CN110498392A - 一种光催化体系及其应用 - Google Patents

一种光催化体系及其应用 Download PDF

Info

Publication number
CN110498392A
CN110498392A CN201810480480.4A CN201810480480A CN110498392A CN 110498392 A CN110498392 A CN 110498392A CN 201810480480 A CN201810480480 A CN 201810480480A CN 110498392 A CN110498392 A CN 110498392A
Authority
CN
China
Prior art keywords
photocatalytic system
crystal
catalyst
hydrogen
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810480480.4A
Other languages
English (en)
Other versions
CN110498392B (zh
Inventor
吴骊珠
高小雅
甘启超
李旭兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201810480480.4A priority Critical patent/CN110498392B/zh
Publication of CN110498392A publication Critical patent/CN110498392A/zh
Application granted granted Critical
Publication of CN110498392B publication Critical patent/CN110498392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种光催化体系及其应用。所述光催化体系包括助催化剂、半导体纳晶、溶剂、电子牺牲体和光照;所述助催化剂为过渡金属碳化物Co2C。本发明还公开了所述光催化体系在光催化产氢中的应用。本发明光催化体系中包含过渡金属碳化物Co2C,产氢效率可提高数倍,且体系组成简单,操作简便,反应条件温和;该过渡金属碳化物Co2C对光的利用效率较高,可实现光能向化学能的转化。

Description

一种光催化体系及其应用
技术领域
本发明涉及光催化技术领域。更具体地,涉及一种光催化体系及其应用。
背景技术
通过可再生能源制备清洁能源仍是目前面临的最大挑战之一。利用太阳能持续生成氢气,尤其是光催化分解水产氢被认为是解决能源及环境问题最有前景的方法之一。
自1972年Fujishima等报道了二氧化钛在紫外光照射下能够分解水产氢之后,光催化制氢研究成为全世界关注的热点。铂及其合金[Self-assembled framework enhanceselectronic communication of ultrasmall-sized nanoparticles for exceptionalsolar hydrogen evolution.J.Am.Chem.Soc.2017,139,4789]已经被证明是高效的光催化产氢助催化剂,但是其昂贵的价格严重限制了它的广泛应用。因此,寻找储备丰富、廉价易得的助催化剂是十分重要的。
最近,过渡金属碳化物由于其良好的导电性,化学稳定性已作为一种新的产氢催化剂。例如,Fe掺杂的Ni3C纳米片[Fe doped Ni3C nanodots in N-doped carbonnanosheets for efficient hydrogen-evolution and oxygen-evolutionelectrocatalyst.Angew.Chem.Int.Ed.2017,56,12566]具有很好的双功能电催化产氢及产氧性能。氧原子终结的Ti3C2纳晶[Ti3C2MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogenproduction.Nat.Communs.2017,8,13907]已被证实是一种高效的光催化产氢助催化剂。在众多的过渡金属碳化物种,Co2C被长期用于Fischer-Tropsch合成[Cobalt carbidenanoprisms for direct production of lower olefins from syngas.Nature 2016,538,84;Fischer-Tropsch synthesis:characterization and reaction testing ofcobalt carbide.ACS Catal.2011,1,1581],其在电催化HER中的应用鲜有报道。最近,Co2C被报道[Wet-chemistry synthesis of cobalt carbide nanoparticles as highlyactive and stable electrocatalyst for hydrogen evolutionreaction.Nano.Res.2017,10,1322]可用于电催化产氢。然而,截至目前Co2C用于光催化产氢的研究尚未被报道。
因此,本发明提供一种Co2C用作助催化剂的光催化体系。
发明内容
本发明的一个目的在于提供一种光催化体系。
本发明的另一个目的在于提供一种光催化体系的应用。
为达到上述第一个目的,本发明采用下述技术方案:
一种光催化体系,包括助催化剂、半导体纳晶、溶剂、电子牺牲体和光照;所述助催化剂为过渡金属碳化物Co2C。本发明通过将过渡金属碳化物与半导体纳晶耦合实现高效地光催化产氢;其中半导体纳晶在光催化体系中为吸光单元;此外,本发明根据文献报道方法[A versatile synthetic approach for the synthesis of CoO,CoxC,and Co basednanocomposites:tuning kinetics and crystal phase with different polyhydricalcohols.CrystEngComm,2014,16,8000],优化了合成策略,实现了Co2C暴露最优晶面的调控,使其具有优异的产氢能力。
优选地,所述半导体纳晶选自CdS量子点、CdSe量子点和CdSe-CdS量子点中的一种或多种。
优选地,所述半导体纳晶的形貌为纳米片、纳米颗粒或纳米线。
优选地,所述溶剂为水。本发明中的光催化产氢反应是全分解水的半反应,因此通常在做产氢反应时选水作为溶剂。
优选地,所述电子牺牲体为胺类化合物或醇类化合物;进一步地,所述电子牺牲体为三乙胺、异丙醇、三乙醇胺、抗坏血酸等中的一种或几种。
优选地,所述光催化体系中,Co2C的浓度为0.0058~0.0232mg/mL;本发明中,Co2C浓度越大,光催化产氢效率越高,该浓度是单位时间单位质量Co2C光催化产氢效率最高的浓度。
优选地,所述光催化体系中,电子牺牲体的浓度为0.5~1.5mol/L。
优选地,所述光催化体系中,Co2C与半导体纳晶的质量比为0:100~4:100,半导体纳晶与三乙胺的质量比为1:100~1:250。
优选地,所述光照的光源为波长为450±20nm的LED。
为达到上述第二个目的,本发明采用下述技术方案:
一种上述光催化体系在光催化产氢中的应用。
优选地,所述应用具体包括如下步骤:
将助催化剂和吸光单元混合得到自组装复合体,将自组装复合体、电子牺牲体和溶剂混合,在密封条件下通惰性气体,光照产氢。
优选地,所述惰性气体为氩气。
优选地,所述光照的光源为波长为450±20nm的LED。
如无特殊说明,本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。
本发明的有益效果如下:
(1)本发明光催化体系中的过渡金属碳化物Co2C制备简单,原料廉价易得。
(2)本发明光催化体系中包含过渡金属碳化物Co2C,产氢效率可提高数倍,且体系组成简单,操作简便,反应条件温和。
(3)本发明光催化体系中包含过渡金属碳化物Co2C,该过渡金属碳化物Co2C对光的利用效率较高,可实现光能向化学能的转化。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出本发明中CdSe量子点的紫外-可见吸收光谱图。
图2示出本发明中CdSe量子点的稳态荧光谱图,其中激发波长λ=400nm。
图3示出本发明中Co2C的X射线晶体粉末衍射图(XRD)。
图4示出本发明中Co2C的X射线光电子能谱分析图(XPS)。
图5示出本发明中Co2C的透射电镜图(TEM)。
图6示出本发明实施例1中生成的H2随时间变化图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本发明中,制备方法如无特殊说明则均为常规方法。所用的原料如无特别说明均可从公开的商业途径获得。
本发明中过渡金属碳化物Co2C通过透射电子显微镜(TEM),X射线晶体粉末衍射(XRD)和X射线光电子能谱(XPS)表征;半导体纳晶通过紫外可见吸收光谱,稳态荧光光谱和透射电子显微镜表征;自组装复合体通过透射电子显微镜和X射线光电子能谱表征;体系产生的H2通过气相色谱定性及定量检测。
本发明中半导体纳晶的合成参照文献报道方法制得,下面以CdSe量子点[A novelmethod for the preparation of water-soluble and small-size CdSe quantumdots.Mater.Lett.2006,60,3782;An Exceptional Artificial Photocatalyst,Nih-CdSe/CdS Core/Shell Hybrid,Made In Situ from CdSe Quantum Dots and NickelSalts for Efficient Hydrogen Evolution.Adv.Mater.2013,25,6613]的合成为例具体说明:CdSe量子点的水相制备,具体实验步骤包括:
(1)Na2SeSO3的制备:称取40.0mg硒粉(0.5mmol)于100mL Na2SO3(189mg)水溶液中,除气30min。加热回流至硒粉完全溶解,得澄清透明Na2SeSO3溶液;
(2)水溶性CdSe量子点的合成:500mL圆底烧瓶中加入46mgCdCl2·5/2H2O(0.2mmol)、190mL水及26μL巯基丙酸(0.3mmol),用1.0mol/L的NaOH调节pH值至11.00,通氩气30min,接着迅速注入10mL新制备的Na2SeSO3溶液,继续除气20min,回流2.0-4.0h得到黄色溶液。通过紫外可见吸收光谱、稳态荧光光谱和透射电子显微镜对制备的CdSe QDs进行表征,如图1~2所示。
本发明中Co2C的合成参照文献方法[A versatile synthetic approach for thesynthesis of CoO,CoxC,and Co based nanocomposites:tuning kinetics and crystalphase with different polyhydric alcohols.CrystEngComm,2014,16,8000]制备得到,具体实验步骤包括:在50mL两口瓶中,加入无水醋酸钴(II)204mg,三乙二醇2.1mL,油胺15mL,氩气保护下,加热至300℃,从第一次爆沸开始计时,加热2.5h。后处理:自然冷却,5000rpm离心5min,弃去上清液,得到的黑色固体依次用正己烷、丙酮洗涤,干燥。通过XRD,XPS和TEM对制备的Co2C进行表征,如图3~5所示。
实施例1
一种光催化体系,包括Co2C、CdSe QDs、水、三乙胺和蓝色LED(λ=450nm)光照;
将上述光催化体系用于光催化还原产氢,具体包括如下步骤:
取1mL合成好的CdSe QDs溶液(其中CdSe的浓度为8.0×10-5mol/L),加入1.0mL异丙醇使CdSe量子点聚集沉淀,在6000rpm转速条件下离心3min,弃去上清液,沉淀超声分散于1mL水中,加入87μL助催化剂Co2C溶液(其中Co2C的浓度为1mg/mL)搅拌4h,组装成为复合体,加入400μL三乙胺和4mL水,蜡封,通氩气30min,注射入600μL CH4作为内标。冷凝水冷却下,蓝色LED(λ=450nm)光照5h,生成的H2通过气相色谱检测。结果如图6所示,随着反应时间延长,CdSe QDs-Co2C组装体体系产生氢气的量逐渐增加,且5h后光催化产氢活性保持不变,具有良好的稳定性;与无助催化剂加入的体系比较,产氢活性提高了约8倍,说明助催化剂Co2C的加入,能显著提高量子点光催化产氢活性。
实施例2~5
一种光催化体系,同实施例1,将该光催化体系用于光催化还原产氢,步骤同实施例1,不同之处仅在于改变光催化体系中助催化剂的用量,具体如表1所示。
表1不同用量的助催化剂的氢气的生成速率
实施例编号 助催化剂用量(Co<sub>2</sub>C与CdSe质量比) H<sub>2</sub>生成速率(μmol·g<sup>-1</sup>·h<sup>-1</sup>)
2 1:100 2127.2
3 2:100 2301.7
4 3:100 4162.4
5 4:100 2410.9
结论:随着助催化剂的增加,氢气生成速率逐渐增大,当Co2C与CdSe质量比为3:100时氢气生成速率达到最大,随后继续增加Co2C质量比,氢气生成速率下降,这是因为Co2C的增加一定程度上屏蔽了CdSe QDs对光的吸收,因此体系光催化产氢活性下降。本发明经大量实验证实,Co2C与CdSe的质量比为0.03时,产氢速率最优。
实施例6~8
一种光催化体系,同实施例4,将该光催化体系用于光催化还原产氢,步骤同实施例4,不同之处仅在于改变光催化体系中电子牺牲体的用量,具体如表2所示。
表2不同用量的电子牺牲体的氢气的生成速率
结论:随着电子牺牲体用量的增加,氢气生成速率逐渐减小,当三乙胺用量为400μL(三乙胺与CdSe质量比为100:1)时,氢气生成速率最大。
实施例9~10
一种光催化体系,同实施例4,将该光催化体系用于光催化还原产氢,步骤同实施例4,不同之处仅在于改变光催化体系中半导体纳晶的种类,具体如表3所示。
表3不同半导体纳晶的氢气的生成速率
结论:改变半导体纳晶种类,当吸光单元为CdSe/CdS QDs时,氢气生成速率最大。
实施例11~18
一种光催化体系,同实施例9,将该光催化体系用于光催化还原产氢,步骤同实施例9,不同之处仅在于改变光催化体系中助催化剂的种类具体如表4所示。
表4不同助催化剂的氢气的生成速率
结论:相同实验条件下,Co2C比其他常用助催化剂的光催化产氢速率快,说明Co2C作为光催化产氢助催化剂,效果优异。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种光催化体系,其特征在于,包括助催化剂、半导体纳晶、溶剂、电子牺牲体和光照;所述助催化剂为过渡金属碳化物Co2C。
2.根据权利要求1所述的光催化体系,其特征在于,所述助催化剂为表面具有配体的Co2C;所述配体为三乙基乙二醇和/或油胺。
3.根据权利要求1所述的光催化体系,其特征在于,所述半导体纳晶选自CdS量子点、CdSe量子点和CdSe-CdS量子点中的一种或多种。
4.根据权利要求1所述的光催化体系,其特征在于,所述半导体纳晶的形貌为纳米片、纳米颗粒或纳米线。
5.根据权利要求1所述的光催化体系,其特征在于,所述光催化体系中,Co2C的浓度为0.0058~0.0232mg/mL。
6.根据权利要求1所述的光催化体系,其特征在于,所述光催化体系中,电子牺牲体的浓度为0.5~1.5mol/L。
7.根据权利要求1所述的光催化体系,其特征在于,所述光催化体系中,半导体纳晶与Co2C的质量比为100:1~100:4,半导体纳晶与三乙胺的质量比为1:100~1:250。
8.根据权利要求1所述的光催化体系,其特征在于,所述光照的光源为波长为450±20nm的LED。
9.一种如权利要求1~8任一项所述的光催化体系在光催化产氢中的应用。
10.根据权利要求9所述的应用,其特征在于,所述应用具体包括如下步骤:将助催化剂和吸光单元混合得到自组装复合体,将自组装复合体、电子牺牲体和溶剂混合,在密封条件下通惰性气体,光照产氢。
CN201810480480.4A 2018-05-18 2018-05-18 一种光催化体系及其应用 Active CN110498392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810480480.4A CN110498392B (zh) 2018-05-18 2018-05-18 一种光催化体系及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810480480.4A CN110498392B (zh) 2018-05-18 2018-05-18 一种光催化体系及其应用

Publications (2)

Publication Number Publication Date
CN110498392A true CN110498392A (zh) 2019-11-26
CN110498392B CN110498392B (zh) 2021-04-02

Family

ID=68584382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810480480.4A Active CN110498392B (zh) 2018-05-18 2018-05-18 一种光催化体系及其应用

Country Status (1)

Country Link
CN (1) CN110498392B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203701A (ja) * 1983-05-06 1984-11-17 Agency Of Ind Science & Technol 光触媒的な水素製造方法
CN102452640A (zh) * 2010-10-22 2012-05-16 中国科学院理化技术研究所 一种光催化产氢体系、多羰基二铁二硫簇化合物的制备方法及制备氢气的方法
CN104959158A (zh) * 2015-05-22 2015-10-07 宁夏大学 一种Mo2C/CdS复合光催化剂及其制备和应用
US9278337B2 (en) * 2011-05-19 2016-03-08 Nanoptek Corporation Visible light titania photocatalyst, method for making same, and processes for use thereof
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用
CN106831331A (zh) * 2016-12-29 2017-06-13 厦门大学 一种光催化转化甲醇制备乙二醇的方法
CN107128875A (zh) * 2016-05-31 2017-09-05 浙江理工大学 一种制氢催化体系、包含所述催化体系的制氢体系及其用途
CN107201226A (zh) * 2016-03-17 2017-09-26 上海科技大学 CuInS2量子点、CuInS2/ZnS量子点及其制备和应用
CN107597166A (zh) * 2017-09-29 2018-01-19 南昌航空大学 一种碳点/硫化镉量子点/氮化碳催化剂及其制备方法
CN108455524A (zh) * 2018-01-18 2018-08-28 中国科学院理化技术研究所 一种过渡金属碳化物的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203701A (ja) * 1983-05-06 1984-11-17 Agency Of Ind Science & Technol 光触媒的な水素製造方法
CN102452640A (zh) * 2010-10-22 2012-05-16 中国科学院理化技术研究所 一种光催化产氢体系、多羰基二铁二硫簇化合物的制备方法及制备氢气的方法
US9278337B2 (en) * 2011-05-19 2016-03-08 Nanoptek Corporation Visible light titania photocatalyst, method for making same, and processes for use thereof
CN104959158A (zh) * 2015-05-22 2015-10-07 宁夏大学 一种Mo2C/CdS复合光催化剂及其制备和应用
CN107201226A (zh) * 2016-03-17 2017-09-26 上海科技大学 CuInS2量子点、CuInS2/ZnS量子点及其制备和应用
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用
CN107128875A (zh) * 2016-05-31 2017-09-05 浙江理工大学 一种制氢催化体系、包含所述催化体系的制氢体系及其用途
CN106831331A (zh) * 2016-12-29 2017-06-13 厦门大学 一种光催化转化甲醇制备乙二醇的方法
CN107597166A (zh) * 2017-09-29 2018-01-19 南昌航空大学 一种碳点/硫化镉量子点/氮化碳催化剂及其制备方法
CN108455524A (zh) * 2018-01-18 2018-08-28 中国科学院理化技术研究所 一种过渡金属碳化物的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JORDI LLORCA ET AL.: "Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming", 《JOURNAL OF CATALYSIS》 *
MUTHU KUMARAN GNANAMANI ET AL.: "Low Temperature Water-Gas Shift Reaction Over Alkali Metal Promoted Cobalt Carbide Catalysts", 《TOPICS IN CATALYSIS》 *
QING GUO ET AL.: "Metallic Co2C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots", 《ACS CATALYSIS》 *

Also Published As

Publication number Publication date
CN110498392B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
Wang et al. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4
Tahir Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light
Zhang et al. Activating and optimizing the MoS2@ MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution
Peng et al. CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization
Zhao et al. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms
Zhang et al. g‐C3N4 nanosheet nanoarchitectonics: H2 generation and CO2 reduction
Zhang et al. Core-shell structured cadmium sulfide nanocomposites for solar energy utilization
Tasleem et al. Constructing La x Co y O3 Perovskite Anchored 3D g-C3N4 Hollow Tube Heterojunction with Proficient Interface Charge Separation for Stimulating Photocatalytic H2 Production
Soni et al. Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion
Fan et al. Construction of 0D/2D Ni2P/Ni2P homophase Schottky junction by molten salt-assisted strategy for enhanced photocatalytic H2 evolution
Tasleem et al. Z-scheme Ag-NPs-embedded LaCoO3 dispersed pCN heterojunction with higher kinetic rate for stimulating photocatalytic solar H2 production
CN106622322A (zh) 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法
CN104338547A (zh) 基于量子点/棒和二硫化钼纳米片的光催化剂、制备方法、光催化体系及其重整生物质制氢的方法
Yang et al. Spatial charge separated two-dimensional/two-dimensional Cu-In2S3/CdS heterojunction for boosting photocatalytic hydrogen production
Sun et al. Cu3P and Ni2P co‐modified g‐C3N4 nanosheet with excellent photocatalytic H2 evolution activities
Zhang et al. Rational design of Ag/CuO@ ZnIn2S4 S-scheme plasmonic photocatalyst for highly selective CO2 conversion
CN107670672B (zh) 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
Zhao et al. Two-dimensional heterostructures for photocatalytic CO2 reduction
CN106622318A (zh) 一种以双金属纳米粒子为异质结的层状复合光催化剂及其制备方法
Liang et al. Atomically precise thiolate-protected gold nanoclusters: current advances in solar-powered photoredox catalysis
Sun et al. Dual Z-scheme TCN/ZnS/ZnIn2S4 with efficient separation for photocatalytic nitrogen fixation
Jin et al. Constructing a tandem heterojunction: S-scheme heterojunction and Ohmic junction based on graphdiyne, synergistically optimizing photocatalytic hydrogen evolution
Ahmad et al. The role of synthesis method in hydrogen evolution activity of Ce doped ZnO/CNTs photocatalysts: A comparative study
Bian et al. Bimetal Cu and Fe modified g-C3N4 sheets grown on carbon skeleton for efficient and selective photocatalytic reduction of CO2 to CO
CN107308967A (zh) 一种光催化分解甲酸制氢助催化剂、光催化体系及分解甲酸制氢的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant