CN110488464B - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN110488464B CN110488464B CN201910765627.9A CN201910765627A CN110488464B CN 110488464 B CN110488464 B CN 110488464B CN 201910765627 A CN201910765627 A CN 201910765627A CN 110488464 B CN110488464 B CN 110488464B
- Authority
- CN
- China
- Prior art keywords
- lens
- imaging optical
- optical lens
- ttl
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明提供了一种摄像光学镜头,共具有五片透镜,五片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,及具有负屈折力的第五透镜;满足下列关系式:0.60≤(R3+R4)/(R3‑R4)≤0.7;‑5.00≤(R5+R6)/(R5‑R6)≤‑4.20;0.85≤(R9+R10)/(R9‑R10)≤0.89;1.10≤d8/d9≤1.20。本发明提供的摄像光学镜头具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。
Description
【技术领域】
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
【发明内容】
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;
所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,满足下列关系式:
0.60≤(R3+R4)/(R3-R4)≤0.7;
-5.00≤(R5+R6)/(R5-R6)≤-4.20;
0.85≤(R9+R10)/(R9-R10)≤0.89;
1.10≤d8/d9≤1.20。
优选的,满足下列关系式:
-5.60≤R3/R4≤-4.00。
优选的,所述第三透镜的焦距为f3,所述摄像光学镜头整体的焦距为f,满足下列关系式:
-11.00≤f3/f≤-9.00。
优选的,所述第一透镜的焦距为f1,所述摄像光学镜头整体的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.40≤f1/f≤1.36;
-3.26≤(R1+R2)/(R1-R2)≤-0.89;
0.08≤d1/TTL≤0.25。
优选的,所述第二透镜的焦距为f2,所述摄像光学镜头整体的焦距为f,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-6.05≤f2/f≤-1.42;
0.02≤d3/TTL≤0.08。
优选的,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.03≤d5/TTL≤0.10。
优选的,所述第四透镜的焦距为f4,所述摄像光学镜头整体的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.34≤f4/f≤1.06;
0.63≤(R7+R8)/(R7-R8)≤2.11;
0.07≤d7/TTL≤0.27。
优选的,所述第五透镜的焦距为f5,所述摄像光学镜头整体的焦距为f,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-1.22≤f5/f≤-0.39;
0.03≤d9/TTL≤0.11。
优选的,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
TTL/IH≤1.46。
优选的,所述摄像光学镜头的光圈F数为Fno,满足下列关系式:
Fno≤1.66。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.60≤(R3+R4)/(R3-R4)≤0.7,规定了所述第二透镜L2的形状,在条件范围内有利于球差校正,提高成像质量。
定义所述第三透镜L3的物侧面的曲率半径为R5,所述第三透镜L3的像侧面的曲率半径为R6,满足下列关系式:-5.00≤(R5+R6)/(R5-R6)≤-4.20,规定了所述第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.85≤(R9+R10)/(R9-R10)≤0.89,规定了所述第五透镜L5的形状,在条件范围内有利于平衡系统场曲,提升成像品质。
定义所述第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,所述第五透镜L5的轴上厚度为d9,满足下列关系式:1.10≤d8/d9≤1.20,规定了所述第四透镜L4与所述第五透镜L5之间空气间隔距离和第五透镜厚度的比值,在条件式范围内有助于镜片的加工和镜头的组装。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:-5.60≤R3/R4≤-4.00,规定了所述第二透镜L2物方表面和像方表面曲率半径的比值,在条件式范围内有助于提高光学系统性能。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10整体的焦距为f,满足下列关系式:-11.00≤f3/f≤-9.00,当f3/f满足条件时,可有效分配所述第三透镜L3的光焦度,对光学系统的像差进行校正,进而提升成像品质。
定义所述第一透镜L1的焦距为f1,所述摄像光学镜头10整体的焦距为f,满足下列关系式:0.40≤f1/f≤1.36,规定了所述第一透镜L1的焦距与整体焦距的比值。在规定的范围内时,所述第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。
定义所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-3.26≤(R1+R2)/(R1-R2)≤-0.89,在条件式范围内,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.08≤d1/TTL≤0.25,在条件式范围内,有利于实现超薄化。
定义所述第二透镜L2的焦距为f2,所述摄像光学镜头10整体的焦距为f,满足下列关系式:-6.05≤f2/f≤-1.42,规定了第二透镜L2的焦距和所述摄像光学镜头10整体的焦距的比值,在条件式范围内,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.08,在条件式范围内,有利于实现超薄化。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.10,在条件式范围内,有利于实现超薄化。
定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10整体的焦距为f,且满足下列关系式:0.34≤f4/f≤1.06,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
所述第四透镜L4物侧面的曲率半径为R7,以及所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.63≤(R7+R8)/(R7-R8)≤2.11。规定了第四透镜L4的形状,在条件式范围内,随着超薄化、广角化的发展,有利于补正轴外画角的像差等问题。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.07≤d7/TTL≤0.27,在条件式范围内,有利于实现超薄化。
定义所述第五透镜L5的焦距为f5,所述摄像光学镜头10整体的焦距为f,满足下列关系式:-1.22≤f5/f≤-0.39,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.11,在条件式范围内,有利于实现超薄化。
进一步的,定义所述摄像光学镜头10的光学总长为TTL,所述摄像光学镜头10的像高为IH,满足下列关系式:TTL/IH≤1.46,有利于实现超薄化。
定义所述摄像光学镜头10的光圈F数为Fno,也即有效焦距与入射瞳孔径的比值,满足下列关系式:Fno≤1.66,有利于实现大光圈,使得成像性能好。
即当满足上述关系时,使得摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
【表4】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | 0 | 0 | 0 |
P1R2 | 1 | 0.945 | 0 |
P2R1 | 1 | 0.765 | 0 |
P2R2 | 0 | 0 | 0 |
P3R1 | 0 | 0 | 0 |
P3R2 | 0 | 0 | 0 |
P4R1 | 0 | 0 | 0 |
P4R2 | 0 | 0 | 0 |
P5R1 | 2 | 2.025 | 2.225 |
P5R2 | 1 | 1.165 | 0 |
图2、图3分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差和倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径为2.145mm,全视场像高为2.950mm,对角线方向的视场角为77.90°,使得所述摄像光学镜头10广角化、超薄化、大光圈,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第二实施方式的摄像光学镜头20的结构形式请参图5所示,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 1.005 | 0 | 0 |
P1R2 | 1 | 0.675 | 0 | 0 |
P2R1 | 1 | 0.375 | 0 | 0 |
P2R2 | 0 | 0 | 0 | 0 |
P3R1 | 0 | 0 | 0 | 0 |
P3R2 | 1 | 0.915 | 0 | 0 |
P4R1 | 1 | 1.375 | 0 | 0 |
P4R2 | 2 | 0.905 | 1.345 | 0 |
P5R1 | 2 | 1.165 | 2.195 | 0 |
P5R2 | 3 | 0.465 | 2.195 | 2.455 |
【表8】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | 0 |
P1R2 | 1 | 0.875 |
P2R1 | 1 | 0.545 |
P2R2 | 0 | 0 |
P3R1 | 0 | 0 |
P3R2 | 0 | 0 |
P4R1 | 0 | 0 |
P4R2 | 0 | 0 |
P5R1 | 1 | 2.045 |
P5R2 | 1 | 1.165 |
图6和图7分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差和倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图,图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头20满足上述的条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径为2.134mm,全视场像高为2.950mm,对角线方向的视场角为78.20°,使得所述摄像光学镜头20广角化、超薄化、大光圈,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第三实施方式的摄像光学镜头30的结构形式请参图9所示,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.995 | 0 | 0 |
P1R2 | 1 | 0.655 | 0 | 0 |
P2R1 | 1 | 0.335 | 0 | 0 |
P2R2 | 0 | 0 | 0 | 0 |
P3R1 | 0 | 0 | 0 | 0 |
P3R2 | 1 | 0.915 | 0 | 0 |
P4R1 | 1 | 1.345 | 0 | 0 |
P4R2 | 2 | 0.925 | 1.355 | 0 |
P5R1 | 2 | 1.185 | 2.205 | 0 |
P5R2 | 2 | 0.465 | 2.195 | 0 |
【表12】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | 0 |
P1R2 | 1 | 0.855 |
P2R1 | 1 | 0.515 |
P2R2 | 0 | 0 |
P3R1 | 0 | 0 |
P3R2 | 0 | 0 |
P4R1 | 0 | 0 |
P4R2 | 0 | 0 |
P5R1 | 1 | 2.065 |
P5R2 | 1 | 1.175 |
图10和图11分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差和倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图,图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头30满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径为2.138mm,全视场像高为2.950mm,对角线方向的视场角为78.20°,使得所述摄像光学镜头30广角化、超薄化、大光圈,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 | 实施方式1 | 实施方式2 | 实施方式3 |
f | 3.540 | 3.520 | 3.527 |
f1 | 3.201 | 2.949 | 2.846 |
f2 | -10.715 | -8.302 | -7.511 |
f3 | -34.708 | -31.860 | -38.764 |
f4 | 2.421 | 2.489 | 2.464 |
f5 | -2.090 | -2.151 | -2.103 |
f12 | 4.155 | 4.051 | 4.003 |
Fno | 1.65 | 1.65 | 1.65 |
(R3+R4)/(R3-R4) | 0.67 | 0.69 | 0.60 |
(R5+R6)/(R5-R6) | -4.40 | -4.22 | -4.96 |
(R9+R10)/(R9-R10) | 0.87 | 0.86 | 0.89 |
d8/d9 | 1.14 | 1.19 | 1.11 |
其中,Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共具有五片透镜,所述五片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;
所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,满足下列关系式:
0.60≤(R3+R4)/(R3-R4)≤0.7;
-5.00≤(R5+R6)/(R5-R6)≤-4.20;
0.85≤(R9+R10)/(R9-R10)≤0.89;
1.10≤d8/d9≤1.20。
2.根据权利要求1所述的摄像光学镜头,其特征在于,满足下列关系式:
-5.60≤R3/R4≤-4.00。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述摄像光学镜头整体的焦距为f,满足下列关系式:
-11.00≤f3/f≤-9.00。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述摄像光学镜头整体的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.40≤f1/f≤1.36;
-3.26≤(R1+R2)/(R1-R2)≤-0.89;
0.08≤d1/TTL≤0.25。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述摄像光学镜头整体的焦距为f,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-6.05≤f2/f≤-1.42;
0.02≤d3/TTL≤0.08。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.03≤d5/TTL≤0.10。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述摄像光学镜头整体的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.34≤f4/f≤1.06;
0.63≤(R7+R8)/(R7-R8)≤2.11;
0.07≤d7/TTL≤0.27。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述摄像光学镜头整体的焦距为f,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-1.22≤f5/f≤-0.39;
0.03≤d9/TTL≤0.11。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
TTL/IH≤1.46。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,满足下列关系式:
Fno≤1.66。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910765627.9A CN110488464B (zh) | 2019-08-19 | 2019-08-19 | 摄像光学镜头 |
PCT/CN2019/107276 WO2021031281A1 (zh) | 2019-08-19 | 2019-09-23 | 摄像光学镜头 |
US16/936,450 US11460674B2 (en) | 2019-08-19 | 2020-07-23 | Camera optical lens including five lenses of +−−+− refractive powers |
JP2020126899A JP6847293B2 (ja) | 2019-08-19 | 2020-07-27 | 撮像光学レンズ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910765627.9A CN110488464B (zh) | 2019-08-19 | 2019-08-19 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110488464A CN110488464A (zh) | 2019-11-22 |
CN110488464B true CN110488464B (zh) | 2021-04-06 |
Family
ID=68552018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910765627.9A Active CN110488464B (zh) | 2019-08-19 | 2019-08-19 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11460674B2 (zh) |
JP (1) | JP6847293B2 (zh) |
CN (1) | CN110488464B (zh) |
WO (1) | WO2021031281A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110908075B (zh) * | 2019-12-05 | 2020-10-30 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
WO2021127825A1 (zh) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
TWI750615B (zh) | 2020-01-16 | 2021-12-21 | 大立光電股份有限公司 | 取像用光學透鏡組、取像裝置及電子裝置 |
WO2022174438A1 (zh) * | 2021-02-22 | 2022-08-25 | 欧菲光集团股份有限公司 | 光学系统、摄像模组及电子设备 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023370B (zh) * | 2009-09-15 | 2012-05-23 | 大立光电股份有限公司 | 成像透镜系统 |
TWI440922B (zh) * | 2010-11-01 | 2014-06-11 | Largan Precision Co Ltd | 光學取像透鏡組 |
CN201903684U (zh) * | 2010-12-13 | 2011-07-20 | 大立光电股份有限公司 | 光学取像透镜组 |
TWI447471B (zh) * | 2011-05-24 | 2014-08-01 | Largan Precision Co Ltd | 影像拾取鏡片組 |
TWI453498B (zh) * | 2011-05-26 | 2014-09-21 | Largan Precision Co | 光學影像鏡頭組 |
TWI416163B (zh) * | 2011-07-19 | 2013-11-21 | Largan Precision Co Ltd | 光學影像拾取鏡頭 |
JP5722507B2 (ja) * | 2012-08-29 | 2015-05-20 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
KR102015852B1 (ko) * | 2012-12-12 | 2019-08-29 | 엘지이노텍 주식회사 | 촬상 렌즈 |
JP2015121668A (ja) * | 2013-12-24 | 2015-07-02 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
TWI589916B (zh) * | 2015-01-06 | 2017-07-01 | 先進光電科技股份有限公司 | 光學成像系統(五) |
CN104898255B (zh) * | 2015-02-13 | 2017-06-13 | 玉晶光电(厦门)有限公司 | 便携式电子装置与其光学成像镜头 |
KR101762014B1 (ko) * | 2015-10-13 | 2017-07-26 | 삼성전기주식회사 | 촬상 광학계 |
US10101561B2 (en) * | 2016-10-20 | 2018-10-16 | Newmax Technology Co., Ltd. | Five-piece optical imaging lens |
CN108008521B (zh) * | 2017-11-17 | 2020-06-09 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN107765403A (zh) * | 2017-11-17 | 2018-03-06 | 瑞声声学科技(深圳)有限公司 | 摄像光学镜头 |
JP6362294B1 (ja) * | 2018-01-19 | 2018-07-25 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | 撮像レンズ |
US10241296B1 (en) * | 2018-02-14 | 2019-03-26 | AAC Technologies Pte. Ltd. | Camera lens |
CN108398770B (zh) * | 2018-06-05 | 2021-01-26 | 浙江舜宇光学有限公司 | 光学成像镜头 |
-
2019
- 2019-08-19 CN CN201910765627.9A patent/CN110488464B/zh active Active
- 2019-09-23 WO PCT/CN2019/107276 patent/WO2021031281A1/zh active Application Filing
-
2020
- 2020-07-23 US US16/936,450 patent/US11460674B2/en active Active
- 2020-07-27 JP JP2020126899A patent/JP6847293B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20210055518A1 (en) | 2021-02-25 |
CN110488464A (zh) | 2019-11-22 |
JP2021033272A (ja) | 2021-03-01 |
JP6847293B2 (ja) | 2021-03-24 |
US11460674B2 (en) | 2022-10-04 |
WO2021031281A1 (zh) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110515182B (zh) | 摄像光学镜头 | |
CN110361853B (zh) | 摄像光学镜头 | |
CN110488463B (zh) | 摄像光学镜头 | |
CN110361842B (zh) | 摄像光学镜头 | |
CN110515178B (zh) | 摄像光学镜头 | |
CN110221410B (zh) | 摄像光学镜头 | |
CN110596859B (zh) | 摄像光学镜头 | |
CN110412736B (zh) | 摄像光学镜头 | |
CN110412737B (zh) | 摄像光学镜头 | |
CN110596856B (zh) | 摄像光学镜头 | |
CN110488464B (zh) | 摄像光学镜头 | |
CN110361841B (zh) | 摄像光学镜头 | |
CN110737076B (zh) | 摄像光学镜头 | |
CN110398819B (zh) | 摄像光学镜头 | |
CN110221409B (zh) | 摄像光学镜头 | |
CN110398821B (zh) | 摄像光学镜头 | |
CN110262008B (zh) | 摄像光学镜头 | |
CN111158113B (zh) | 摄像光学镜头 | |
CN111158112B (zh) | 摄像光学镜头 | |
CN111025547B (zh) | 摄像光学镜头 | |
CN110908078B (zh) | 摄像光学镜头 | |
CN110749981B (zh) | 摄像光学镜头 | |
CN108681046B (zh) | 摄像光学镜头 | |
CN112230389B (zh) | 摄像光学镜头 | |
CN111929846B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 213000 Xinwei 1st Road, Changzhou Comprehensive Bonded Zone, Jiangsu Province Applicant after: Chengrui optics (Changzhou) Co., Ltd Address before: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province Applicant before: Ruisheng Communication Technology (Changzhou) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |