CN110501613A - 一种输电线路故障行波波头顶点时刻的检测方法及装置 - Google Patents

一种输电线路故障行波波头顶点时刻的检测方法及装置 Download PDF

Info

Publication number
CN110501613A
CN110501613A CN201910799417.1A CN201910799417A CN110501613A CN 110501613 A CN110501613 A CN 110501613A CN 201910799417 A CN201910799417 A CN 201910799417A CN 110501613 A CN110501613 A CN 110501613A
Authority
CN
China
Prior art keywords
traveling wave
pulse
fault traveling
moment
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910799417.1A
Other languages
English (en)
Other versions
CN110501613B (zh
Inventor
王平
田训
李玉华
王朝龙
白云
杨宇帆
柳学功
李锡涛
冉洪容
梁家祺
高文俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing East Power Technology Co Ltd
Chongqing University
Original Assignee
Chongqing East Power Technology Co Ltd
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing East Power Technology Co Ltd, Chongqing University filed Critical Chongqing East Power Technology Co Ltd
Priority to CN201910799417.1A priority Critical patent/CN110501613B/zh
Publication of CN110501613A publication Critical patent/CN110501613A/zh
Application granted granted Critical
Publication of CN110501613B publication Critical patent/CN110501613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

本发明涉及一种输电线路故障行波波头顶点时刻的检测方法及装置,该检测装置由罗氏线圈、隔离变压器、上下门限电压比较器、光耦隔离电路、GPS/BDS双模授时模块、通信模块、微处理器、DAC以及线性光耦隔离器构成;微处理器接收服务器命令,控制DAC输出、经光耦隔离器和放大器设定上下门限比较电压,将检测得到的故障行波微分信号经隔离变压器后,送入上下门限电压比较器进行比较;当超过上下门限比较器设定值事,比较器输出下降沿/上升沿脉冲信号,进而触发微处理器中断,微处理器得到脉冲对应时间信息,记录脉冲中断触发时间及相应触发通道,计算得到故障行波波头顶点时刻;本发明能有效提高现有的故障行波检测技术中故障行波波头顶点时刻的检测精度。

Description

一种输电线路故障行波波头顶点时刻的检测方法及装置
技术领域
本发明属于电力系统故障定位技术领域,涉及一种输电线路故障行波波头顶点时刻的检测方法及装置。
背景技术
电力系统在经济发展中的地位举足轻重,但是输电线路故障在电力系统运行过程中难以避免。特别在特高压输电线路中,线路发生故障后快速查找故障点是恢复供电的前提。输电线路发生故障后,故障点会产生一组高频故障行波,通过检测行波进而获取行波中所包含的信息可以进行线路保护和故障检测工作。因此,挖掘和利用行波故障信息,构造新的故障检测技术,提高故障检测和处理能力,对于增强电力系统的安全性和稳定性具有重大意义。
目前国内外的电力系统故障检测技术主要基于传统工频故障信息,随着电力系统对于故障检测的精确性、可靠性要求不断提高,这种方法日益暴露出其缺点与不足。故障行波信息与传统故障工频信息相比,包含的内容丰富,它是在故障时突变电压的作用下形成的,能够为故障的检测和定位提供主要依据。在电力系统发展过程中,行波故障检测技术已经有半个多世纪的历史,20世纪中期先后出现了三种不同原理的行波测距方法,到20世纪90年代,随着计算机技术、电子与通信技术的发展,特别是GPS时钟同步技术的出现,为实现基于故障行波的检测技术提供了基础。随着相关电力电子器件以及方法研究的发展,行波故障检测的故障定位精度正逐步提高。基于高频故障行波的故障检测技术正逐步深入电力系统故障检测领域,成为一个相对独立的故障检测理论与技术体系。
故障行波测距的关键问题是对行波信号的判断和提取,以及对波头信息的获取。在实际的电力系统应用中,尚无可以精确测量故障行波信号波头顶点时刻的方法。因此急需一种输电线路故障行波波头顶点时刻的检测方法及配套装置。
发明内容
有鉴于此,本发明的目的在于提供一种输电线路故障行波波头顶点时刻的检测方法及装置,可以准确判断故障行波波头、计算波头顶点时刻,解决了测量电力系统中行波波头顶点时刻不准确的难题,有效提高了故障定位的准确度,为输电线路的故障行波定位计算提供可靠数据支撑。
为达到上述目的,本发明提供如下技术方案:
一种输电线路故障行波波头顶点时刻的检测装置,该检测装置由罗氏线圈、隔离变压器、上下门限电压比较器、数字光耦隔离电路、GPS/BDS双模授时模块、4G通信模块、微处理器、DAC以及线性光耦隔离器构成,其中罗氏线圈、隔离变压器、上下门限电压比较器、数字光耦隔离电路依次相连,接入微处理器的通用输入输出端口,DAC输出经线性光耦隔离器后与上下门限电压比较器相连,GPS/BDS双模授时模块、4G通信模块分别与微处理器的串口相连。
本发明还提供了一种输电线路故障行波波头顶点时刻的检测方法,该方法包括以下步骤:
S1:微处理器通过4G通信模块接收服务器命令,然后经内部集成的DAC转换器输出,经过线性光耦隔离器后,分别得到故障行波微分信号的上下门限比较电压;
S2:罗氏线圈将检测到的故障行波微分信号分别送入上门限电压比较器的反相输入端和下门限电压比较器的同相输入端;当故障行波微分信号的正负幅值超过上下门限比较电压时,上下门限电压比较器分别输出的上升沿和下降沿脉冲,经数字光耦隔离电路后,触发微处理器外部中断;
S3:微处理器记录触发外部中断脉冲的触发通道,通过内部的高精度定时计数器以及GPS/BDS双模授时模块得到脉冲对应时刻;
S4:微处理器根据步骤S3中得到的脉冲时刻以及触发通道判断故障行波信号波头的极性,计算得到故障行波波头顶点的时刻。
进一步,在步骤S2中,具体包括:
S21:当故障行波微分信号的正电压在上升过程中,高于设定上门限电压时,上门限电压比较器输出下降沿脉冲,当故障行波微分信号的正电压在下降过程中,低于设定上门限电压时,上门限电压比较器输出上升沿脉冲;
当故障行波微分信号的负电压在下降过程中,低于设定下门限电压时,下门限电压比较器输出下降沿脉冲,当故障行波微分信号的负电压在上升过程中,高于设定下门限电压时,下门限电压比较器输出上升沿脉冲;
S22:上下门限电压比较器分别产生的下降沿和上升沿脉冲经数字光耦隔离电路后,输出下降沿和上升沿脉冲,触发微处理器的外部边沿中断。
进一步,在步骤S3中,具体包括:
S31:GPS/BDS双模授时模块的秒脉冲信号触发微处理的外部中断,打开定时计数器,开始计数,定时计数器在GPS/BDS双模授时模块的两个秒脉冲之间的计数值为Second_Counter,当上下门限电压比较器产生的脉冲触发外部中断时,微处理器读取定时计数器对应的计数值Counter;
S32:GPS/BDS双模授时模块通过串口通信将秒级时间T送入微处理器,由步骤S31得到的脉冲触发中断对应计数值Counter与两个秒脉冲之间的计数值为Second_Counter得脉冲对应时刻tm为:
S33:上升沿或下降沿脉冲触发微处理器外部中断时,微处理器记录下产生脉冲的触发通道,上门限电压比较器输出触发脉冲记为正极性脉冲,其对应时刻为tPm(m=1~8),下门限电压比较器输出触发脉冲记为负极性脉冲,其对应时刻为tNk(k=1~8)。
进一步,在步骤S4中,具体包括:
S41:微处理器根据判据1和判据2计算故障行波波头的顶点时刻;
判据1:微处理器计算相邻相同极性脉冲的时间差,记为ΔtP1~ΔtP8和ΔtN1~ΔtN8,有:
式(2)中,tPm与tNk为时间差最大的各自相同极性脉冲对应时刻;
如果ΔtP>ΔtN,则故障行波信号波头为正极性,故障行波信号波头顶点时刻为:
如果ΔtP<ΔtN,则故障行波信号波头为负极性,故障行波信号波头顶点时刻为:
判据2:计算两相邻不同极性脉冲之间的时间差,时间差最小的两相邻不同极性脉冲时刻之间即为行波波头顶点时刻所在时间区间,即:
ΔtPN=min|tPm-tNk| (5)
式(5)中,ΔtPN为时间差最小的两相邻不同极性脉冲之间的时间差;
如果tPm<tNk,则故障行波信号波头为正极性,故障行波信号波头顶点时刻为:
如果tPm>tNk,则故障行波信号波头为负极性,故障行波信号波头顶点时刻为:
本发明的有益效果在于:
本发明中微处理器通过4G通信模块接收服务器命令,DAC输出设定上下门限比较电压,将罗氏线圈检测得到的故障行波微分信号送入上下门限电压比较器比较后,输出上升沿/下降沿脉冲电平信号,进而触发微处理器中断,微处理器通过GPS/BDS双模授时模块得到脉冲对应时间信息,记录脉冲时间及触发通道后根据判据1或判据2计算得到故障行波波头顶点时刻。本方法能够有效提高现有的行波故障检测技术中故障行波波头顶点时刻的检测精度,为提高行波故障定位精度提供可靠保证。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为故障行波波头顶点检测装置硬件系统整体框图;
图2为上下门限电压比较器原理框图;
图3为故障行波微分信号波头为正极性波头顶点时刻检测方法示意图;
图4为故障行波微分信号波头为负极性波头顶点时刻检测方法示意图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
图1为行波波头顶点检测装置硬件系统整体框图,如图所示,本发明提供的一种输电线路故障行波波头顶点时刻的检测装置,由罗氏线圈、隔离变压器、上下门限电压比较器、数字光耦隔离电路、GPS/BDS双模授时模块、4G通信模块、微处理器、DAC以及线性光耦隔离器构成其中罗氏线圈、隔离变压器、上下门限电压比较器、数字光耦隔离电路依次相连,接入微处理器的通用输入输出端口,DAC输出经线性光耦隔离器后与上下门限电压比较器相连,GPS/BDS双模授时模块、4G通信模块分别与微处理器的串口相连。图2为上下门限电压比较器原理框图。
在本实施例中,输电线路故障行波波头顶点时刻的检测方法,包括以下步骤:
步骤S1:微处理器通过4G通信模块接收服务器命令,然后经内部集成的DAC转换器输出,经过线性光耦隔离器后,分别得到故障行波微分信号的上下门限比较电压;
步骤S2:罗氏线圈将检测到的故障行波微分信号分别送入上门限电压比较器的反相输入端和下门限电压比较器的同相输入端;当故障行波微分信号的正负幅值超过上下门限比较电压时,上下门限电压比较器分别输出的上升沿和下降沿脉冲,经数字光耦隔离电路后,触发微处理器外部中断;
步骤S3:微处理器记录触发外部中断脉冲的触发通道,通过内部的高精度定时计数器以及GPS/BDS双模授时模块得到脉冲对应时刻;
步骤S4:微处理器根据步骤S3中得到的脉冲时刻以及触发通道判断故障行波信号波头的极性,计算得到故障行波波头顶点的时刻。
在步骤S2中,故障行波微分信号与上下门限电压比较器的上下门限电压比较的具体过程为:
1)当故障行波微分信号的正电压在上升过程中,高于设定上门限电压时,上门限电压比较器输出下降沿脉冲,当故障行波微分信号的正电压在下降过程中,低于设定上门限电压时,上门限电压比较器输出上升沿脉冲;
当故障行波微分信号的负电压在下降过程中,低于设定下门限电压时,下门限电压比较器输出下降沿脉冲,当故障行波微分信号的负电压在上升过程中,高于设定下门限电压时,下门限电压比较器输出上升沿脉冲;图2为上下门限电压比较器原理框图。
2)上下门限电压比较器分别产生的下降沿和上升沿脉冲经数字光耦隔离电路后,输出下降沿和上升沿脉冲,触发微处理器的外部边沿中断;
在步骤S3中,微处理器通过GPS/BDS双模授时模块得到脉冲对应时刻的方法为:
1)GPS/BDS双模授时模块的秒脉冲信号触发微处理的外部中断,打开定时计数器,开始计数,定时计数器在GPS/BDS双模授时模块的两个秒脉冲之间的计数值为Second_Counter,当上下门限电压比较器产生的脉冲触发外部中断时,微处理器读取定时计数器对应的计数值Counter;
2)GPS/BDS双模授时模块通过串口通信将秒级时间T送入微处理器,由步骤S31得到的脉冲触发中断对应计数值Counter与两个秒脉冲之间的计数值为Second_Counter得脉冲对应时刻tm为:
3)上升沿或下降沿脉冲触发微处理器外部中断时,微处理器记录下产生脉冲的触发通道,上门限电压比较器输出触发脉冲记为正极性脉冲,其对应时刻为tPm(m=1~8),下门限电压比较器输出触发脉冲记为负极性脉冲,其对应时刻为tNk(k=1~8)。
在步骤S4中,微处理器判断并计算得到故障行波波头顶点时刻,具体的方法为:
微处理器根据判据1和判据2计算故障行波波头的顶点时刻;图3及图4为行波微分信号波头为正极性以及负极性对应波头顶点时刻检测方法示意图。
判据1:微处理器计算相邻相同极性脉冲的时间差,记为ΔtP1~ΔtP8和ΔtN1~ΔtN8,有:
式(2)中,tPm与tNk为时间差最大的各自相同极性脉冲对应时刻;
如果ΔtP>ΔtN,则故障行波信号波头为正极性,故障行波信号波头顶点时刻为:
如果ΔtP<ΔtN,则故障行波信号波头为负极性,故障行波信号波头顶点时刻为:
判据2:计算两相邻不同极性脉冲之间的时间差,时间差最小的两相邻不同极性脉冲时刻之间即为行波波头顶点时刻所在时间区间,即:
ΔtPN=min|tPm-tNk| (5)
式(5)中,ΔtPN为时间差最小的两相邻不同极性脉冲之间的时间差;
如果tPm<tNk,则故障行波信号波头为正极性,故障行波信号波头顶点时刻为:
如果tPm>tNk,则故障行波信号波头为负极性,故障行波信号波头顶点时刻为:
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种输电线路故障行波波头顶点时刻的检测装置,其特征在于:该检测装置由罗氏线圈、隔离变压器、上下门限电压比较器、数字光耦隔离电路、GPS/BDS双模授时模块、4G通信模块、微处理器、DAC以及线性光耦隔离器构成;其中罗氏线圈、隔离变压器、上下门限电压比较器、数字光耦隔离电路依次相连,接入微处理器的通用中断输入端口,DAC输出经线性光耦隔离器后与上下门限电压比较器相连,GPS/BDS双模授时模块、4G通信模块分别与微处理器的串口相连;
微处理器通过4G通信模块接收服务器命令,DAC输出设定上下门限比较电压,将罗氏线圈检测得到的故障行波微分信号送入上下门限电压比较器比较后,输出上升沿/下降沿脉冲电平信号,进而触发微处理器中断,微处理器通过GPS/BDS双模授时模块得到脉冲对应时间信息,记录脉冲时间及触发通道后根据判据计算得到故障行波波头顶点时刻。
2.一种输电线路故障行波波头顶点时刻的检测方法,其特征在于:该方法包括以下步骤:
S1:微处理器通过4G通信模块接收服务器命令,然后经DAC转换器输出,经过线性光耦隔离器和放大器后,分别得到故障行波微分信号的上下门限比较电压;
S2:罗氏线圈将检测到的故障行波微分信号经隔离变压器后,分别送入上门限电压比较器的反相输入端和下门限电压比较器的同相输入端;当故障行波微分信号的正负幅值超过上下门限比较电压时,上下门限电压比较器分别输出上升沿和下降沿脉冲,经数字光耦隔离电路后,触发微处理器外部中断;
S3:微处理器记录触发外部中断脉冲的触发通道,通过内部的高精度定时计数器以及GPS/BDS双模授时模块得到脉冲对应时刻;
S4:微处理器根据步骤S3中得到的脉冲时刻及触发通道判断故障行波信号波头的极性,计算得到故障行波波头顶点的时刻。
3.根据权利要求2所述的一种输电线路故障行波波头顶点时刻的检测方法,其特征在于:在步骤S2中,具体包括:
S21:当故障行波微分信号的正电压在上升过程中,高于设定上门限电压时,上门限电压比较器输出下降沿脉冲,当故障行波微分信号的正电压在下降过程中,低于设定上门限电压时,上门限电压比较器输出上升沿脉冲;
当故障行波微分信号的负电压在下降过程中,低于设定下门限电压时,下门限电压比较器输出下降沿脉冲,当故障行波微分信号的负电压在上升过程中,高于设定下门限电压时,下门限电压比较器输出上升沿脉冲;
S22:上下门限电压比较器分别产生的下降沿和上升沿脉冲经数字光耦隔离电路后,输出下降沿和上升沿脉冲,触发微处理器的外部边沿中断。
4.根据权利要求3所述的一种输电线路故障行波波头顶点时刻的检测方法,其特征在于:在步骤S3中,具体包括:
S31:GPS/BDS双模授时模块的秒脉冲信号触发微处理的外部中断,打开定时计数器,开始计数,定时计数器在GPS/BDS双模授时模块的两个秒脉冲之间的计数值为Second_Counter,当上下门限电压比较器产生的脉冲触发外部中断时,微处理器读取定时计数器对应的计数值Counter;
S32:GPS/BDS双模授时模块通过串口通信将秒级时间T送入微处理器,由步骤S31得到的脉冲触发中断对应计数值Counter与两个秒脉冲之间的计数值为Second_Counter得脉冲对应时刻tm为:
S33:上升沿或下降沿脉冲触发微处理器外部中断时,微处理器记录下产生脉冲的触发通道,上门限电压比较器输出触发脉冲记为正极性脉冲,其对应时刻为tPm(m=1~8),下门限电压比较器输出触发脉冲记为负极性脉冲,其对应时刻为tNk(k=1~8)。
5.根据权利要求4所述的一种输电线路故障行波波头顶点时刻的检测方法,其特征在于:在步骤S4中,具体包括:
S41:微处理器根据判据1和判据2计算故障行波波头的顶点时刻;
判据1:微处理器计算相邻相同极性脉冲的时间差,记为ΔtP1~ΔtP8和ΔtN1~ΔtN8,有:
式(2)中,tPm与tNk为时间差最大的各自相同极性脉冲对应时刻;
如果ΔtP>ΔtN,则故障行波信号波头为正极性,故障行波信号波头顶点时刻为:
如果ΔtP<ΔtN,则故障行波信号波头为负极性,故障行波信号波头顶点时刻为:
判据2:计算两相邻不同极性脉冲之间的时间差,时间差最小的两相邻不同极性脉冲时刻之间即为行波波头顶点时刻所在时间区间,即:
ΔtPN=min|tPm-tNk| (5)
式(5)中,ΔtPN为时间差最小的两相邻不同极性脉冲之间的时间差;
如果tPm<tNk,则故障行波信号波头为正极性,故障行波信号波头顶点时刻为:
如果tPm>tNk,则故障行波信号波头为负极性,故障行波信号波头顶点时刻为:
CN201910799417.1A 2019-08-27 2019-08-27 一种输电线路故障行波波头顶点时刻的检测方法及装置 Active CN110501613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910799417.1A CN110501613B (zh) 2019-08-27 2019-08-27 一种输电线路故障行波波头顶点时刻的检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910799417.1A CN110501613B (zh) 2019-08-27 2019-08-27 一种输电线路故障行波波头顶点时刻的检测方法及装置

Publications (2)

Publication Number Publication Date
CN110501613A true CN110501613A (zh) 2019-11-26
CN110501613B CN110501613B (zh) 2021-07-27

Family

ID=68589969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910799417.1A Active CN110501613B (zh) 2019-08-27 2019-08-27 一种输电线路故障行波波头顶点时刻的检测方法及装置

Country Status (1)

Country Link
CN (1) CN110501613B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680860A (zh) * 2012-06-08 2012-09-19 东华理工大学 一种高压电力线路行波测距用故障点自动定位方法
CN104931855A (zh) * 2015-06-10 2015-09-23 深圳市索图科技有限公司 基于输电线路故障行波波头识别及提取的装置和方法
CN106124941A (zh) * 2016-06-21 2016-11-16 宁波炯维电力科技有限公司 电抗器匝间绝缘性诊断方法
US20180083437A1 (en) * 2015-09-18 2018-03-22 Schweitzer Engineering Laboratories, Inc. Time-domain line differential protection of electric power delivery systems
WO2019097311A1 (en) * 2017-11-17 2019-05-23 Abb Schweiz Ag Traveling wave based fault location using unsynchronized measurements for transmission lines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680860A (zh) * 2012-06-08 2012-09-19 东华理工大学 一种高压电力线路行波测距用故障点自动定位方法
CN104931855A (zh) * 2015-06-10 2015-09-23 深圳市索图科技有限公司 基于输电线路故障行波波头识别及提取的装置和方法
US20180083437A1 (en) * 2015-09-18 2018-03-22 Schweitzer Engineering Laboratories, Inc. Time-domain line differential protection of electric power delivery systems
CN106124941A (zh) * 2016-06-21 2016-11-16 宁波炯维电力科技有限公司 电抗器匝间绝缘性诊断方法
WO2019097311A1 (en) * 2017-11-17 2019-05-23 Abb Schweiz Ag Traveling wave based fault location using unsynchronized measurements for transmission lines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAIYANG XU等: "A Novel Traveling Wave Head Identification Method in VSC-HVDC Based on Parameter Indentification", 《THE 5TH INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES》 *
徐伟宗等: "基于导数法的故障行波波头识别改进算法", 《电网技术》 *

Also Published As

Publication number Publication date
CN110501613B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN101825654B (zh) 自供能雷电流检测系统
CN102590700B (zh) 基于时间同步的架空线快速故障定位方法及装置
CN102377180B (zh) 基于电能质量监测系统的电力系统负荷建模方法
CN106093700B (zh) 一种基于电压行波原理的故障录波装置及测距方法
CN105548814B (zh) 一种配网线路接地故障判断方法和系统
CN103199514B (zh) 一种消除铁磁谐振的方法
CN102901908B (zh) 电缆运行信息监测系统及其实现方法
CN108375713A (zh) 一种新型电网故障行波定位方法和系统
CN203037775U (zh) 一种计量电流互感器故障检测装置
CN104950230B (zh) 一种基于变尺度双稳态系统的配电网故障选线方法
CN104215882B (zh) 一种基于有源单端口网络电阻极性的电压暂降源定位方法
CN103558507A (zh) 用于直流接地选线和交流窜入选线的传感器
CN103837777B (zh) 供电系统电能质量评估方法及系统
CN101533041A (zh) 一种无电压参考源的在线分离检测阻性泄漏电流的方法
CN110161358A (zh) 一种接地故障定位方法及装置
CN110174636A (zh) 一种电能表时段投切的检测方法、系统和可读取存储介质
CN103472295B (zh) 一种剩余电压信号采集和处理方法和系统
CN103430036A (zh) 漏电检测装置
CN109636663A (zh) 背靠背配电变压器的户变关系识别方法与装置
CN110058119A (zh) 一种利用衰减非周期分量的故障选极方法
CN110501613A (zh) 一种输电线路故障行波波头顶点时刻的检测方法及装置
CN203587684U (zh) 一种单相电表的计量保护电路
CN201269915Y (zh) 电网故障行波定位装置
CN108963976A (zh) 基于差动电流极坐标系相空间重构技术的变压器励磁涌流识别方法
CN202720307U (zh) 一种电力线路故障行波定位装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant