的自由选择波束。此外,控制单元401可以生成并使用与所决定的波束模式中包含的波束和自由选择波束对应的码本。
控制单元401可以基于通过波束模式而确定的波束的数目(L1)和/或自由选择波束的数目(L2)来决定上述波束模式和/或自由选择波束。
此外,控制单元401可以进行发送与所决定的波束模式和/或自由选择波束有关的反馈信息的控制。该反馈信息可以包含表示引导波束的索引,也可以被构成为包含表示所决定的波束模式的索引和表示所决定的自由选择波束的索引中的至少两个。
控制单元401基于规定的方向的天线端口数目(例如,N1)、另一规定的方向的天线端口数目(例如,N2)、上述L1和L2来决定表示自由选择波束的索引的比特数目。
此外,在从接收信号处理单元404取得了从无线基站10通知的各种信息的情况下,控制单元401可以基于该信息来更新用于控制的参数。
发送信号生成单元402基于来自控制单元401的指令,生成上行信号(上行控制信号、上行数据信号、上行参考信号等),从而输出到映射单元403。发送信号生成单元402能够由基于本发明涉及的技术领域中的共同认识来说明的信号生成器、信号生成电路或者信号生成装置构成。
发送信号生成单元402例如基于来自控制单元401的指令而生成与送达确认信息、信道状态信息(CSI)等有关的上行控制信号。此外,发送信号生成单元402基于来自控制单元401的指令而生成上行数据信号。例如,在从无线基站10通知的下行控制信号包含UL许可的情况下,发送信号生成单元402被控制单元401指示进行上行数据信号的生成。
映射单元403基于来自控制单元401的指令,将发送信号生成单元402中生成的上行信号映射到无线资源,从而输出到发送接收单元203。映射单元403能够由基于本发明涉及的技术领域中的共同认识来说明的映射器、映射电路或者映射装置构成。
接收信号处理单元404对从发送接收单元203输入的接收信号进行接收处理(例如,解映射、解调、解码等)。在此,接收信号例如是从无线基站10发送的下行信号(下行控制信号、下行数据信号、下行参考信号等)。接收信号处理单元404能够由基于本发明涉及的技术领域中的共同认识来说明的信号处理器、信号处理电路或者信号处理装置构成。此外,接收信号处理单元404能够构成本发明涉及的接收单元。
接收信号处理单元404将通过接收处理而解码的信息输出到控制单元401。接收信号处理单元404例如将广播信息、系统信息、RRC信令、DCI等输出到控制单元401。此外,接收信号处理单元404将接收信号和/或接收处理后的信号输出到测量单元405。
测量单元405实施与接收到的信号有关的测量。测量单元405能够由基于本发明涉及的技术领域中的共同认识来说明的测量器、测量电路或者测量装置构成。
例如,测量单元405可以基于接收到的信号来进行RRM测量、CSI测量等。测量单元405也可以对接收功率(例如,RSRP)、接收质量(例如,RSRQ、SINR)、信号强度(例如,RSSI)、传播路径信息(例如,CSI)等进行测量。测量结果可以被输出到控制单元401。
(硬件结构)
另外,在上述实施方式的说明中使用的框图表示了功能单位的块。这些功能块(结构部分)通过硬件以及/或者软件的任意的组合来实现。此外,各功能块的实现手段不会被特别限定。即,各功能块可以通过在物理上以及/或者逻辑上结合的一个装置来实现,也可以将在物理上以及/或者逻辑上分离的2个以上的装置直接以及/或者间接地(例如,有线以及/或者无线)连接起来,并由这些多个装置来实现。
例如,本发明的一实施方式中的无线基站、用户终端等可以作为进行本发明的无线通信方法的处理的计算机来发挥作用。图12是表示本发明的一实施方式涉及的无线基站以及用户终端的硬件结构的一例的图。上述的无线基站10以及用户终端20可以被构成为在物理上包含处理器1001、存储器1002、储存器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置。
另外,在以下的说明中,“装置”这样的语句能够改读成电路、设备、单元等。无线基站10以及用户终端20的硬件结构可以被构成为针对图中所示的各装置分别包含一个或多个,也可以不包含一部分装置而构成。
例如,虽然仅图示了一个处理器1001,但也可以存在多个处理器。此外,处理可以在一个处理器中执行,也可以同时地、依次地执行,或者也可以通过其它的手法在一个以上的处理器中执行处理。另外,处理器1001也可以通过一个以上的芯片实现。
无线基站10以及用户终端20中的各功能例如通过在处理器1001、存储器1002等的硬件上读取规定的软件(程序),处理器1001进行运算,并控制通信装置1004的通信、或存储器1002以及储存器1003中的数据的读出以及/或者写入来实现。
处理器1001例如使操作系统得以操作来控制计算机整体。处理器1001可以由包含与外围设备之间的接口、控制装置、运算装置、寄存器等的中央处理装置(CPU:CentralProcessing Unit)而构成。例如,上述的基带信号处理单元104(204)、呼叫处理单元105等可以通过处理器1001来实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从储存器1003以及/或者通信装置1004读出到存储器1002,并依照这些来执行各种处理。作为程序,使用使计算机执行上述的实施方式中说明的操作的至少一部分的程序。例如,用户终端20的控制单元401可以通过被储存在存储器1002中并在处理器1001中操作的控制程序来实现,其它的功能块也可以同样地实现。
存储器1002是计算机可读取的记录介质,例如可以由ROM(只读存储器(Read OnlyMemory))、EPROM(可擦除可编程ROM(Erasable Programmable ROM))、EEPROM(电EPROM)、RAM(随机存取存储器(Random Access Memory))、其它的适当的存储介质的至少一个而构成。存储器1002也可以称为寄存器、高速缓存、主存储器(主存储装置)等。存储器1002能够保存为了实施本发明的一实施方式涉及的无线通信方法而可执行的程序(程序代码)、软件模块等。
储存器1003是计算机可读取的记录介质,例如可以由柔性盘、软盘(注册商标)、光磁盘(例如,紧凑盘(CD-ROM(Compact Disc ROM)等)、数字多功能盘、蓝光(注册商标)盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒、钥匙驱动器)、磁条、数据库、服务器、其它的适当的存储介质的至少一个而构成。储存器1003也可以称为辅助存储装置。
通信装置1004是用于经由有线以及/或者无线网络而进行计算机间的通信的硬件(发送接收设备),例如可以称为网络设备、网络控制器、网卡、通信模块等。例如为了实现频分双工(FDD:Frequency Division Duplex)以及/或者时分双工(TDD:Time DivisionDuplex),通信装置1004也可以构成为包含高频开关、双工器、滤波器、频率合成器等。例如,上述的发送接收天线101(201)、放大器单元102(202)、发送接收单元103(203)、传输路径接口106等可以通过通信装置1004实现。
输入装置1005是受理来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、LED(发光二极管(Light Emitting Diode))灯等)。另外,输入装置1005以及输出装置1006也可以是成为一体的结构(例如,触摸面板)。
此外,处理器1001、存储器1002等各装置通过用于对信息进行通信的总线1007而连接。总线1007可以由单个总线构成,也可以由装置之间不同的总线构成。
此外,无线基站10以及用户终端20可以构成为包括:微处理器、数字信号处理器(DSP:Digital Signal Processor)、ASIC(专用集成电路(Application SpecificIntegrated Circuit))、PLD(可编程逻辑器件(Programmable Logic Device))、FPGA(现场可编程门阵列(Field Programmable Gate Array))等的硬件,也可以通过该硬件来实现各功能块的一部分或者全部。例如,处理器1001可以通过这些硬件的至少一个来实现。
(变形例)
另外,在本说明书中说明的术语以及/或者对于本说明书的理解所需要的术语可以置换成具有相同的或者类似的含义的术语。例如,信道以及/或者码元可以是信号(信令)。此外,信号也可以是消息。参考信号也能简称为RS(Reference Signal),根据所应用的标准也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC:Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或者多个期间(帧)而构成。构成无线帧的该一个或者多个各期间(帧)可以称为子帧。进一步地,子帧在时域中可以由一个或者多个时隙构成。子帧也可以是不依赖于参数集的固定的时间长度(例如,1ms)。
进一步地,时隙在时域中可以由一个或者多个码元(OFDM(正交频分复用(Orthogonal Frequency Division Multiplexing))码元、SC-FDMA(单载波-频分多址接入(Single Carrier Frequency Division Multiple Access))码元等)构成。此外,时隙可以是基于参数集的时间单位。此外,时隙也可以包含多个迷你时隙。各迷你时隙在时域中可以由一个或多个码元构成。此外,迷你时隙也可以称为子时隙。
无线帧、子帧、时隙、迷你时隙以及码元都表示传输信号时的时间单位。无线帧、子帧、时隙、迷你时隙以及码元也可以使用与各自对应的其它的名称。例如,一个子帧可以称为发送时间间隔(TTI:Transmission Time Interval),多个连续的子帧也可以称为TTI,一个时隙或一个迷你时隙也可以称为TTI。也就是,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是比1ms短的期间(例如,1-13码元),也可以是比1ms长的期间。另外,除了子帧之外,表示TTI的单位也可以称为时隙、迷你时隙等。
在此,TTI例如是指在无线通信中的调度的最小时间单位。例如,在LTE系统中无线基站进行将无线资源(各用户终端中能够使用的频率带宽、发送功率等)以TTI单位分配给各用户终端的调度。另外,TTI的定义不限制于此。
TTI可以是信道被编码后的数据分组(传输块)、码块、和/或码字的发送时间单位,也可以是调度、链路自适应等的处理单位。另外,当提供了TTI时,实际被映射传输块、码块、和/或码字的时间区间(例如,码元数目)也可以比该TTI短。
另外,在一个时隙或一个迷你时隙被称为TTI的情况下,一个以上的TTI(即,一个以上的时隙或一个以上的迷你时隙)也可以成为调度的最小时间单位。此外,构成该调度的最小时间单位的时隙数目(迷你时隙数目)也可以被控制。
具有1ms的时间长度的TTI可以被称为通常TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、通常子帧、标准子帧、或长子帧等。比通常TTI短的TTI也可以被称为缩短TTI、短TTI、部分TTI(partial或fractional TTI)、缩短子帧、短子帧、迷你时隙、或子时隙等。
另外,长TTI(例如,通常TTI、子帧等)也可以改读成具有超过1ms的时间长度的TTI,短TTI(例如,缩短TTI等)也可以改读成具有小于长TTI的TTI长度且1ms以上的TTI长度的TTI。
资源块(RB:Resource Block)是时域以及频域的资源分配单位,在频域中可以包含一个或者多个连续的副载波(子载波(subcarrier))。此外,RB在时域中也可以包含一个或者多个码元,也可以是一个时隙、一个迷你时隙、一个子帧或者一个TTI的长度。一个TTI、一个子帧可以分别由一个或者多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB:Physical RB)、子载波组(SCG:Sub-Carrier Group)、资源元素组(REG:ResourceElement Group)、PRB对、RB对等。
此外,资源块可以由一个或者多个资源元素(RE:Resource Element)而构成。例如,一个RE可以是一个子载波以及一个码元的无线资源区域。
另外,上述的无线帧、子帧、时隙、迷你时隙以及码元等的结构仅仅是例示。例如,无线帧包含的子帧的数目、每个子帧或无线帧包含的时隙的数目、时隙内包含的迷你时隙的数目、时隙或迷你时隙包含的码元以及RB的数目、RB包含的子载波的数目、以及TTI内的码元数目、码元长度、循环前缀(CP:Cyclic Prefix)长度等的结构能够进行各式各样的改变。
此外,本说明书中说明的信息、参数等可以通过绝对值来表示,也可以通过相对于规定的值的相对值来表示,也可以通过对应的其它的信息来表示。例如,无线资源也可以通过规定的索引来指示。进一步地,使用这些参数的数学公式等也可以与本说明书中显式记载的内容不同。
本说明书中对参数等使用的名称在任何方面都不是限定性的。例如,由于各式各样的信道(PUCCH(物理上行链路控制信道)、PDCCH(物理下行链路控制信道)等)以及信息元素能够通过任何适宜的名称来识别,因此分配给这些各式各样的信道以及信息元素的各式各样的名称在任何方面都不是限定性的。
本说明书中说明的信息、信号等可以使用各式各样不同的技术的任意一个来表示。例如,上述的说明整体中能够提及到的数据、指令、命令、信息、信号、比特、码元、码片等可以通过电压、电流、电磁波、磁场或者磁性粒子、光场或者光子、或者这些的任意组合来表示。
此外,信息、信号等能够从高层输出到低层、以及/或者从低层输出到高层。信息、信号等也可以经由多个网络节点而输入输出。
被输入输出的信息、信号等可以保存在特定的地方(例如,存储器),也可以通过管理表来管理。被输入输出的信息、信号等能够被覆写、更新或者补写。被输出的信息、信号等也可以被删除。被输入的信息、信号等也可以被发送到其它的装置。
信息的通知不限于本说明书中说明的方式/实施方式,也可以通过其它的方法来进行。例如,信息的通知可以通过物理层信令(例如,下行控制信息(下行链路控制信息(DCI:Downlink Control Information))、上行控制信息(上行链路控制信息(UCI:UplinkControl Information)))、高层信令(例如,RRC(无线资源控制(Radio ResourceControl))信令、广播信息(主信息块(MIB:Master Information Block)、系统信息块(SIB:System Information Block)等)、MAC(媒体访问控制(Medium Access Control))信令)、其它的信号或者这些的组合来实施。
另外,物理层信令也可以称为L1/L2(层1/层2)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令可以称为RRC消息,也可以是例如RRC连接设置(RRCConnectionSetup)消息、RRC连接重构(RRCConnectionReconfiguration)消息等。此外,MAC信令例如可以通过MAC控制元素(MAC CE(Control Element))来通知。
此外,规定的信息的通知(例如“是X”的通知)不限于显式进行,也可以隐式地(例如,通过不进行该规定的信息的通知或者通过其它的信息的通知而)进行。
判定可以根据用1比特表示的值(0或1)来进行,也可以根据用真(true)或者假(false)表示的真假值(boolean)来进行,也可以通过数值的比较(例如,和规定的值比较)来进行。
无论软件被称为软件、固件、中间件、微代码、硬件说明语言,或者以其它的名称来称呼,都应被广义解释为代表了指令、指令集、代码、代码段、程序代码、程序、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行文件、执行线程、过程、功能等。
此外,软件、指令、信息等可以通过传输介质来发送接收。例如,在使用有线技术(同轴电缆、光缆、双绞线、数字订户线路(DSL:Digital Subscriber Line)等)以及/或者无线技术(红外线、微波等)将软件从网站、服务器、或者其它的远程源发送的情况下,这些有线技术以及/或者无线技术包含于传输介质的定义内。
本说明书中使用的“系统”以及“网络”这样的术语被互换使用。
在本说明书中,“基站(BS:Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的术语可互换使用。基站也存在被称为固定站(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小型小区等的术语的情况。
基站能够容纳一个或者多个(例如,3个)小区(也称为扇区)。在基站容纳多个小区的情况下,基站的覆盖范围区域整体能够划分为多个更小的区域,各更小的区域还能够通过基站子系统(例如,室内用的小型基站(远程无线头(RRH:Remote Radio Head)))来提供通信服务。“小区”或者“扇区”这样的术语是指该覆盖范围内进行通信服务的基站以及/或者基站子系统的覆盖范围区域的一部分或者整体。
在本说明书中,“移动台(MS:Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE:User Equipment)”以及“终端”这样的术语能够被互换使用。基站也存在被称为固定站(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小型小区等术语的情况。
移动台也存在被所属领域技术人员称为订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手机、用户代理、移动客户端、客户端或者一些其它的适当的术语的情况。
此外,本说明书中的无线基站可以换读成用户终端。例如,在将无线基站以及用户终端之间的通信置换成多个用户终端之间(设备对设备(D2D:Device-to-Device))的通信的结构中,可以应用本发明的各方式/实施方式。在这种情况下,可以设为用户终端20具有上述的无线基站10所具有的功能的结构。此外,“上行”以及“下行”等的语言可以换读成“侧”。例如,上行信道可以换读成侧信道。
同样地,本说明书中的用户终端可以换读成无线基站。在这种情况下,可以设为无线基站10具有上述的用户终端20所具有的功能的结构。
在本说明书中,设由基站进行的特定操作根据情况也存在由其上位节点(uppernode)来进行的情况。在由具有基站的一个或者多个网络节点(network nodes)构成的网络中,显而易见的是:为了与终端的通信而进行的各式各样的操作能够通过基站、基站以外的一个以上的网络节点(例如,考虑MME(移动性管理实体(Mobility Management Entity))、S-GW(服务-网关(Serving-Gateway))等,但不限定于此)或者这些的组合来进行。
在本说明书中说明的各方式/实施方式可以单独使用,也可以组合起来使用,也可以随着执行而切换使用。此外,本说明书中说明的各方式/实施方式的处理过程、时序、流程图等若无矛盾则也可以调换顺序。例如,关于本说明书中已说明的方法,虽然按照例示的顺序提示了各式各样的步骤的元素,但不限定于已提示的特定的顺序。
本说明书中说明的各方式/实施方式可以应用到下述系统中:LTE(长期演进)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(第四代移动通信系统)、5G(第五代移动通信系统)、FRA(未来无线接入)、New-RAT(无线接入技术)、NR(新无线)、NX(新无线接入)、FX(下一代无线接入)、GSM(注册商标)(全球移动通信系统(GlobalSystem for Mobile communications))、CDMA2000、UMB(超移动宽带(Ultra MobileBroadband))、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE802.20、UWB(超宽带(Ultra-WideBand))、Bluetooth(注册商标)、利用其它的适当的无线通信方法的系统以及/或者基于此被增强的下一代系统。
在本说明书中使用的“基于”这样的记载,只要没有另外写明,就不意味着“仅基于”。换言之,“基于”这样的记载意味着“仅基于”和“至少基于”二者。
对于使用了本说明书中使用的“第1”、“第2”等的称呼的元素的任何参照也都不全盘限定这些元素的量或者顺序。这些称呼能够作为区分两个以上的元素间的便利的方法而在本说明书中使用。因此,第1以及第2元素的参照不表示仅能采用两个元素,或者以某些形式第1元素必须先于第2元素的含义。
在本说明书中使用的“判断(决定)(determining)”这样的术语存在包含各式各样的操作的情况。例如,“判断(决定)”可以将计算(calculating)、算出(computing)、处理(processing)、导出(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库或者在其它的数据结构中的搜索)、确认(ascertaining)等看作进行“判断(决定)”。此外,“判断(决定)”也可以将接收(receiving)(例如,接收信息)、发送(transmitting)(例如,发送信息)、输入(input)、输出(output)、接入(accessing)(例如,接入存储器中的数据)等看作进行“判断(决定)”。此外,“判断(决定)”也可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等看作为进行“判断(决定)”。也就是,“判断(决定)”可以将一些操作看作进行“判断(决定)”。
本说明书中使用的“被连接(connected)”、“被耦合(coupled)”这样的术语、或者这些术语的任何变形意味着两个或者两个以上的元素间的直接或者间接的任何连接或者耦合,能够包含在被相互“连接”或者“耦合”的两个元素间存在一个或者一个以上的中间元素的情况。元素间的耦合或者连接可以是物理上的,也可以是逻辑上的,或者也可以是这些的组合。例如,“连接”也可以改读成“接入”。本说明书中使用的情况下,能够考虑为两个元素通过使用一个或者一个以上的电线、电缆以及/或者印刷电连接而相互地被“连接”或者“耦合”,并且作为一些非限定性且非包含性的例子,能够考虑为两个元素通过使用具有无线频域、微波域以及/或者光(可视以及不可视的双方)域的波长的电磁能等而相互地被“连接”或者“耦合”。
在本说明书或者权利要求书中使用“包括(including)”、“包含(comprising)”、以及这些的变形的情况下,这些术语与术语“具备”同样地表示是包括性的含义。进一步地,在本说明书或者权利要求书中使用的术语“或者(or)”表示不是逻辑异或的含义。
以上,对本发明进行了详细的说明,但对于所属领域技术人员显而易见的是:本发明不限定于在本说明书中说明的实施方式。本发明不脱离由权利要求书的记载而规定的本发明的宗旨以及范围并且能够作为修正以及变更方式来实施。因此,本说明书的记载是以举例说明为目的,对于本发明来说,不具有任何限制性的含义。
本申请基于2017年2月3日申请的特愿2017-018951。该内容全部预先包含于此。

Claims (5)

1.一种用户终端,其特征在于,具有:
控制单元,决定表示固定的波束的集的波束模式,并决定未包含在该波束模式中的至少一个波束;以及
发送单元,发送与所决定的所述波束模式和所述至少一个波束有关的反馈信息。
2.如权利要求1所述的用户终端,其特征在于,具有:
接收单元,接收与通过所述波束模式而确定的波束的数目和/或所述至少一个波束的数目有关的信息,
所述控制单元基于该信息,决定所述波束模式和所述至少一个波束。
3.如权利要求1或2所述的用户终端,其特征在于,
所述反馈信息包含表示所述波束模式的索引和表示所述至少一个波束的索引。
4.如权利要求3所述的用户终端,其特征在于,
所述控制单元基于规定的方向的天线端口数目、其它的规定的方向的天线端口数目、通过所述波束模式而确定的波束的数目和所述至少一个波束的数目,决定表示所述至少一个波束的索引的比特数目。
5.一种用户终端的无线通信方法,其特征在于,具有:
决定表示固定的波束的集的波束模式,并决定未包含在该波束模式中的至少一个波束的步骤;以及
发送与所决定的所述波束模式和所述至少一个波束有关的反馈信息的步骤。
CN201880020767.7A 2017-02-03 2018-02-02 用户终端以及无线通信方法 Pending CN110506434A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017018951 2017-02-03
JP2017-018951 2017-02-03
PCT/JP2018/003543 WO2018143392A1 (ja) 2017-02-03 2018-02-02 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
CN110506434A true CN110506434A (zh) 2019-11-26

Family

ID=63040729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880020767.7A Pending CN110506434A (zh) 2017-02-03 2018-02-02 用户终端以及无线通信方法

Country Status (3)

Country Link
US (1) US10651915B2 (zh)
CN (1) CN110506434A (zh)
WO (1) WO2018143392A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10110284B2 (en) * 2016-11-03 2018-10-23 At&T Intellectual Property I, L.P. Providing a format indicator comprising rank indication and channel state information spatial domain resolution type
JP7404680B2 (ja) 2019-07-11 2023-12-26 富士通株式会社 ビームフォーミング装置およびビームフォーミング方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157646A1 (en) * 1995-02-22 2004-08-12 Raleigh Gregory Gene Method and apparatus for adaptive transmission beam forming in a wireless communication system
CN102265524A (zh) * 2009-02-27 2011-11-30 上海贝尔股份有限公司 协同波束赋形方法、设备和基站
US20130242902A1 (en) * 2012-03-16 2013-09-19 Futurewei Technologies, Inc. Systems and Methods for Reference Signals and CSI Feedback
US20130258885A1 (en) * 2012-03-27 2013-10-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting beam information in wireless communication system
US20140328423A1 (en) * 2000-06-13 2014-11-06 Comcast Cable Communications, Llc Network communication using diversity
CN104704767A (zh) * 2012-09-28 2015-06-10 英特尔公司 用于信道状态信息(csi)反馈的增强型干扰测量的方法
CN104737465A (zh) * 2012-09-28 2015-06-24 交互数字专利控股公司 用于wifi波束成形、反馈以及探测(wibeam)的方法
US20150341091A1 (en) * 2013-01-02 2015-11-26 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
CN105164957A (zh) * 2013-05-10 2015-12-16 富士通株式会社 信息反馈方法、用户设备及基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382081B2 (en) * 2015-10-16 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information acquisition in wireless communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157646A1 (en) * 1995-02-22 2004-08-12 Raleigh Gregory Gene Method and apparatus for adaptive transmission beam forming in a wireless communication system
US20140328423A1 (en) * 2000-06-13 2014-11-06 Comcast Cable Communications, Llc Network communication using diversity
CN102265524A (zh) * 2009-02-27 2011-11-30 上海贝尔股份有限公司 协同波束赋形方法、设备和基站
US20130242902A1 (en) * 2012-03-16 2013-09-19 Futurewei Technologies, Inc. Systems and Methods for Reference Signals and CSI Feedback
US20130258885A1 (en) * 2012-03-27 2013-10-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting beam information in wireless communication system
CN104704767A (zh) * 2012-09-28 2015-06-10 英特尔公司 用于信道状态信息(csi)反馈的增强型干扰测量的方法
CN104737465A (zh) * 2012-09-28 2015-06-24 交互数字专利控股公司 用于wifi波束成形、反馈以及探测(wibeam)的方法
US20150341091A1 (en) * 2013-01-02 2015-11-26 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
CN105164957A (zh) * 2013-05-10 2015-12-16 富士通株式会社 信息反馈方法、用户设备及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO等: "R1-1700597 "CSI Feedback Types for NR MIMO"", 《3GPP TSG RAN WG1 #AH NR R1-1700597》 *
ZTE等: "R1-1608684 "Feedback mechanism for linear combination based CSI "", 《3GPP TSG RAN WG1 MEETING #86BIS R1-1608684》 *

Also Published As

Publication number Publication date
WO2018143392A1 (ja) 2018-08-09
US20190356373A1 (en) 2019-11-21
US10651915B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN110447255A (zh) 用户终端以及无线通信方法
US11895681B2 (en) Method and apparatus for fast beam indication
CN104335651B (zh) 无线基站、用户终端、无线通信系统以及无线通信方法
CN110169110A (zh) 用户终端以及无线通信方法
WO2018173163A1 (ja) ユーザ端末及び無線通信方法
CN110476450A (zh) 用户终端以及无线通信方法
CN108886398A (zh) 用户终端、无线基站以及无线通信方法
CN109792735A (zh) 用户终端以及无线通信方法
CN109076334A (zh) 用户终端、无线基站以及无线通信方法
CN110169164A (zh) 用户终端及无线通信方法
CN110383884A (zh) 用户终端及无线通信方法
CN110463244A (zh) 用户终端及无线通信方法
CN110383872A (zh) 用户终端以及无线通信方法
CN110100472A (zh) 装置以及无线通信方法
CN109997394A (zh) 用户终端以及无线通信方法
CN110169114A (zh) 用户终端以及无线通信方法
CN109565493A (zh) 用户终端及无线通信方法
CN109076389A (zh) 用户终端及无线通信方法
US20210344558A1 (en) Method and apparatus for beam-specific downlink/uplink operation
CN110249684A (zh) 用户终端以及无线通信方法
CN110431816A (zh) 用户终端以及无线通信方法
CN110121908A (zh) 用户终端以及无线通信方法
CN108886711A (zh) 用户终端以及无线通信方法
CN110249601A (zh) 用户终端及无线通信方法
CN109716698A (zh) 用户终端以及无线通信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191126