CN110498445A - 层状GaAs、其制备方法及由此剥离的GaAs纳米片 - Google Patents

层状GaAs、其制备方法及由此剥离的GaAs纳米片 Download PDF

Info

Publication number
CN110498445A
CN110498445A CN201910420208.1A CN201910420208A CN110498445A CN 110498445 A CN110498445 A CN 110498445A CN 201910420208 A CN201910420208 A CN 201910420208A CN 110498445 A CN110498445 A CN 110498445A
Authority
CN
China
Prior art keywords
gaas
stratiform
mentioned
nanometer sheet
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910420208.1A
Other languages
English (en)
Other versions
CN110498445B (zh
Inventor
沈祐永
崔相珍
金慧修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshi University School-Industry-University Cooperation Group
Industry Academic Cooperation Foundation of Yonsei University
Original Assignee
Yanshi University School-Industry-University Cooperation Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshi University School-Industry-University Cooperation Group filed Critical Yanshi University School-Industry-University Cooperation Group
Priority to CN202111382861.7A priority Critical patent/CN113912112A/zh
Publication of CN110498445A publication Critical patent/CN110498445A/zh
Application granted granted Critical
Publication of CN110498445B publication Critical patent/CN110498445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/002Compounds containing, besides arsenic, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种层状GaAs、其制备方法及由此剥离的GaAs纳米片,更具体而言,涉及一种与现有块状GaAs不同地具有二维晶体结构,由于可剥离性优异而易于以纳米片的形式剥离,具有在面内(inplane)方向上易于传输电荷的结构,因此具有优异的电特性的层状GaAs。

Description

层状GaAs、其制备方法及由此剥离的GaAs纳米片
技术领域
本发明涉及一种层状GaAs、其制备方法及由此剥离的GaAs纳米片,更具体而言,涉及一种与现有块状GaAs不同地具有二维晶体结构,由于可剥离性优异而易于以纳米片的形式剥离,具有在面内方向上易于传输电荷的结构,因此具有优异的电特性的层状GaAs、其制备方法及由此剥离的GaAs纳米片。
背景技术
基于新的物理、化学、机械和光学特性,包括石墨烯在内的各种超薄膜二维(2D)材料已在各种领域中得到积极研究。这些低维材料被期待具有现有体材料不具备的突破性的新功能,并且很可能成为替代现有材料的下一代未来材料。
对现有二维材料的研究是基于自上而下(Top-down)的方法和自下而上(Bottom-up)的方法进行的,上述自上而下的方法通过物理和化学方法将层间结合力弱的范德瓦尔斯键分离,上述自下而上的方法基于气相沉积生长大面积薄膜。尤其,在自上而下的方法的情况下,由于剥离(exfoliation)对象材料的母相(pristine)必须具有二维层状晶体结构,因此,研究对象非常有限,例如没有带隙的石墨烯、具有低电荷迁移率的层状金属氧化物/氮化物、具有低电子迁移率和低电导率的过渡金属硫属化合物等。
由于现有研究方法的局限性,二维材料已经针对石墨烯或过渡金属硫属化合物等材料进行非常有限的研究,这本身由于能否开发低维材料根据所使用的元素的种类受到限制而存在局限性,并且是不适合开发不是层状结构的大量3D体材料的低维未来材料的方法。
另一方面,砷化镓(Gallium arsenide)是具代表性的3-5族半导体材料,由于其具有直接带隙(direct band gap)、高电荷迁移率和宽带隙等优点而广泛应用于集成电路、二极管、太阳能电池等。由于当这种砷化镓制造成二维材料时,可以在面内方向上具有非常高的迁移率,因此砷化镓可以成为半导体器件应用的有前途的候选者。
(现有技术文献)
(专利文献)
(专利文献0001)韩国授权专利号10-1580211
发明内容
技术问题
本发明的目的在于,提供与现有块状GaAs不同地具有二维晶体结构,由于可剥离性优异而易于以纳米片的形式剥离,具有在面内方向上易于传输电荷的结构,因此具有优异的电特性的层状GaAs、其制备方法及由此剥离的GaAs纳米片。
解决问题的方案
为了达到上述目的,本发明提供一种层状GaAs的制备方法,其特征在于,包括:步骤(1),对含有K粉末或Na粉末、Ga粉末和As粉末的混合物进行热处理,然后冷却,以获得具有由空间群(space group)为P21/c的单斜(monoclinic)晶体结构且由化学式K2Ga2As3或Na2Ga2As3表示的层状化合物;及步骤(2),用包含能够选择性地除去上述层状化合物中含有的K离子或Na离子的盐和能够溶解上述盐的溶剂的混合溶液处理上述层状化合物来制备无结晶或无定形结构的层状GaAs。
根据本发明的一实施例,上述盐可以由下述化学式1表示。
<化学式1>
MXa(2≤a≤3)
在上述化学式1中,M为选自Al、Mg、Zn、Ga及Mn中的一种,X为选自Cl、Br及I中的一种。
并且,根据本发明的一实施例,上述溶剂可以包括选自水、乙醇、环状碳酸酯溶剂、链状碳酸酯溶剂、酯溶剂、醚溶剂、腈溶剂和酰胺溶剂中的至少一种。
并且,根据本发明的一实施例,上述步骤(1)中的热处理可以在650至800℃下进行6至24小时。
并且,根据本发明的一实施例,上述步骤(1)中的冷却可以以0.5至3℃/小时的降温速度进行。
并且,本发明提供一种具有结晶或无定形结构的层状GaAs。
根据本发明的一实施例,上述层状GaAs在使用Cu-Kα线的粉末X射线衍射法获得的X射线衍射图中,在26.9±0.2、44.6±0.2、52.8±0.2、64.9±0.2及71.5±0.2的2θ值可以不具有峰值。
并且,本发明提供一种GaAs纳米片,其从根据本发明的层状GaAs剥离且具有结晶或无定形结构。
根据本发明的一实施例,上述GaAs纳米片的厚度可以为400nm或更小。
发明的效果
根据本发明的层状GaAs与现有块状GaAs不同地具有二维晶体结构,由于可剥离性优异而易于以纳米片的形式剥离,具有在面内方向上易于传输电荷的结构,因此具有优异的电特性,从而可以广泛用作半导体器件。
附图说明
图1a为关于本发明的一实施例的层状GaAs的制备方法的示意图。图1b为示出K2Ga2As3/Na2Ga2As3、由此制备的层状GaAs及GaAs纳米片的纳米结构的图。
图2a为示出层状K2Ga2As3的X射线衍射(X-Ray Diffraction,XRD)分析结果的图表。
图2b为示出层状Na2Ga2As3的XRD分析结果的图表。
图2c为示出层状K2Ga2As3、经过混合溶液处理的层状GaAs、经过去离子水清洗的层状GaAs和3D块状GaAs的XRD分析结果的图表。
图3a为根据本发明实施方案的层状K2Ga2As3和由其获得的层状GaAs的扫描式电子显微镜(scanning electron microscope,SEM)图像。
图3b为根据本发明实施方案的层状Na2Ga2As3和由其获得的层状GaAs的扫描式电子显微镜(scanning electron microscope,SEM)图像。
图3c为根据本发明的一实施例的GaAs纳米片的TEM图像。
图4a为示出层状K2Ga2As3的电子数据转换(electronic data switching,EDS)分析结果的图像。
图4b为示出根据本发明的一实施例的层状GaAs的EDS分析结果的图像。
图5a为示出根据本发明的一实施例由K2Ga2As3获得的层状GaAs的透射电镜(transmission electron microscope,TEM)照片、EDS照片、EDS映射(mapping)及由此获得的元素比例的表,图5b为示出根据本发明的一实施例由层状Na2Ga2As3获得的层状GaAs的TEM照片、EDS照片、EDS映射及由此获得的元素比例的表。
图6a和6b分别为示出根据本发明的一实施例由K2Ga2As3和Na2Ga2As3获得的GaAs纳米片的AFM分析结果的图和曲线图。
图7为示出Na2Ga2As3、由上述Na2Ga2As3获得的层状GaAsp及3D块状GaAs的Ga2p轨道的X射线光电子分析结果。
图8为示出根据本发明的一实施例合成的由Na2Ga2As3和由上述Na2Ga2As3获得的每个层状GaAs和块状GaAs的拉曼(Raman)分析结果。
图9和图10为根据本发明的一实施例从Na2Ga2As3获得的各个区域轴(zone axis)为[100]和[010]的层状GaAs的横截面(cross-section)STEM图像。
图11A为由Na2Ga2As3得到的层状GaAs的OM(光学显微镜)图像,图11B为其光致发光映射图像,图11C为其光致发光峰值数据。
具体实施方式
以下,参照附图来对本发明的实施例进行详细说明,以使本发明所属技术领域的普通技术人员轻松实现本发明。本发明可通过多种不同的实施方式实现,并不限定于在本说明书中所说明的实施例。
下面,对根据本发明的层状GaAs的制备方法进行说明。
根据本发明的层状GaAs的制备方法可以将现有3D结构的块状GaAs制造成二维结构,且可以制备与现有块状GaAs不同地可以容易地剥离,且具有在面内方向上易于传输电荷的结构,因此具有优异的电特性的层状GaAs。
首先,作为步骤(1),对含有K粉末或Na粉末、Ga粉末和As粉末的混合物进行热处理,然后冷却,以获得具有由空间群为P21/c的单斜晶体结构且由化学式K2Ga2As3或Na2Ga2As3表示的层状化合物。
上述混合物可以被密封在反应容器中后经过热处理,并且上述反应容器的内部可以保持在惰性气体气氛中。
并且,例如,上述反应容器的材料可以是氧化铝、钼、钨或石英,但只要是不与样品反应并且在高温下不会破裂的材料,就可以不受限制地使用。
若上述混合物包括K粉末、Ga粉末及As粉末,则上述层状化合物为K2Ga2As3且具有空间群为P21/c的单斜晶体结构,这可以通过图2a的K2Ga2As3的XRD分析结果确认。
并且,若上述混合物包括Na粉末、Ga粉末及As粉末,则上述层状化合物为Na2Ga2As3且具有空间群为P21/c的单斜晶体结构,这可以通过图2b的Na2Ga2As3的XRD分析结果确认。
如图1所示,通过步骤(1)所准备的K2Ga2As3或Na2Ga2As3具有与3D晶体结构的GaAs不同的2D晶体结构,在下面将描述的步骤(2)中,可以通过选择性地去除上述K2Ga2As3的K离子或Na2Ga2As3的Na离子来制备结晶或无定形结构的层状GaAs。
根据本发明的一实施例,上述热处理可以在650至800℃下进行6至24小时。
若在低于650℃的温度下进行热处理,则上述混合物的烧结反应未完成,导致未反应的原料残留,从而可能存在所制备的层状化合物的产率降低等的问题。若在高于800℃的温度下进行热处理,则可能由于K离子或Na离子的气化而引起烧结反应中使用的反应容器破裂或所制备的层状化合物的产率降低等的问题。
若上述热处理时间少于6小时,则上述混合物的烧结反应未完成,导致未反应的原料残留,从而可能存在所制备的层状化合物的产率降低等的问题。另外,若上述热处理时间超过24小时,则可能不必要地增加制备工艺时间。
在经过热处理后进行冷却的过程为了层状化合物的结晶化而必要的,且晶体的单晶尺寸可以根据冷却速率而变化。
可以以0.5至3℃/小时的降温速度进行上述冷却,由此可以使上述层状化合物单晶化,且在去除上述层状化合物中所含的K离子或Na离子之后,也可以保持层状GaAs的单晶尺寸。并且,在上述层状化合物为单晶时,可以具有比多晶更优异的电荷迁移率。若上述降温速度小于0.5℃/小时,则可能由于K离子或Na离子的气化而所制备的材料的组成发生变化。若上述降温速度超过3℃/小时,则所制备的层状化合物可能会多晶化。
其次,作为步骤(2),用包含能够选择性地去除在上述层状化合物中所含的K离子或Na离子的盐和能够溶解上述盐的溶剂的混合溶液处理在上述步骤(1)中制备的层状化合物来选择性地去除上述K离子或Na离子,从而制备结晶或无定形结构的层状GaAs。
更具体地,具有无定形结构的分层GaAs可以由K2Ga2As3制造,并且具有结晶结构的分层GaAs可以由Na2Ga2As3制造。
为了容易与上述层状化合物中含有的碱金属离子产生反应,上述盐可以包含电负性高的阴离子和具有上述碱金属离子与Ga离子之间的电负性值的阳离子。
根据本发明的一实施例,上述盐可以由下述化学式1表示,上述盐由作为具有上述碱金属离子与Ga离子之间的电负性值的阳离子的M和作为电负性高的阴离子的X构成。
<化学式1>
MXa(2≤a≤3)
在上述化学式1中,M为选自Al、Mg、Zn、Ga及Mn中的一种,X为选自Cl、Br及I中的一种。
并且,根据本发明的一实施例,上述溶剂可以包括选自水、乙醇、环状碳酸酯溶剂、链状碳酸酯溶剂、酯溶剂、醚溶剂、腈溶剂和酰胺溶剂中的至少一种。
上述盐的用量可以足以除去上述层状化合物的碱金属离子,但优选地,上述混合溶液中所含的层状化合物和盐的摩尔比可以为1:1至1:3。若上述层状化合物和盐的摩尔比小于1:1,则上述层状化合物的碱金属离子可能不会被除去到所需的水平,若上述摩尔比超过1:3,则存在上述盐不溶于上述混合溶液中,从而出现产生沉淀物等的问题。
并且,上述步骤(2)可以在顺利地进行上述碱金属离子去除反应的温度下进行。温度可以根据上述混合溶液的组成而变化,优选地,在等于或大于20℃的温度下进行,更优选地,在20至60℃的温度下进行。若在低于20℃的温度下进行,则无法将碱金属离子除去到所需的水平,或者所制备的层状化合物的层状结构会崩溃。若在高于60℃的温度下进行,所制备的层状化合物的层状结构会崩溃。并且,若20至60℃的温度下进行,则可以在保持所制备的层状化合物的层状结构的同时,碱金属离子的去除率可以优异。
并且,上述步骤(2)可以根据上述混合溶液的组成和Ca离子的去除速率而进行多次,但优选地,进行一次以保持所制备的层状GaAs的层状结构。
并且,在上述步骤(2)之后,除了层状GaAs之外,还可以存在通过碱金属离子与盐产生反应而形成的反应产物。为了除去该反应产物,可以用溶剂清洗通过上述步骤(2)得到的粉末。
用于除去上述反应物的溶剂可以是选自水、去离子水和乙醇中的至少一种,优选为去离子水。
其次,对本发明的层状GaAs进行说明。
根据本发明的层状GaAs具有结晶或无定形结构,且具有与现有3D块状GaAs不同地晶体结构,由于可剥离性优异而易于以纳米片的形式剥离,具有在面内方向上易于传输电荷的结构,因此具有优异的电特性。
根据本发明的一实施例,上述层状GaAs在使用Cu-Kα线的粉末X射线衍射法获得的X射线衍射图中,在26.9±0.2、44.6±0.2、52.8±0.2、64.9±0.2及71.5±0.2的2θ值可以不具有峰值。
其次,对本发明的GaAs纳米片进行说明。
根据本发明的GaAs纳米片可以通过从根据本发明的层状GaAs剥离而获得,且具有结晶或无定形结构。
上述层状GaAs的剥离方法可以是在本领域已知的层状材料的剥离方法,作为一例,可以是通过超声波能量剥离的方法、通过溶剂的侵入剥离的方法、使用胶带的剥离方法及使用具有粘合性表面的材料的剥离方法中的一种方法。
从根据本发明的层状GaAs剥离的GaAs纳米片可以具有小于或等于400nm的厚度。
另一方面,根据本发明的层状GaAs和GaAs纳米片可以应用于发光二极管。具体而言,发光二极管可以包括第一电极、发光层和第二电极。此时,上述发光层可以包括根据本发明的层状GaAs或GaAs纳米片,根据本发明的层状GaAs和GaAs具有优异的电荷迁移率,从而可以提高发光二极管的发光效率。由于上述发光二极管的每个组成可以采用本领域中的已知组成,因此在本发明中将省略其详细描述。
并且,根据本发明的层状GaAs和GaAs纳米片可以应用于集成电路。具体而言,包括在集成电路中的半导体芯片可以包括根据本发明的层状GaAs或GaAs纳米片。例如,可以在硅晶片上设置包括根据本发明的层状GaAs或GaAs纳米片的层以构成半导体芯片。除了包括在上述集成电路中的半导体芯片之外的组成可以采用本领域的已知组成,因此在本发明中将省略其详细描述。
并且,根据本发明的层状GaAs和GaAs纳米片可以应用于太阳能电池。具体而言,包括在太阳能电池中的光活性层可以包括根据本发明的具有优异电荷迁移率的层状GaAs或GaAs纳米片,从而提高太阳能电池的光电转换效率。除了包括在上述太阳能电池中的光活性层之外的组成可以采用本领域的已知组成,因此将省略其详细描述。
如上对本发明的一实施例进行说明,但本发明的主旨并不限于本说明书中的实施例,本领域的技术人员在相同主旨范围内,可通过对构成要件的附加、修改、删除、增加等容易地提出其它实施例,而这些属于本发明的主旨范围。
(准备例1)制备层状K2Ga2As3
将预定量的K粉末、Ga粉末及As粉末混合并在惰性气体气氛中密封在石英管中。将含有样品的石英管在750℃下热处理10小时。然后,为了重结晶K2Ga2As3,以0.5至3℃/小时的降温速度冷却,从而得到具有空间群为P21/c的单斜晶体结构的K2Ga2As3单晶。
(准备例2)制备层状Na2Ga2As3
将预定量的Na粉末、Ga粉末及As粉末混合并在惰性气体气氛中密封在石英管中。将含有样品的石英管在750℃下热处理10小时。然后,为了重结晶Na2Ga2As3,以1℃/小时的降温速度冷却,从而得到具有空间群为P21/c的单斜晶体结构的Na2Ga2As3单晶。
(实施例1)制备层状GaAs
将准备例1中制备的K2Ga2As3与去离子水、乙醇和AlCl3混合以从上述K2Ga2As3中除去K离子,并用去离子水洗涤以除去KCl,由此,制备具有无定形晶体结构的层状GaAs。
(实施例2)制备GaAs纳米片
用透明胶带(3M)剥离实施例1中制备的层状GaAs以制备GaAs纳米片。
(实施例3)制备层状GaAs
将准备例2中制备的Na2Ga2As3与去离子水和GaCl3混合以从上述Na2Ga2As3中除去Na离子,并用甲醇洗涤以除去NaCl,由此,具有结晶结构的分层GaAs。
(实施例4)制备GaAs纳米片
用透明胶带(3M)剥离实施例2中制备的层状GaAs以制备GaAs纳米片。
(比较例1)3D块状GaAs
制备作为市售产品的3D块状GaAs(西格玛奥德里奇(Sigma Aldrich)公司,产品号:329010)。
(实验例1)XRD分析
对比较例1的GaAs、准备例1、准备例2、实施例1至实施例4中制备的样品进行XRD分析,其结果如图2a至图2c所示。
参照图2a可以确认层状K2Ga2As3(准备例1)合成为高纯度单晶,且参照图2b可以确认层状Na2Ga2As3(准备例2)合成为高纯度单晶。
参照图2c可以确认用混合溶液处理上述层状K2Ga2As3来除去K离子后,用去离子水清洗的层状GaAs(实施例1)呈现与具有3D结构的块状GaAs不同的无定形晶体结构。
(实验例2)SEM分析
拍摄准备例1和准备例2、实施例1及实施例4中制备的样品的SEM图像,结果如图3a至图3c所示。
参照图3a和图3b,从K2Ga2As3(准备例1)和Na2Ga2As3(准备例2)制备的GaAs呈层状。
并且,参照图3c可以确认GaAs纳米片具有薄板状结构。
(实验例3)EDS分析
对准备例1和实施例1中制备的样品进行EDS分析,结果如图4a和图4b所示。
参照图4a和图4b可以确认,当用能够选择性地去除K离子的混合溶液处理层状K2Ga2As3(准备例1)时,可以显著降低所制备的层状GaAs的K元素含量。
(实验例4)TEM分析
对实施例2和实施例4中制备的GaAs纳米片进行TEM分析,结果如图5a和图5b所示。
参照图5a和图5b可以确认从层状GaAs剥离的GaAs呈纳米片的形状。
(实验例5)AFM分析
对将通过用胶带剥离在准备例1中制备的层状K2Ga2As3来制备的K2Ga2As3纳米片和将上述K2Ga2As3纳米片和去离子水、乙醇及AlCl3混合来从上述K2Ga2As3纳米片除去K离子而得的GaAs纳米片进行AFM分析,结果如图6a所示。
对将通过用胶带剥离在准备例2中制备的层状Na2Ga2As3来制备的Na2Ga2As3纳米片和将上述Na2Ga2As3纳米片和去离子水及GaCl3混合来从上述Na2Ga2As3纳米片除去Na离子而得的GaAs纳米片进行AFM分析,结果如图6b所示。
参照图6a和可以确认,由于从K2Ga2As3纳米片中除去K离子而GaAs纳米片的厚度减小,从而所制备的GaAs纳米片的厚度为150nm。
参照图6b可以确认,由于从Na2Ga2As3纳米片中除去Na离子而GaAs纳米片的厚度减小,从而所制备的GaAs纳米片的厚度为80nm。
(实验例6)X射线光电子分析
对制备例2和实施例3的层状GaAs和比较例1的3D体积GaAs进行X射线光电子能谱分析,结果示于图7。
图7证实,在用混合溶液处理之前,根据本发明的分层GaAs的Ga具有与3D大体积GaAs的Ga和Na2Ga2As3的Ga不同的电荷状态。
(实验例7)Raman分析
对制备例2和实施例3的层状GaAs和比较例1的3D体积GaAs进行拉曼分析,结果如图8所示。
参照图8,可以看出,通过混合溶液处理,200cm-1附近的峰消失,由此确认Na被除去,并且Na与其他原子之间的相互作用消失。
(实验例8)截面STEM图像分析
区域轴[100]和[010]的实施例3的层状GaAs的横截面STEM照片分别显示在图9和图10中。
参考图9和图10,可以看出存在于各层之间的Na原子被除去。
(实验例9)光致发光分析
通过光致发光测试分析实施例3的层状GaAs的光致发光特性,并显示在图11B和图11C中。
参照图11C,发现在710nm附近产生峰,这与在830nm附近产生峰的3D GaAs的峰不同。

Claims (9)

1.一种层状GaAs的制备方法,其特征在于,包括:
步骤(1),对含有K粉末或Na粉末、Ga粉末和As粉末的混合物进行热处理,然后冷却,以获得具有由空间群为P21/c的单斜晶体结构且由化学式K2Ga2As3或Na2Ga2As3表示的层状化合物;及
步骤(2),用包含能够选择性地除去上述层状化合物中含有的K离子或Na离子的盐和能够溶解上述盐的溶剂的混合溶液处理上述层状化合物来制备结晶或无定形结构的层状GaAs。
2.根据权利要求1所述的层状GaAs的制备方法,其特征在于,
上述盐由下述化学式1表示:
<化学式1>
MXa(2≤a≤3)
在上述化学式1中,M为选自Al、Mg、Zn、Ga及Mn中的一种,X为选自Cl、Br及I中的一种。
3.根据权利要求1所述的层状GaAs的制备方法,其特征在于,
上述溶剂包括选自水、乙醇、环状碳酸酯溶剂、链状碳酸酯溶剂、酯溶剂、醚溶剂、腈溶剂和酰胺溶剂中的至少一种。
4.根据权利要求1所述的层状GaAs的制备方法,其特征在于,
上述步骤(1)中的热处理在650至800℃下进行6至24小时。
5.根据权利要求1所述的层状GaAs的制备方法,其特征在于,
上述步骤(1)中的冷却以0.5至3℃/小时的降温速度进行。
6.一种层状GaAs,其特征在于,具有结晶或无定形结构。
7.根据权利要求6所述的层状GaAs,其特征在于,
上述层状GaAs在使用Cu-Kα线的粉末X射线衍射法获得的X射线衍射图中,在26.9±0.2、44.6±0.2、52.8±0.2、64.9±0.2及71.5±0.2的2θ值不具有峰值。
8.一种GaAs纳米片,其特征在于,从权利要求6所述的层状GaAs剥离,且具有结晶或无定形结构。
9.根据权利要求8所述的GaAs纳米片,其特征在于,
上述GaAs纳米片的厚度为400nm或更小。
CN201910420208.1A 2018-05-18 2019-05-20 层状GaAs、其制备方法及由此剥离的GaAs纳米片 Active CN110498445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111382861.7A CN113912112A (zh) 2018-05-18 2019-05-20 层状GaAs及由此剥离的GaAs纳米片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180057449A KR102057700B1 (ko) 2018-05-18 2018-05-18 층상형 GaAs, 이의 제조 방법 및 이로부터 박리된 GaAs 나노시트
KR10-2018-0057449 2018-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111382861.7A Division CN113912112A (zh) 2018-05-18 2019-05-20 层状GaAs及由此剥离的GaAs纳米片

Publications (2)

Publication Number Publication Date
CN110498445A true CN110498445A (zh) 2019-11-26
CN110498445B CN110498445B (zh) 2022-01-28

Family

ID=68532801

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111382861.7A Pending CN113912112A (zh) 2018-05-18 2019-05-20 层状GaAs及由此剥离的GaAs纳米片
CN201910420208.1A Active CN110498445B (zh) 2018-05-18 2019-05-20 层状GaAs、其制备方法及由此剥离的GaAs纳米片

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111382861.7A Pending CN113912112A (zh) 2018-05-18 2019-05-20 层状GaAs及由此剥离的GaAs纳米片

Country Status (3)

Country Link
US (2) US20190352799A1 (zh)
KR (1) KR102057700B1 (zh)
CN (2) CN113912112A (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057700B1 (ko) * 2018-05-18 2019-12-19 연세대학교 산학협력단 층상형 GaAs, 이의 제조 방법 및 이로부터 박리된 GaAs 나노시트
KR102479782B1 (ko) * 2020-09-09 2022-12-21 연세대학교 산학협력단 층상구조 GaP, GaP 나노시트 및 이를 이용한 전기 소자
KR102425888B1 (ko) * 2020-09-09 2022-07-26 연세대학교 산학협력단 갈륨과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
KR102453021B1 (ko) * 2020-09-09 2022-10-07 연세대학교 산학협력단 층상구조 GaN, GaN 나노시트 및 이를 이용한 전기 소자
US11597651B2 (en) 2020-09-09 2023-03-07 Industry-Academic Cooperation Foundation, Yonsei University Layered group III-V compound and nanosheet containing phosphorus, and electrical device using the same
KR102425892B1 (ko) * 2020-09-09 2022-07-26 연세대학교 산학협력단 인듐과 인을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
US11634340B2 (en) 2020-09-09 2023-04-25 Industry-Academic Cooperation Foundation, Yonsei University Layered group III-V compound and nanosheet containing arsenic, and electrical device using the same
KR102425889B1 (ko) * 2020-09-14 2022-07-26 연세대학교 산학협력단 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
US11643753B2 (en) 2020-09-14 2023-05-09 Industry-Academic Cooperation Foundation, Yonsei University Layered group III-V compound and nanosheet containing antimony, and electrical device using the same
KR102484718B1 (ko) * 2020-10-27 2023-01-05 연세대학교 산학협력단 갈륨과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자
KR102514681B1 (ko) 2020-11-10 2023-03-27 연세대학교 산학협력단 층상구조를 가지고 강유전 유사 특성을 가지는 3-5족 화합물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459206A (zh) * 2008-12-26 2009-06-17 上海联孚新能源科技有限公司 高效多结太阳能电池的制造方法
CN108004409A (zh) * 2017-12-15 2018-05-08 清远先导材料有限公司 一种砷化镓污泥中镓的分离回收方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609424A (en) * 1981-05-22 1986-09-02 United Technologies Corporation Plasma enhanced deposition of semiconductors
US5639343A (en) * 1995-12-13 1997-06-17 Watkins-Johnson Company Method of characterizing group III-V epitaxial semiconductor wafers incorporating an etch stop layer
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US7582975B1 (en) * 2006-10-19 2009-09-01 Hewlett-Packard Development Company, L.P. Nanowire device and method of making the same
KR101580211B1 (ko) 2014-01-03 2015-12-24 한국과학기술원 몰리브덴 디설파이드나노시트 제조방법, 이를 위한 박리액 및 이에 의하여 제조된 몰리브덴 디설파이드 나노시트
US20170047223A1 (en) 2015-08-13 2017-02-16 The Regents Of The University Of California Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer
KR102057700B1 (ko) * 2018-05-18 2019-12-19 연세대학교 산학협력단 층상형 GaAs, 이의 제조 방법 및 이로부터 박리된 GaAs 나노시트

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459206A (zh) * 2008-12-26 2009-06-17 上海联孚新能源科技有限公司 高效多结太阳能电池的制造方法
CN108004409A (zh) * 2017-12-15 2018-05-08 清远先导材料有限公司 一种砷化镓污泥中镓的分离回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATIAR M R HOWLADER ET AL.: ""Formation of gallium arsenide nanostructures in Pyrex glass"", 《NANOTECHNOLOGY》 *

Also Published As

Publication number Publication date
US20190352799A1 (en) 2019-11-21
CN113912112A (zh) 2022-01-11
CN110498445B (zh) 2022-01-28
KR102057700B1 (ko) 2019-12-19
US11802350B2 (en) 2023-10-31
KR20190132148A (ko) 2019-11-27
US20210130980A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
CN110498445A (zh) 层状GaAs、其制备方法及由此剥离的GaAs纳米片
KR102285270B1 (ko) 층상형 InAs, 이의 제조 방법 및 이로부터 박리된 InAs 나노시트
Apte et al. Polytypism in ultrathin tellurium
KR102271060B1 (ko) 층상형 AlN, 이의 제조 방법 및 이로부터 박리된 AlN 나노시트
US10074814B2 (en) Germanane analogs and optoelectronic devices using the same
Cai et al. Solvothermal synthesis and characterization of zinc indium sulfide microspheres
Zhong et al. Sphere-like CuGaS2 nanoparticles synthesized by a simple biomolecule-assisted solvothermal route
CN109437124B (zh) 一种合成单层过渡金属硫族化合物的方法
Kawamoto et al. Micrometer-scale monolayer SnS growth by physical vapor deposition
Huang et al. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application
Zhang et al. Highly ambient-stable few-layer black phosphorene by pulsed laser exfoliation and HEMM
CN103668453B (zh) 一种二维硅烯薄膜及其制备方法
Szczech et al. Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning
Wang et al. Amine-assisted solution approach for the synthesis and growth mechanism of super-long rough-surfaced Cu 7 Te 4 nanobelts
KR102514681B1 (ko) 층상구조를 가지고 강유전 유사 특성을 가지는 3-5족 화합물
CN110498448B (zh) 层状FeAs、其制备方法及由此剥离的FeAs纳米片
Tsai et al. Fabrication of large-scale single-crystal bismuth telluride (Bi 2 Te 3) nanosheet arrays by a single-step electrolysis process
JPWO2013180137A1 (ja) 化合物半導体薄膜の作製方法およびその化合物半導体薄膜を備える太陽電池
Yuk et al. Formation mechanisms of metallic Zn nanodots by using ZnO thin films deposited on n-Si substrates
Zhang et al. Van der Waals Heterostructures: fabrications, properties, and applications
Hu et al. Triangular ZnO nanosheets: Synthesis, crystallography and cathodoluminescence
WO2021032947A1 (en) Method and composition
KR102186132B1 (ko) 층상형 비화코발트의 제조방법, 그로부터 제조된 층상형 비화코발트, 그로부터 박리된 비화코발트 나노시트
Nikpay et al. Growth of MoS2 nanoflakes near/far from tubular furnace axis and their impact on the efficiency enhancement of the Si solar cells
Zhou et al. A compact route for efficient production of high-purity β-Ga2O3 powder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant