CN110487701A - 一种土体中污染物运移参数的确定方法 - Google Patents

一种土体中污染物运移参数的确定方法 Download PDF

Info

Publication number
CN110487701A
CN110487701A CN201910825745.4A CN201910825745A CN110487701A CN 110487701 A CN110487701 A CN 110487701A CN 201910825745 A CN201910825745 A CN 201910825745A CN 110487701 A CN110487701 A CN 110487701A
Authority
CN
China
Prior art keywords
soil body
test
liquid
parameter
pollutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910825745.4A
Other languages
English (en)
Inventor
杨玉玲
杜延军
刘松玉
范日东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910825745.4A priority Critical patent/CN110487701A/zh
Publication of CN110487701A publication Critical patent/CN110487701A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种土体中污染物运移参数的确定方法,包括如下步骤:1)进行三轴柔性壁土柱渗透试验,测定土体试样两侧水位变化值和渗出液污染物浓度值;2)测定土体试样横截面积、高度、含水率和比重,计算孔隙率;3)计算渗流速度;4)计算各测试时段内渗出液体积数;5)计算各测试时段内污染物击穿质量;6)绘制不同测试时段结束时刻渗出液体积数总和‑污染物击穿质量总和曲线,根据对流‑扩散‑弥散模型获得水动力弥散系数和阻滞因子。本发明的确定方法可以准确、高效地测定土体中污染物的运移参数。

Description

一种土体中污染物运移参数的确定方法
技术领域
本发明涉及环境岩土中污染物运移,具体涉及一种土体中污染物运移参数的确定方法。
背景技术
运移参数(如水动力弥散系数和阻滞因子)是工程防污屏障服役性能及服役寿命的重要评价指标之一,其精度直接影响工程防污屏障设计及防渗控污性能判定的合理准确与否。室内通常采用土柱试验和柔性壁土柱渗透试验获得污染物击穿曲线,再结合对流-扩散-弥散分析模型的方法拟合得到污染物在土体中的运移参数。土柱试验一般采用刚性壁柱,试验过程无法避免侧壁渗漏的问题。环境岩土领域采用柔性壁土柱渗透试验以实现对试样加压从而模拟实际受力情况下污染物在土层中的迁移,同时避免试样侧壁发生渗漏。然而,传统运移参数拟合多基于以时间参数为横坐标、以渗出液污染物浓度与渗入液污染物浓度的比值为纵坐标的击穿曲线进行,为保证时间-浓度比击穿曲线的连续性,试验过程中通常要求频繁地对渗出液进行取样及浓度测量,这需要消耗较高的人工操作成本及浓度测试成本。需要强调的是,由于工程防污屏障一般渗透性较低,需较长时间才能获取浓度测试所需的渗出液,频繁采样及测试将无法避免地放大测试产生的误差、造成数据点的离散,进而影响所获取的运移参数的精确程度。
发明内容
发明目的:本发明目的是提供一种土体中污染物运移参数的确定方法,解决现有技术中污染物运移参数精度低、测试工序复杂、成本高的问题。
技术方案:本发明提供的一种土体中污染物运移参数的确定方法,包括以下步骤:
1)以污染溶液为渗入液,对土体试样进行三轴柔性壁土柱渗透试验,获取不同测试时段内土体试样两端水位变化值以及渗出液中污染物浓度值渗出液污染物浓度与渗入液污染物浓度达到平衡时终止试验;
2)试验结束后拆除土体试样,测定土体试样横截面积、高度L、含水率和比重,计算孔隙体积Vp、孔隙率n;
3)根据不同测试时段内试样两端水位变化值与时间关系以及土体试样尺寸、孔隙率n,计算渗流速度v;
4)根据各测试时段渗出液流量与孔隙体积Vp比值,确定该测试时段内渗出液体积数△Ti
5)通过各测试时段渗出液污染物浓度值与渗入液污染物浓度值c0的比值与该时段内渗出液体积数△Ti的乘积,确定各测试时段的污染物击穿质量
6)绘制不同测试时段结束时刻渗出液体积数总和∑△Ti-污染物击穿质量总和曲线图,通过对流-扩散-弥散模型对该曲线进行拟合,确定水动力弥散系数D和阻滞因子Rd
进一步地,本发明的确定方法中的土体可采用细粒土、特殊土或混合土;
进一步地,土体试样经干净自来水饱和处理。
进一步地,污染溶液采用无机重金属污染溶液、有机污染物溶液或二者的复合溶液。
进一步地,步骤(6)中的对流-扩散-弥散模型公式如下:
其中,为各测试时段渗出液污染物浓度值,c0为渗入液污染物浓度,△Ti为各测试时段内渗出液体积数,k为测试时段数,T为各测试时段结束时刻渗出液体积数总和,Rd为阻滞因子,D为水动力弥散系数,v为渗流速度,L为土体试样的高度。
有益效果:与现有技术相比,本发明具有如下优点:
1.本发明采用污染物击穿质量总和为击穿曲线纵坐标,避免了采样溶液体积对污染物浓度测量精度的影响,进而消除击穿曲线中浓度比值数据点的离散度,运移参数的拟合精度得到极大提高;
2.本发明提供的土体中污染物运移参数确定方法,不受采样次数的影响,不需要频繁地对渗出液进行采样及浓度测试,降低了试验过程中取样和测试的工作量,以及对试样的扰动,降低操作、测试的成本,提高测试精度;
3.本发明提供的方法不需要在已有测试装置中新增元件,也不需要在已有测试步骤中新增操作工序,操作简单、易于实现,适用性强。
附图说明
图1为利用本发明的方法计算的混合土(90%砂+10%膨润土)中铅运移参数与传统方法计算结果的比较;
图2为利用本发明的方法计算的混合土(90%砂+10%膨润土)中铅运移参数不同取样次数拟合结果的比较;
图3为包含本发明的方法计算黏性土中有机物苯酚运移参数与传统方法计算结果的比较。
具体实施方式
下面结合附图和实施例对本发明做进一步描述:
本发明提供的一种土体中污染物运移参数的确定方法,包括以下步骤:
1)以污染溶液为渗入液,对土体试样进行三轴柔性壁土柱渗透试验,获取不同测试时段内土体试样两端水位变化值以及渗出液中污染物浓度值渗出液污染物浓度与渗入液污染物浓度达到平衡时终止试验。
其中,土体可采用细粒土、特殊土或混合土;土体试样经干净自来水饱和而得。污染溶液采用无机重金属污染溶液、有机污染物溶液或二者的复合溶液。
2)试验结束后拆除土体试样,测定土体试样横截面积、高度L、含水率和比重,计算孔隙体积Vp、孔隙率n。
3)根据不同测试时段内试样两端水位变化值与时间关系以及土体试样尺寸、孔隙率n,计算渗流速度v。
4)根据各测试时段渗出液流量与孔隙体积Vp比值,确定该测试时段内渗出液体积数△Ti
5)通过各测试时段渗出液污染物浓度值与渗入液污染物浓度值c0的比值与该时段内渗出液体积数△Ti的乘积,确定各测试时段的污染物击穿质量
6)绘制不同测试时段结束时刻渗出液体积数总和∑△Ti-污染物击穿质量总和曲线图,通过对流-扩散-弥散模型对该曲线进行拟合,确定水动力弥散系数D和阻滞因子Rd
对流-扩散-弥散模型公式如下:
其中,为各测试时段渗出液污染物浓度值,c0为渗入液污染物浓度,△Ti为各测试时段内渗出液体积数,k为测试时段数,T为各测试时段结束时刻渗出液体积数总和,Rd为阻滞因子,D为水动力弥散系数,v为渗流速度,L为土体试样的高度。
下面例举一应用实例以便对本发明的确定方法进行进一步说明。
土体1为混合土(90%砂+10%膨润土);土体2为黏性土;污染液1为铅离子浓度为100mmol/L的硝酸铅溶液;污染液2为浓度为10mmol/L的苯酚溶液。
步骤1):按照美国材料试验协会规范《Standard Test Method for HydraulicConductivity Compatibility Testing of Soils with Aqueous Solutions》(ASTMD7100-11),分别采用硝酸铅溶液和苯酚溶液为渗入液,采用变水头法对经干净自来水饱和处理的土体试样进行三轴柔性壁土柱渗透试验,试验过程中获取不同测试时段内试样两端水位变化值以及渗出液中污染物浓度值渗出液污染物浓度与渗入液污染物浓度达到平衡时终止试验;
步骤2):试验结束后拆除土体试样,按照《公路土工试验规程》(JTG E40-2007)测定该试样横截面积和高度L、含水率和比重,计算孔隙体积Vp、孔隙率n;
步骤3):根据步骤1)和步骤2)所测定的不同测试时段内试样两端水位变化值与时间关系以及试样孔隙率n,计算渗流速度v;
步骤4):根据各测试时段渗出液流量与孔隙体积Vp比值,确定该测试时段内渗出液体积数△Ti
步骤5):通过各测试时段渗出液污染物浓度值与渗入液污染物浓度值c0的比值与该时段内渗出液体积数△Ti的乘积,确定各测试时段的污染物击穿质量
步骤6):绘制不同测试时段结束时刻渗出液体积数总和∑△Ti-污染物击穿质量总和曲线图,通过式(1)对该曲线进行拟合,确定水动力弥散系数D和阻滞因子Rd
式(1)中为各测试时段渗出液污染物浓度值,c0为渗入液污染物浓度,△Ti为各测试时段内渗出液体积数,k为测试时段数,T为各测试时段结束时刻渗出液体积数总和,Rd为阻滞因子,D为水动力弥散系数,v为渗流速度,L为土体试样高度。
作为对照组的传统浓度比击穿曲线拟合污染物运移参数方法,以各测试时段结束时刻渗出液体积数平均值(即截止至前一测试时段渗出液体积数总和与当前测试时段渗出液体积数的一半之和(∑△Ti-1)+△Ti/2)为横坐标、各测试时段渗出液污染物浓度与渗入液污染物浓度比值为纵坐标,并绘制浓度比-渗出液体积数平均值关系曲线,根据式(2)求算水动力弥散系数D和阻滞因子Rd
式(2)中为各测试时段渗出液污染物浓度值,c0为渗入液污染物浓度,T为各测试时段结束时刻渗出液体积数平均值,Rd为阻滞因子,D为水动力弥散系数,v为渗流速度,L为土体试样的高度。
土体采用混合土(90%砂+10%膨润土),污染液采用铅离子浓度为100mmol/L的硝酸铅溶液;则本应用例中柔性壁土柱渗透试验测得的混合土试样中铅离子击穿曲线以及本发明方法与传统方法计算运移参数结果的对比如图1所示。其中,图1(a)中横坐标为不同测试时段结束时刻渗出液体积数总和,纵坐标为污染物击穿质量总和,横、纵坐标均为无量纲变量,采用本发明的方法对运移参数进行拟合。图1(b)中横坐标为各测试时段结束时刻渗出液体积数平均值,纵坐标为各测试时段渗出液污染物浓度与渗入液污染物浓度比值,横、纵坐标亦均为无量纲变量,采用传统方法对运移参数进行拟合。
基于图1,本发明的拟合结果见图1(a):水动力弥散系数D为7.73×10-10±3.47×10-11m2/s、阻滞因子Rd为2.73±0.02、拟合决定系数r2为1.000,对照组中的传统拟合方法的拟合结果见图1(b):水动力弥散系数D为7.37×10-10±1.09×10-10m2/s、阻滞因子Rd为2.77±0.11、拟合决定系数r2为0.980;采用两种方法所求得的水动力弥散系数D、阻滞因子Rd几乎相等。但是,本发明方法测定的水动力弥散系数D和阻滞因子Rd的不确定度较传统方法低一个数量级(如D:±3.47×10-11m2/s vs.±1.09×10-10m2/s;Rd:±0.02vs.±0.11);且本发明方法拟合的决定系数为1.000,高于传统方法的0.980。这表明与传统方法相比,采用本发明方法可极大提高污染物运移参数的拟合精度。
图2为本应用例中,不同取样次数下混合土中铅离子运移参数拟合结果的比较。图1的取样次数为22次,图2(a)为在图1(a)中数据点基础上,将取样次数减少至10次所得击穿曲线及运移参数的拟合结果:水动力弥散系数D为7.58×10-10±5.36×10-11m2/s、阻滞因子Rd为2.72±0.03、拟合决定系数r2为1.000。图2(b)为将图2(a)中数据点进一步减少后,所得击穿曲线及运移参数的拟合结果:水动力弥散系数D为7.73×10-10±8.38×10-11m2/s、阻滞因子Rd为2.73±0.05、拟合决定系数r2为1.000。图2(a)和图2(b)中的运移参数拟合方法均采用本发明的确定方法。图2(c)为在图1(b)基础上,将取样次数减少至10次所得击穿曲线及传统方法拟合运移参数的结果:水动力弥散系数D为8.31×10-10±2.37×10-10m2/s、阻滞因子Rd为2.72±0.23、拟合决定系数r2为0.968。对比图1(a)、2(a)和2(b)可知,取样次数从22次减少至10次和4次,采用本发明的方法不会引起运移参数的显著变化,且D和Rd的不确定度、拟合决定系数几乎不受取样次数减少的影响。相比之下,当采用传统方法时,取样次数从22次(见图1(b))减少至10次(见图2(c)),导致水动力弥散系数的显著浮动,D和Rd的不确定度成倍增加,拟合决定系数由0.980降至0.968。这表明与传统运移参数拟合方法相比,采用本发明的土体中污染物运移参数确定方法可极大地减少渗出液取样次数及浓度测试频率,同时可保持运移参数的拟合精度的稳定性。
土体采用黏性土,污染液采用浓度为10mmol/L的苯酚溶液;则本应用例中柔性壁土柱渗透试验测得的黏性土试样中苯酚击穿曲线以及本发明方法与传统方法计算运移参数结果的对比如图3所示。图3(a)中采用本发明方法的拟合结果为:水动力弥散系数D为7.15×10-10±7.82×10-11m2/s、阻滞因子Rd为1.27±0.02、拟合决定系数r2为1.000;图3(b)中采用传统方法的拟合结果为:水动力弥散系数D为6.98×10-10±1.16×10-10m2/s、阻滞因子Rd为1.30±0.05、拟合决定系数r2为0.987。由此可见,本发明所提出的运移参数确定方法较传统运移参数确定方法具有较拟合高精度和准确性。

Claims (5)

1.一种土体中污染物运移参数的确定方法,其特征在于,所述确定方法包括:
1)以污染溶液为渗入液,对土体试样进行三轴柔性壁土柱渗透试验,获取不同测试时段内土体试样两端水位变化值以及渗出液中污染物浓度值渗出液污染物浓度与渗入液污染物浓度达到平衡时终止试验;
2)试验结束后拆除土体试样,测定所述土体试样横截面积、高度L、含水率和比重,计算孔隙体积Vp、孔隙率n;
3)根据不同测试时段内试样两端水位变化值与时间关系以及土体试样尺寸、孔隙率n,计算渗流速度v;
4)根据各测试时段渗出液流量与孔隙体积Vp比值,确定该测试时段内渗出液体积数△Ti
5)通过各测试时段渗出液污染物浓度值与渗入液污染物浓度值c0的比值与该时段内渗出液体积数△Ti的乘积,确定各测试时段的污染物击穿质量
6)绘制不同测试时段结束时刻渗出液体积数总和∑△Ti-污染物击穿质量总和曲线图,通过对流-扩散-弥散模型对该曲线进行拟合,确定水动力弥散系数D和阻滞因子Rd
2.根据权利要求1所述的土体中污染物运移参数的确定方法,其特征在于,所述土体可采用细粒土、特殊土或混合土。
3.根据权利要求1所述的土体中污染物运移参数的确定方法,其特征在于,所述土体试样经干净自来水饱和处理。
4.根据权利要求1所述的土体中污染物运移参数的确定方法,其特征在于所述污染溶液采用无机重金属污染溶液、有机污染物溶液或二者的复合溶液。
5.根据权利要求1所述的土体中污染物运移参数的确定方法,其特征在于所述对流-扩散-弥散模型公式如下:
其中,为各测试时段渗出液污染物浓度值,c0为渗入液污染物浓度,△Ti为各测试时段内渗出液体积数,k为测试时段数,T为各测试时段结束时刻渗出液体积数总和,Rd为阻滞因子,D为水动力弥散系数,v为渗流速度,L为土体试样的高度。
CN201910825745.4A 2019-09-03 2019-09-03 一种土体中污染物运移参数的确定方法 Pending CN110487701A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910825745.4A CN110487701A (zh) 2019-09-03 2019-09-03 一种土体中污染物运移参数的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910825745.4A CN110487701A (zh) 2019-09-03 2019-09-03 一种土体中污染物运移参数的确定方法

Publications (1)

Publication Number Publication Date
CN110487701A true CN110487701A (zh) 2019-11-22

Family

ID=68556070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910825745.4A Pending CN110487701A (zh) 2019-09-03 2019-09-03 一种土体中污染物运移参数的确定方法

Country Status (1)

Country Link
CN (1) CN110487701A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113919141A (zh) * 2021-09-22 2022-01-11 中国矿业大学 一种煤矿区堆场土壤重金属风险管控系统与迁移反演方法
CN114112843A (zh) * 2021-10-18 2022-03-01 中国工程物理研究院激光聚变研究中心 一种低压氧等离子体清洗有机污染物的性能评价方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHARLES D. SHACKELFORD, ET AL.: "CUMULATIVE MASS ApPROACH FOR COLUMN TESTING", 《JOURNAL OF GEOTECHNICAL ENGINEERING》 *
吴建: "道路下沉式绿地截污功能层净化路面污染径流的性能与设计研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
张润: "六偏磷酸钠改良膨润土系竖向工程屏障防渗吸附扩散性能研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *
杨玉玲: "六偏磷酸钠改良钙基膨润土系竖向隔离墙防渗控污性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
范日东: "重金属作用下土-膨润土竖向隔离屏障化学相容性和防渗截污性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113919141A (zh) * 2021-09-22 2022-01-11 中国矿业大学 一种煤矿区堆场土壤重金属风险管控系统与迁移反演方法
CN114112843A (zh) * 2021-10-18 2022-03-01 中国工程物理研究院激光聚变研究中心 一种低压氧等离子体清洗有机污染物的性能评价方法
CN114112843B (zh) * 2021-10-18 2024-05-03 中国工程物理研究院激光聚变研究中心 一种低压氧等离子体清洗有机污染物的性能评价方法

Similar Documents

Publication Publication Date Title
US10444171B2 (en) Absolute porosity and pore size determination of pore types in media with varying pore sizes
US10161891B1 (en) Method for characterizing rock physical characteristics of deeply buried carbonate rocks
CN104697915B (zh) 一种页岩微观孔隙大小及流体分布的分析方法
CN103163055B (zh) 一种检测非饱和土渗透系数的电阻率成像固结仪
CN106353357B (zh) 一种渗流作用下砂土介质细观结构变化的监测装置及方法
CN104777181A (zh) 致密油核磁共振t2截止值及流体饱和度确定方法、装置
CN110927035A (zh) 一种低渗致密砂岩束缚水饱和度计算方法
CN110487701A (zh) 一种土体中污染物运移参数的确定方法
Lu et al. Constant flow method for concurrently measuring soil-water characteristic curve and hydraulic conductivity function
US20170023540A1 (en) Method for measuring the trapped gas saturation in a rock sample
Plagge et al. A new laboratory method to quickly determine the unsaturated hydraulic conductivity of undisturbed soil cores within a wide range of textures
CN104948150B (zh) 一种确定地层排驱压力的方法和装置
EP3612864B1 (en) Method for determining a representative parameter of a porous sample and related assembly
CN209821099U (zh) 基于核磁共振的多功能致密气储层动态参数联测装置
Sugii et al. Measuring hydraulic properties for unsaturated soils with unsteady method
CN113137223A (zh) 一种钻井液化学渗透压差测试装置
CN114486977A (zh) 一种不同成因孔隙空间特征的定量化评价方法及装置
Nakajima et al. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations
Yan et al. Primary imbibition curve measurement using large soil column test
CN111220792A (zh) 一种非饱和黄土水分入渗深度计算方法
CN114034621B (zh) 土体渗透系数的获取方法及装置、模型构建方法
CN112782053B (zh) 一种定量计算岩心有效孔隙体积的方法
Jensen et al. Advection‐dispersion analysis of solute transport in undisturbed soil monoliths
CN111693427A (zh) 油气藏流体可动性的分析方法
CN114428049B (zh) 一种计算古老碳酸盐岩储层沥青含量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191122