CN110501048A - 一种玻璃量器的测量系统和测量方法 - Google Patents

一种玻璃量器的测量系统和测量方法 Download PDF

Info

Publication number
CN110501048A
CN110501048A CN201910752117.8A CN201910752117A CN110501048A CN 110501048 A CN110501048 A CN 110501048A CN 201910752117 A CN201910752117 A CN 201910752117A CN 110501048 A CN110501048 A CN 110501048A
Authority
CN
China
Prior art keywords
image
water level
glass
volumetric glass
volumetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910752117.8A
Other languages
English (en)
Inventor
刘凯明
张春江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Xinwei Glass Co Ltd
Original Assignee
Chongqing Xinwei Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Xinwei Glass Co Ltd filed Critical Chongqing Xinwei Glass Co Ltd
Priority to CN201910752117.8A priority Critical patent/CN110501048A/zh
Publication of CN110501048A publication Critical patent/CN110501048A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

本发明提供了一种玻璃量器的测量系统和测量方法,解决现有容积位置计量过程精度和效率有限的技术问题。系统包括注水装置,用于向竖直固定的玻璃量器中注入定量液体,形成水位液面;共轴向步进装置,用于在固定距离上带动图像采集装置沿玻璃量器的轴线方向作移动,保持图像采集装置的采集焦平面与水位液面的垂直;图像采集装置,用于采集玻璃量器中水位液面与图像采集装置的镜头主轴重合时的玻璃量器图像,记录水位液面在玻璃量器中的像素位置。在固定位置关系基础上形成对水位液面的图像采集,根据玻璃量器图像中的水位液面像素确定水位液面准确位置。可以批量对玻璃量器逐一测定水位液面并以像素位置量化,排除批量生产的玻璃量器的容积误差。

Description

一种玻璃量器的测量系统和测量方法
技术领域
本发明涉及计量技术领域,具体涉及一种玻璃量器的测量系统和测量方法。
背景技术
传统玻璃量器的生产过程中包括容积位置计量、丝网印刷和或酸蚀等步骤,对于计量过程中的水线标注和印刷过程中的匹配水线位置的丝卷版适配都需要大量依靠操作者的技能水平。但由于人工效率低下不能形成高精度玻璃量器的批量生产。传统现有技术工艺对技术工人的素质十分依赖,工艺中已存在的对计量过程的标准化操作规程和标准化部件,可以有效减小一些操作步骤中的误差,例如计量温差、液体定量滴注等误差,但是对形成可靠的容积位置测量并适应批量生产,保持产品的一致性方面还缺乏有效的控制结构和控制方法。
发明内容
鉴于上述问题,本发明实施例提供一种玻璃量器的测量系统和测量方法,解决现有容积位置计量过程精度和效率有限的技术问题。
本发明实施例的玻璃量器的测量系统,包括:
注水装置,用于向竖直固定的玻璃量器中注入定量液体,形成水位液面;
共轴向步进装置,用于在固定距离上带动图像采集装置沿所述玻璃量器的轴线方向作移动,保持所述图像采集装置的采集焦平面与水位液面的垂直;
图像采集装置,用于采集所述玻璃量器中所述水位液面与所述图像采集装置的镜头主轴重合时的玻璃量器图像,记录所述水位液面在所述玻璃量器中的像素位置。
本发明一实施例中,还包括调平底座,所述调平底座用于形成水平基准,所述调平底座顶部包括若干个竖直夹持机构,所述竖直夹持机构分别固定所述注水装置、所述共轴向步进装置和所述玻璃量器。
本发明一实施例中,所述注水装置包括储水罐和计量泵,所述储水罐的出水口与所述计量泵的进水口通过吸液管路密封连接,所述计量泵的注水口连接注水管路,所述注水管路的出水口位于所述玻璃量器的开口上方或下方。
本发明一实施例中,所述共轴向步进装置包括步进电机、精密丝杠和固定框架,所述精密丝杠的轴向与所述玻璃量器的轴向平行,所述精密丝杠的两端转动固定在所述固定框架上,所述精密丝杠的顶端与所述步进电机的输出轴共轴线固定连接;所述精密丝杠的丝杠副上固定导向板,所述导向板的两端容纳于所述固定框架上位于所述精密丝杠对称两侧的导向凹槽中,所述导向凹槽的轴线与所述精密丝杠的轴线平行;所述导向板朝向所述玻璃量器的一面设置水平夹持机构。
本发明一实施例中,所述图像采集装置包括摄像头,所述摄像头通过所述水平夹持机构固定在所述导向板上,所述摄像头的所述采集焦平面朝向所述玻璃量器的轴线。
本发明一实施例中,还包括漫反射光源,所述漫反射光源通过所述竖直夹持机构固定,所述漫反射光源与所述图像采集装置位于所述玻璃量器的两侧,所述漫反射光源采用漫反射发光板,所述漫反射光源朝向所述图像采集装置。
本发明实施例的玻璃量器的测量方法,利用上述的玻璃量器的测量系统,包括:
步骤100:形成测量初始环境,调整所述图像采集装置形成基准图像记录所述玻璃量器的底部玻璃表面像素位置;
步骤200:注入标量液体,调整所述图像采集装置移动到水位液面,形成水位图像记录水位液面像素位置;
步骤300:根据所述底部玻璃表面像素位置和所述水位液面像素位置形成所述玻璃量器的注水基准线图像和注水分度线图像。
本发明一实施例中,所述步骤100包括:
步骤110:所述共轴向步进装置移动所述图像采集装置采集图像,判断图像中底部玻璃表面所占像素厚度;
步骤120:当像素厚度大于10个像素时,通过所述共轴向步进装置移动所述图像采集装置使采集图像中所述底部玻璃表面形成的线性图形的像素厚度主要部分为1像素且局部像素厚度小于5像素;
步骤130:同时记录此时的采集图像为所述基准图像。
本发明一实施例中,所述步骤200包括:
步骤210:所述共轴向步进装置移动所述图像采集装置采集图像,判断图像中水位液面所占像素厚度;
步骤220:当像素厚度大于5个像素时,通过所述共轴向步进装置移动所述图像采集装置使采集图像中的线性图形像素厚度为1像素;
步骤230:同时记录此时的采集图像为所述水位图像。
本发明一实施例中,所述步骤300包括:步骤310:根据基准图像和水位图像的成像距离形成所述基准图像和水位图像间的像素位置映射,在所述基准图像和水位图像间形成像素与物理距离间的映射。
本发明实施例的玻璃量器的测量系统和测量方法利用注水装置和共轴向步进装置形成待测玻璃量器与图像采集装置的固定位置关系,在固定位置关系基础上形成对水位液面的图像采集,根据玻璃量器图像中的水位液面像素确定水位液面准确位置。通过本发明实施例可以批量对生产出的玻璃量器逐一测定标量注水后的水位液面位置并以图像像素位置量化,可以最大限度排除批量生产的玻璃量器的容积误差。
附图说明
图1所示为本发明一实施例玻璃量器的测量系统的组成示意图。
图2所示为本发明一实施例玻璃量器的测量系统的结构示意图。
图3所示为本发明一实施例玻璃量器的测量方法的流程示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明白,以下结合附图及具体实施方式对本发明作进一步说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一实施例的玻璃量器的测量系统如图1所示。在图1中,本发明实施例包括:
注水装置10,用于向竖直固定的(待测量)玻璃量器中注入定量液体,形成水位液面。
玻璃量器包括但不限于酸滴管、分度吸管、量筒、单标线吸管和容量瓶。本领域技术人员可以理解,在固定位置稳定的基础上,注入单一定量液体可以形成确定的对应水位液面,注入连续定量液体可以形成确定的间隔水位液面。
共轴向步进装置20,用于在固定距离上带动图像采集装置沿玻璃量器的轴线方向作竖直移动,保持图像采集装置的采集焦平面与水位液面的垂直。
本领域技术人员可以理解,共轴向步进装置02形成的移动轨迹保持稳定,与玻璃量器的轴线保持固定平行间距。共轴向步进装置02包括的的载体在移动轨迹上受控移动。
图像采集装置30,用于采集玻璃量器中水位液面与图像采集装置的镜头主轴重合时的玻璃量器图像,记录水位液面在玻璃量器中的像素位置。
本领域记住人员可以理解,图像采集装置03包括图像采集传感器如摄像头。摄像头的视觉传感器成二维阵列分布形成焦平面,摄像头的镜头主轴通常垂直于焦平面中心,摄像头的焦平面保持与玻璃量器的轴线平行,水位液面与镜头主轴重合时水位液面在玻璃量器图像中具有最小水位液面厚度,可以表现为玻璃量器图像中的空气与液面接触界面的一条线性像素线段,像素线段在玻璃量器图像中具有确定像素位置。
本发明实施例的玻璃量器的测量系统利用注水装置01和共轴向步进装置02形成待测玻璃量器与图像采集装置03的固定位置关系,在固定位置关系基础上形成对水位液面的图像采集,根据玻璃量器图像中的水位液面像素确定水位液面准确位置。通过本发明实施例可以批量对生产出的玻璃量器逐一测定标量注水后的水位液面位置并以图像像素位置量化,可以最大限度排除批量生产的玻璃量器的容积误差。
本发明一实施例玻璃量器的测量系统的结构如图2所示。在图2中,包括注水装置10、共轴向步进装置20、图像采集装置30和调平底座04,调平底座04,用于形成水平基准,顶部包括若干个竖直夹持机构41,竖直夹持机构41分别固定注水装置10、共轴向步进装置20、待测玻璃量器和其他辅助装置。
本实施例中注水装置01包括储水罐11和计量泵12,储水罐11的出水口与计量泵12的进水口通过吸液管路13密封连接,计量泵12的注水口连接注水管路14,注水管路的出水口15位于待测玻璃量器的开口上方或下方 (与具体待测玻璃量器的类型相对应)。
本实施例中共轴向步进装置20包括步进电机21、精密丝杠22和固定框架23,精密丝杠22的轴向与待测玻璃量器的轴向平行,精密丝杠22的两端转动固定在固定框架23上,精密丝杠22的顶端与步进电机21的输出轴共轴线固定连接;精密丝杠22的丝杠副24上固定导向板25,导向板25 的两端容纳于固定框架23上位于精密丝杠22对称两侧的导向凹槽26中,导向凹槽26的轴线与精密丝杠22的轴线平行;导向板25朝向待测玻璃量器的一面设置水平夹持机构27。
本实施例中图像采集装置30包括摄像头31,摄像头31通过水平夹持机构27固定在导向板25上,摄像头31传感器的采集焦平面朝向待测玻璃量器的轴线。
如图2所示,本发明一实施例中,还包括漫反射光源50,漫反射光源 50通过竖直夹持机构41固定,漫反射光源50与摄像头31位于待测玻璃量器的两侧,漫反射光源50采用漫反射发光板,漫反射光源50朝向摄像头 31。
本实施例中注水装置01还包括温控模块,用于保持稳定的环境温度,避免注水过程中产生容积偏差。
本发明实施例玻璃量器的测量系统利用机电结构形成了确定相对位置的图像采集装置03和共轴向步进装置02,形成待测玻璃量器的位置基准和水位液面的测量基准,通过机电结构实现了水位液面的图像信息采集可以随水位变化进行,可以有效采集各注水状态下的水位液面图像,有效保证了水位液面的量化像素数据,为实现灵活的测量方法提供了结构基础。
本发明一实施例玻璃量器的测量方法如图3所示。在图3中,本发明实施例利用上述实施例玻璃量器的测量系统,包括:
步骤100:形成测量初始环境,调整图像采集装置03形成基准图像记录待测玻璃量器的底部玻璃表面像素位置。在本发明一实施例中,可以采用基准图像中量器底部原点到量器底部玻璃表面测量点所占像素厚度判断底部玻璃表面像素位置。
测量初始环境包括但不限于:受控装置(如摄像头、步进电机、漫反射光源)加电、补偿液体环境温度、校准竖直夹持机构和水平夹持机构等。
调整图像采集装置03的高度使得采集焦平面与待测玻璃量器的底部玻璃表面(即待测玻璃量器内的底部表面)对准,获得底部玻璃表面在整个待测玻璃量器中的位置,通过摄像头获取的待测玻璃量器图像上的底部玻璃表面的像素位置确定量化数据。
步骤200:注入标量液体,调整图像采集装置03移动到水位液面,形成水位图像记录水位液面像素位置。
注入标量液体待液体稳定。
调整图像采集装置03的高度使得采集焦平面与待测玻璃量器的水位液面平齐,获得水位液面在整个待测玻璃量器中的位置,通过摄像头获取的待测玻璃量器图像上的水位液面的像素位置确定量化数据。
步骤300:根据底部玻璃表面像素位置和水位液面像素位置形成待测玻璃量器的注水基准线图像和注水分度线图像。
本领域技术人员可以理解,图像采集装置03随共轴向步进装置02移动可以实现朝向待测玻璃量器的不同位置的正投影图像。在正投影图像中可以通过比较像素位置在整个图像中的位置获得在待测玻璃量器上的量化定位。在正投影图像中也可以通过比较像素位置与待测玻璃量器顶部或顶部的间距获得在待测玻璃量器上的量化定位。
本发明实施例的玻璃量器的测量方法利用共轴向步进装置02带动图像采集装置03在等距上对待测玻璃量器的局部作正视图像采集,获得关注表面的像素位置。通过关注表面像素在图像中的位置获得水位液面的量化位置数据,为后续的印刷过程提供一对一的注水基准线和注水分度线数据,较好地排除了玻璃量器生产误差带来的刻度线标注误差。
如图3所示,在本发明一实施例中,步骤100包括:
步骤110:共轴向步进装置02移动图像采集装置03采集图像,判断图像中底部玻璃表面所占像素厚度;在本发明一实施例中,可以采用基准图像中量器底部原点到量器底部玻璃表面测量点所占像素厚度判断底部玻璃表面像素位置。
步骤120:当像素厚度大于10个像素时(说明图像采集装置03的采集焦平面轴线与底部玻璃表面平行),通过共轴向步进装置02(例如反向) 移动图像采集装置03使采集图像中底部玻璃表面形成的线性图形的像素厚度主要部分为1像素(这是因为受制造工艺局限底部玻璃表面可能存在缺陷) 且局部像素厚度小于5像素(局部像素厚度的不一致表明存在产品缺陷,产品缺陷过大即淘汰);
步骤130:同时记录此时的采集图像为基准图像。
本发明实施例的玻璃量器的测量方法考虑到底部玻璃表面的制造瑕疵,利用像素厚度提高底部玻璃表面的均匀性容忍度。
如图3所示,在本发明一实施例中,步骤200包括:
步骤210:共轴向步进装置02移动图像采集装置03采集图像,判断图像中水位液面所占像素厚度;
步骤220:当像素厚度大于5个像素时(说明图像采集装置03的采集焦平面轴线与水位液面平行),通过共轴向步进装置02(例如反向)移动图像采集装置03使采集图像中的线性图形像素厚度为1像素;
步骤230:同时记录此时的采集图像为水位图像。
本发明实施例的玻璃量器的测量方法考虑到水位液面的中央平整性,利用1像素厚度提高水位液面的正视投影准确度。
如图3所示,在本发明一实施例中,步骤300包括:
步骤310:根据基准图像和水位图像的(竖直方向上的)成像距离形成基准图像和水位图像间的像素位置映射,在基准图像和水位图像间形成像素与物理距离间的映射。
不同图像的物理成像距离通过共轴向步进装置02的步进数据获得,基准图像和水位图像的正投影距离通过图像采集装置03与待测玻璃量器的设置间距获得。本领域技术人员可以理解,通过空间坐标系的坐标变换可以获得基准图像中注水分度线的像素位置数据,可以获得水位图像中注水基准线的像素位置数据。
本发明实施例的玻璃量器的测量方法形成像素位置数据互相包含的两个图像,可以实现后续印刷过程中的分度线校验。
本领域技术人员可以理解,注水装置01、共轴向步进装置02和图像采集装置03可以受控运行,利用成熟的处理器技术可以将玻璃量器的测量方法程序化并利用存储器存储对应的程序代码。处理器可以采用DSP(Digital Signal Processing)数字信号处理器、FPGA(Field-Programmable Gate Array) 现场可编程门阵列、MCU(MicrocontrollerUnit)系统板、SoC(system on a chip)系统板或包括I/O的PLC(Programmable LogicController)最小系统。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

1.一种玻璃量器的测量系统,其特征在于,包括:
注水装置,用于向竖直固定的玻璃量器中注入定量液体,形成水位液面;
共轴向步进装置,用于在固定距离上带动图像采集装置沿所述玻璃量器的轴线方向作移动,保持所述图像采集装置的采集焦平面与水位液面的垂直;
图像采集装置,用于采集所述玻璃量器中所述水位液面与所述图像采集装置的镜头主轴重合时的玻璃量器图像,记录所述水位液面在所述玻璃量器中的像素位置。
2.如权利要求1所述的玻璃量器的测量系统,其特征在于,还包括调平底座,所述调平底座用于形成水平基准,所述调平底座顶部包括若干个竖直夹持机构,所述竖直夹持机构分别固定所述注水装置、所述共轴向步进装置和所述玻璃量器。
3.如权利要求1所述的玻璃量器的测量系统,其特征在于,所述注水装置包括储水罐和计量泵,所述储水罐的出水口与所述计量泵的进水口通过吸液管路密封连接,所述计量泵的注水口连接注水管路,所述注水管路的出水口位于所述玻璃量器的开口上方或下方。
4.如权利要求1所述的玻璃量器的测量系统,其特征在于,所述共轴向步进装置包括步进电机、精密丝杠和固定框架,所述精密丝杠的轴向与所述玻璃量器的轴向平行,所述精密丝杠的两端转动固定在所述固定框架上,所述精密丝杠的顶端与所述步进电机的输出轴共轴线固定连接;所述精密丝杠的丝杠副上固定导向板,所述导向板的两端容纳于所述固定框架上位于所述精密丝杠对称两侧的导向凹槽中,所述导向凹槽的轴线与所述精密丝杠的轴线平行;所述导向板朝向所述玻璃量器的一面设置水平夹持机构。
5.如权利要求4所述的玻璃量器的测量系统,其特征在于,所述图像采集装置包括摄像头,所述摄像头通过所述水平夹持机构固定在所述导向板上,所述摄像头的所述采集焦平面朝向所述玻璃量器的轴线。
6.如权利要求2所述的玻璃量器的测量系统,其特征在于,还包括漫反射光源,所述漫反射光源通过所述竖直夹持机构固定,所述漫反射光源与所述图像采集装置位于所述玻璃量器的两侧,所述漫反射光源采用漫反射发光板,所述漫反射光源朝向所述图像采集装置。
7.一种玻璃量器的测量方法,其特征在于,利用如权利要求1至6任一所述的玻璃量器的测量系统,包括:
步骤100:形成测量初始环境,调整所述图像采集装置形成基准图像记录所述玻璃量器的底部玻璃表面像素位置;
步骤200:注入标量液体,调整所述图像采集装置移动到水位液面,形成水位图像记录水位液面像素位置;
步骤300:根据所述底部玻璃表面像素位置和所述水位液面像素位置形成所述玻璃量器的注水基准线图像和注水分度线图像。
8.如权利要求7所述的玻璃量器的测量方法,其特征在于,所述步骤100包括:
步骤110:所述共轴向步进装置移动所述图像采集装置采集图像,判断图像中底部玻璃表面所占像素厚度;
步骤120:当像素厚度大于10个像素时,通过所述共轴向步进装置移动所述图像采集装置使采集图像中所述底部玻璃表面形成的线性图形的像素厚度主要部分为1像素且局部像素厚度小于5像素;
步骤130:同时记录此时的采集图像为所述基准图像。
9.如权利要求7所述的玻璃量器的测量方法,其特征在于,所述步骤200包括:
步骤210:所述共轴向步进装置移动所述图像采集装置采集图像,判断图像中水位液面所占像素厚度;
步骤220:当像素厚度大于5个像素时,通过所述共轴向步进装置移动所述图像采集装置使采集图像中的线性图形像素厚度为1像素;
步骤230:同时记录此时的采集图像为所述水位图像。
10.如权利要求7所述的玻璃量器的测量方法,其特征在于,所述步骤300包括:
步骤310:根据基准图像和水位图像的成像距离形成所述基准图像和水位图像间的像素位置映射,在所述基准图像和水位图像间形成像素与物理距离间的映射。
CN201910752117.8A 2019-08-15 2019-08-15 一种玻璃量器的测量系统和测量方法 Pending CN110501048A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910752117.8A CN110501048A (zh) 2019-08-15 2019-08-15 一种玻璃量器的测量系统和测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910752117.8A CN110501048A (zh) 2019-08-15 2019-08-15 一种玻璃量器的测量系统和测量方法

Publications (1)

Publication Number Publication Date
CN110501048A true CN110501048A (zh) 2019-11-26

Family

ID=68587475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910752117.8A Pending CN110501048A (zh) 2019-08-15 2019-08-15 一种玻璃量器的测量系统和测量方法

Country Status (1)

Country Link
CN (1) CN110501048A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375749A (zh) * 2021-06-08 2021-09-10 广州计量检测技术研究院 玻璃量器标线的自动平视方法及装置、系统、设备
CN114877974A (zh) * 2022-06-08 2022-08-09 广州计量检测技术研究院 量入式玻璃量器的液面自动调定方法及装置、设备

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138814A (ja) * 2004-11-15 2006-06-01 Matsushita Electric Works Ltd 液面検出方法
CN1863272A (zh) * 2006-02-14 2006-11-15 华为技术有限公司 一种视频图像超分辨率重构方法
JP2007078483A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd 液面測定方法及び液量測定方法
CN101180873A (zh) * 2005-04-26 2008-05-14 图象公司 电子投影系统及其方法
CN101263369A (zh) * 2005-09-16 2008-09-10 韩国建设技术研究院 用于通过图像来测量液位的系统和方法
CN104180878A (zh) * 2014-08-26 2014-12-03 深圳市湘津石仪器有限公司 容器容量的自动检定仪及其检定方法
US20140368823A1 (en) * 2013-06-17 2014-12-18 Intellectual Reserves, LLC System and Method for Determining Fluid Parameters
CN105222849A (zh) * 2015-10-23 2016-01-06 中国计量学院 一种玻璃量器容积测量系统及方法
CN105675318A (zh) * 2015-12-28 2016-06-15 江苏大学 燃油加油机全自动检定装置及调平、液位图像识别方法
JP2016176819A (ja) * 2015-03-20 2016-10-06 株式会社イシダ 計量装置
US20170091585A1 (en) * 2015-06-29 2017-03-30 Quantum IR Technologies, LLC Methods and systems for tank level monitoring and alerting
US20180003728A1 (en) * 2015-01-28 2018-01-04 Hitachi High-Technologies Corporation Liquid surface inspection device, automated analysis device, and processing device
CN107615753A (zh) * 2015-07-27 2018-01-19 索尼公司 固态摄像器件、用于固态摄像器件的控制方法及电子设备
CN108414048A (zh) * 2018-03-16 2018-08-17 中国石油大学(华东) 标准金属量器液位计量装置及系统
CN109060068A (zh) * 2018-08-27 2018-12-21 湛江经济技术开发区裕鑫实业有限公司 一种自动读取玻璃容器液体体积的装置及方法
CN110044448A (zh) * 2019-05-29 2019-07-23 山西科致成科技有限公司 一种玻璃量器容量自动检定装置及其检定方法
CN210664641U (zh) * 2019-08-15 2020-06-02 重庆欣维尔玻璃有限公司 一种玻璃量器的测量系统

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138814A (ja) * 2004-11-15 2006-06-01 Matsushita Electric Works Ltd 液面検出方法
CN101180873A (zh) * 2005-04-26 2008-05-14 图象公司 电子投影系统及其方法
JP2007078483A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd 液面測定方法及び液量測定方法
CN101263369A (zh) * 2005-09-16 2008-09-10 韩国建设技术研究院 用于通过图像来测量液位的系统和方法
CN1863272A (zh) * 2006-02-14 2006-11-15 华为技术有限公司 一种视频图像超分辨率重构方法
US20140368823A1 (en) * 2013-06-17 2014-12-18 Intellectual Reserves, LLC System and Method for Determining Fluid Parameters
CN104180878A (zh) * 2014-08-26 2014-12-03 深圳市湘津石仪器有限公司 容器容量的自动检定仪及其检定方法
US20180003728A1 (en) * 2015-01-28 2018-01-04 Hitachi High-Technologies Corporation Liquid surface inspection device, automated analysis device, and processing device
JP2016176819A (ja) * 2015-03-20 2016-10-06 株式会社イシダ 計量装置
US20170091585A1 (en) * 2015-06-29 2017-03-30 Quantum IR Technologies, LLC Methods and systems for tank level monitoring and alerting
CN107615753A (zh) * 2015-07-27 2018-01-19 索尼公司 固态摄像器件、用于固态摄像器件的控制方法及电子设备
CN105222849A (zh) * 2015-10-23 2016-01-06 中国计量学院 一种玻璃量器容积测量系统及方法
CN105675318A (zh) * 2015-12-28 2016-06-15 江苏大学 燃油加油机全自动检定装置及调平、液位图像识别方法
CN108414048A (zh) * 2018-03-16 2018-08-17 中国石油大学(华东) 标准金属量器液位计量装置及系统
CN109060068A (zh) * 2018-08-27 2018-12-21 湛江经济技术开发区裕鑫实业有限公司 一种自动读取玻璃容器液体体积的装置及方法
CN110044448A (zh) * 2019-05-29 2019-07-23 山西科致成科技有限公司 一种玻璃量器容量自动检定装置及其检定方法
CN210664641U (zh) * 2019-08-15 2020-06-02 重庆欣维尔玻璃有限公司 一种玻璃量器的测量系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨秀君: "基于图像处理的罐体液位检测方法的研究", 中国优秀硕士学位论文全文数据库 信息科技辑, no. 01, 15 January 2010 (2010-01-15), pages 140 - 231 *
齐旭平: "基于视觉的玻璃容器质量检测技术研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, no. 11, 15 November 2018 (2018-11-15), pages 015 - 109 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375749A (zh) * 2021-06-08 2021-09-10 广州计量检测技术研究院 玻璃量器标线的自动平视方法及装置、系统、设备
CN113375749B (zh) * 2021-06-08 2022-12-23 广州计量检测技术研究院 玻璃量器标线的自动平视方法及装置、系统、设备
CN114877974A (zh) * 2022-06-08 2022-08-09 广州计量检测技术研究院 量入式玻璃量器的液面自动调定方法及装置、设备
CN114877974B (zh) * 2022-06-08 2022-12-23 广州计量检测技术研究院 量入式玻璃量器的液面自动调定方法及装置、设备

Similar Documents

Publication Publication Date Title
KR101318866B1 (ko) 반사면의 형상을 측정하는 방법 및 시스템
CN110501048A (zh) 一种玻璃量器的测量系统和测量方法
CN111006610B (zh) 一种基于结构光三维测量的水下三维测量数据校正方法
KR102328240B1 (ko) 거울 표면을 위한 구조화 광의 투영
CN109443214B (zh) 一种结构光三维视觉的标定方法、装置及测量方法、装置
CN110579428A (zh) 一种液滴接触角的测量计算方法及装置
CN206258081U (zh) 一种具有实时高度标定功能的三维影像测量装置
CN109462752A (zh) 一种摄像模组光心位置测量方法及装置
CN110246191A (zh) 相机非参数模型标定方法及标定精度评估方法
CN108805954A (zh) 一种投影层析三维血流速度测量装置及方法
CN112504383A (zh) 基于图像处理的量器内液位平视判断方法
CN110285836A (zh) 倾角式静力水准仪校准装置及校准方法
CN106546193A (zh) 一种高反射物体表面三维测量方法和系统
CN201007646Y (zh) 一种液体辅助断层扫描三维形状测量装置
CN114813061A (zh) 一种近眼成像设备的光学参数检测方法及系统
CN106447729B (zh) 一种基于坐标变换的二维数字图像相关补偿方法及二维光学数字图像相关引伸计
CN110108204A (zh) 利用镜头检测连接器pin针位置偏差的方法
CN109242909A (zh) 一种面向高精度二维尺寸测量的线阵相机标定算法
CN108507461A (zh) 具有加速度计的3d扫描仪
CN219301539U (zh) 基于3d相机和面阵相机的线面轮廓测量系统
CN109632087B (zh) 适用于成像亮度计的现场标定方法及成像亮度计标定装置
CN110524117A (zh) 一种玻璃量器的雕刻系统和雕刻方法
CN110926371A (zh) 三维表面检测方法及装置
CN208476385U (zh) 人体数据测量装置
CN110524118A (zh) 一种玻璃量器的制造系统和制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination