CN110487640B - 一种变径膨胀锥试验装置 - Google Patents

一种变径膨胀锥试验装置 Download PDF

Info

Publication number
CN110487640B
CN110487640B CN201910702822.7A CN201910702822A CN110487640B CN 110487640 B CN110487640 B CN 110487640B CN 201910702822 A CN201910702822 A CN 201910702822A CN 110487640 B CN110487640 B CN 110487640B
Authority
CN
China
Prior art keywords
expansion
axial
cone
fixed support
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910702822.7A
Other languages
English (en)
Other versions
CN110487640A (zh
Inventor
李黔
尹文峰
尹虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201910702822.7A priority Critical patent/CN110487640B/zh
Publication of CN110487640A publication Critical patent/CN110487640A/zh
Application granted granted Critical
Publication of CN110487640B publication Critical patent/CN110487640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种变径膨胀锥试验装置,它包括工作台、数据处理器、左固定支座、右固定支座、左滑动支座和右滑动支座,变径膨胀锥设置于径向膨胀段内,数据处理器与径向膨胀应力位移传感器、轴向膨胀应力位移传感器、径向膨胀拉力位移传感器和轴向膨胀拉力位移传感器电连接。本发明的有益效果是:能够模拟变径膨胀锥的实际工况对膨胀锥的工作性能进行测试,缩短变径膨胀锥的开发研制周期,指导变径膨胀锥的改进和优化,能够对膨胀管的使用性能评价提供可靠参数。

Description

一种变径膨胀锥试验装置
技术领域
本发明涉及膨胀管技术领域,特别是一种变径膨胀锥试验装置。
背景技术
膨胀管技术是将待膨胀的石油套管下至油井内设计位置,通过膨胀工具对套管施加机械力使其产生永久性塑性变形,从而将套管内径或外径膨胀至设计的尺寸的一种石油钻采技术。膨胀管技术主要应用于井身结构优化、封隔井漏层、套管补贴等方面,被认为是21世纪石油钻采行业的核心技术之一。
膨胀锥是膨胀管技术中的核心工具,直接决定着膨胀作业能否顺利实施,以及膨胀管的膨胀质量。目前使用的膨胀锥分为不可变径的实体膨胀锥和可变径膨胀锥两大类。实体膨胀锥为固定外径的整体式结构,容易遭遇阻卡风险,且不能实现单一井径钻井的目标,可变径膨胀锥在膨胀作业之前,能收缩膨胀锥,减小锥径下入井内,到达预定位置后扩张膨胀锥,增大锥径,对膨胀管进行膨胀;因此,能够避免实体锥的缺陷,具有很大的发展潜力。
国内外针对实体膨胀锥的研制做了较多研究工作,而对膨胀锥工作性能的测试及膨胀管的使用性能测试开展的工作较少。相比较而言,国外公司在实体膨胀锥的研发过程中,建立了较完善的试验检测技术体系,保障了其膨胀管相关产品的可靠性,而国内对于膨胀管膨胀性能试验仅限于承内压、密封性等试验,存在较大局限。而对于变径膨胀锥的研制及测试工作开展得就更少了。
为了在实验室内模拟变径膨胀锥的实际工况对膨胀锥的工作性能进行测试,缩短变径膨胀锥的开发研制周期,指导变径膨胀锥的改进和优化,也为了对膨胀管的使用性能评价提供可靠参数,开发一种变径膨胀锥试验装置很有必要。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种结构紧凑、能够模拟变径膨胀锥的实际工况对膨胀锥的工作性能进行测试,缩短变径膨胀锥的开发研制周期,指导变径膨胀锥的改进和优化,能够对膨胀管的使用性能评价提供可靠参数的变径膨胀锥试验装置。
本发明的目的通过以下技术方案来实现:一种变径膨胀锥试验装置,它包括变径膨胀锥,变径膨胀锥包括膨胀锥中心拉杆、上爪盘、下爪盘、上膨胀块和下膨胀块,它还包括工作台、数据处理器、变径膨胀锥、设置于工作台上的左固定支座和右固定支座、设置于左右固定座之间且可沿工作台水平滑动的左滑动支座和右滑动支座,左滑动支座内开设有通孔,通孔内设置有位于左固定支座和右滑动支座之间的膨胀管,通孔与膨胀管之间设置有套设于膨胀管外壁上的弹性内圈,左滑动支座将膨胀管分隔为左管段和右管段,左管段和右管段分别为轴向膨胀段和径向膨胀段,径向膨胀段的外壁上分布有多个径向膨胀应力位移传感器,轴向膨胀段的外壁上分布有多个轴向膨胀应力位移传感器,所述膨胀管的右端部焊接有法兰盘,法兰盘固定于右滑动支座上,所述左固定支座的右端面上固设有沿膨胀管轴向伸入于径向膨胀段内的套筒,套筒内设置有沿其轴向设置的连接杆,左固定支座的左端面上固定安装有径向膨胀液压缸,径向膨胀液压缸的活塞轴伸入于套筒内,且活塞轴的右端部与连接杆的左端部之间设置有径向膨胀拉力位移传感器;所述变径膨胀锥设置于径向膨胀段内,变径膨胀锥包括膨胀锥中心拉杆、上爪盘、下爪盘、上膨胀块和下膨胀块,上爪盘固设于套筒的右端面上,且其中心孔与套筒连通,上爪盘的右端面上固设有上膨胀块,下爪盘位于上爪盘的右侧,且其左端面上固设有下膨胀块,膨胀锥中心拉杆的左端部贯穿上爪盘的中心孔且与连接杆的右端部固连,膨胀锥中心拉杆的右端部顺次贯穿上膨胀块、下膨胀块且固设于下爪盘上;所述右固定支座的右端面上固定安装有轴向膨胀液压缸,轴向膨胀液压缸的活塞轴与右滑动支座的右端部之间设置有轴向膨胀拉力位移传感器,所述数据处理器与径向膨胀应力位移传感器、轴向膨胀应力位移传感器、径向膨胀拉力位移传感器和轴向膨胀拉力位移传感器通过信号线电连接。
所述工作台的顶表面上位于左固定支座和右固定支座之间有水平滑槽。
所述左滑动支座和右滑动支座的底部均设置有导轮,所述导轮支撑于水平滑槽的底表面上。
所述左固定支座和右固定支座的端面上均开设有通槽,所述径向膨胀液压缸的活塞轴贯穿左固定支座的通槽设置,所述轴向膨胀液压缸的活塞轴贯穿右固定支座的通槽设置。
所述径向膨胀应力位移传感器均匀分布于径向膨胀段的外壁上,所述轴向膨胀应力位移传感器均匀分布于轴向膨胀段的外壁上。
所述右滑动支座的左端面上开设有多个与法兰盘上法兰孔相对应的螺纹孔,所述法兰盘经螺钉贯穿法兰孔且与螺纹孔螺纹连接固定于右滑动支座上。
本发明具有以下优点:本发明结构紧凑、能够模拟变径膨胀锥的实际工况对膨胀锥的工作性能进行测试,缩短变径膨胀锥的开发研制周期,指导变径膨胀锥的改进和优化,能够对膨胀管的使用性能评价提供可靠参数。
附图说明
图1 为本发明的结构示意图;
图2 为变径膨胀锥的结构示意图;
图3 为膨胀管与轴向膨胀应力位移传感器的安装示意图;
图4 为膨胀管与径向膨胀应力应变传感器的安装示意图;
图5 为变径膨胀锥的膨胀力与位移关系曲线图;
图6 为膨胀管的套管应力与位移关系曲线图;
图中,1-工作台,2-数据处理器,3-变径膨胀锥,4-左固定支座,5-右固定支座,6-左滑动支座,7-右滑动支座,8-膨胀管,9-径向膨胀应力位移传感器,10-轴向膨胀应力位移传感器,11-法兰盘,12-套筒,13-连接杆,14-径向膨胀液压缸,15-径向膨胀拉力位移传感器,16-膨胀锥中心拉杆,17-上爪盘,18-下爪盘,19-上膨胀块,20-下膨胀块,21-轴向膨胀液压缸,22-轴向膨胀拉力位移传感器,23-水平滑槽,24-导轮,25-通槽,26-螺纹孔,27-螺钉,28-信号线。
具体实施方式
下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:
如图1~4所示,一种变径膨胀锥试验装置,它包括变径膨胀锥3,变径膨胀锥3包括膨胀锥中心拉杆16、上爪盘17、下爪盘18、上膨胀块19和下膨胀块20,它还包括工作台1、数据处理器2、变径膨胀锥3、设置于工作台1上的左固定支座4和右固定支座5、设置于左右固定座之间且可沿工作台水平滑动的左滑动支座6和右滑动支座7,左滑动支座6内开设有通孔,通孔内设置有位于左固定支座4和右滑动支座7之间的膨胀管8,通孔与膨胀管8之间设置有套设于膨胀管8外壁上的弹性内圈,弹性内圈便于膨大的变径膨胀锥3能够对左滑动支座6所支撑的径向膨胀段进行膨胀,左滑动支座6将膨胀管8分隔为左管段和右管段,左管段和右管段分别为轴向膨胀段和径向膨胀段,径向膨胀段的外壁上分布有多个径向膨胀应力位移传感器9,轴向膨胀段的外壁上分布有多个轴向膨胀应力位移传感器10,所述膨胀管8的右端部焊接有法兰盘11,法兰盘11固定于右滑动支座7上,所述左固定支座4的右端面上固设有沿膨胀管8轴向伸入于径向膨胀段内的套筒12,套筒12内设置有沿其轴向设置的连接杆13,左固定支座4的左端面上固定安装有径向膨胀液压缸14,径向膨胀液压缸14的活塞轴伸入于套筒12内,且活塞轴的右端部与连接杆13的左端部之间设置有径向膨胀拉力位移传感器15,本实施例中所述径向膨胀应力位移传感器9均匀分布于径向膨胀段的外壁上,所述轴向膨胀应力位移传感器10均匀分布于轴向膨胀段的外壁上。
如图1~2所示,所述变径膨胀锥3设置于径向膨胀段内,变径膨胀锥3包括膨胀锥中心拉杆16、上爪盘17、下爪盘18、上膨胀块19和下膨胀块20,上爪盘17固设于套筒12的右端面上,且其中心孔与套筒12连通,上爪盘17的右端面上固设有上膨胀块19,下爪盘18位于上爪盘17的右侧,且其左端面上固设有下膨胀块20,膨胀锥中心拉杆16的左端部贯穿上爪盘17的中心孔且与连接杆13的右端部固连,膨胀锥中心拉杆16的右端部顺次贯穿上膨胀块19、下膨胀块20且固设于下爪盘18上。
如图1所示,所述右固定支座5的右端面上固定安装有轴向膨胀液压缸21,轴向膨胀液压缸21的活塞轴与右滑动支座7的右端部之间设置有轴向膨胀拉力位移传感器22,所述数据处理器2与径向膨胀应力位移传感器9、轴向膨胀应力位移传感器10、径向膨胀拉力位移传感器15和轴向膨胀拉力位移传感器22通过信号线28电连接。
如图1所示,所述工作台1的顶表面上位于左固定支座4和右固定支座5之间有水平滑槽23,所述左滑动支座6和右滑动支座7的底部均设置有导轮24,所述导轮24支撑于水平滑槽23的底表面上,所述左固定支座4和右固定支座5的端面上均开设有通槽25,所述径向膨胀液压缸14的活塞轴贯穿左固定支座4的通槽25设置,所述轴向膨胀液压缸21的活塞轴贯穿右固定支座5的通槽25设置。
如图1所示,所述右滑动支座7的左端面上开设有多个与法兰盘11上法兰孔相对应的螺纹孔26,所述法兰盘11经螺钉27贯穿法兰孔且与螺纹孔26螺纹连接固定于右滑动支座7上。
本发明的工作过程如下:
径向膨胀试验:操作人员向径向膨胀液压缸14的有杆腔中通入液压油,液压油驱动径向膨胀液压缸14的活塞轴向左运动,活塞轴带动连接杆13向左运动,连接杆13带动膨胀锥中心拉杆16向左运动,膨胀锥中心拉杆16带动下爪盘18及下膨胀块20沿膨胀管8轴向向左运动,由于上爪盘17通过套筒12固定,因此上爪盘17静止不动,随着下膨胀块20的继续运动,下膨胀块20与上膨胀块19挤压合拢,变径膨胀锥3的径向尺寸膨胀变大,膨胀块对膨胀管8的径向膨胀段产生径向膨胀;当下膨胀块20与下膨胀块20完全闭合后,变径膨胀锥3的径向尺寸达到最大,此时停止向径向膨胀液压缸14中通入液压油。径向膨胀过程中,径向膨胀拉力位移传感器15实时将变径膨胀锥3的膨胀拉力和位移经信号线28传输至数据处理器2中,数据处理器2将数据存储及处理,同时径向膨胀应力位移传感器9实时将膨胀管8的套管应力和位移经信号线28传输至数据处理器2中,数据处理器2将数据存储及处理;
轴向膨胀试验:径向膨胀试验完成后,停止径向膨胀液压缸14加载以锁紧变径膨胀锥3,随后向轴向膨胀液压缸21的有杆腔中通入液压油,液压油驱动轴向膨胀液压缸21的活塞轴向右运动,活塞轴拖动右滑动支座7向右运动,右滑动支座7带动膨胀管8向右运动,此时膨胀管8内膨大锁紧的变径膨胀锥3相对于膨胀管8向左做轴向运动,变径膨胀锥3对膨胀管8产生轴向膨胀,直到变径膨胀锥3完全脱出膨胀管8,轴向膨胀过程结束,再停止向轴向膨胀液压缸21通入液压油。在轴向膨胀过程中,轴向膨胀拉力位移传感器22实时将变径膨胀锥3的膨胀拉力和位移经信号线28传输至数据处理器2中,数据处理器2将数据存储及处理,同时轴向膨胀应力位移传感器10实时将膨胀管8的套管应力和位移经信号线28传输至数据处理器2中,数据处理器2将数据存储及处理。
试验结束后利用数据处理器2对试验过程中测得的数据进行处理分析,并作出膨胀力-位移曲线和套管应力-位移曲线。因此该试验装置能够模拟在实际工况下,开展变径膨胀锥对膨胀管的径向膨胀和轴向膨胀试验,并测试出膨胀过程中的膨胀力和膨胀管的套管应力应变情况,并通过数据处理器得到膨胀力-位移曲线如图5所示和套管应力-应变曲线如图6所示,通过分析曲线以对膨胀锥的工作性能以及膨胀管的使用性能分析提供数据参考,进一步的缩短变径膨胀锥的开发研制周期。

Claims (3)

1.一种变径膨胀锥试验装置,它包括变径膨胀锥(3),变径膨胀锥(3)包括膨胀锥中心拉杆(16)、上爪盘(17)、下爪盘(18)、上膨胀块(19)和下膨胀块(20),其特征在于:它还包括工作台(1)、数据处理器(2)、变径膨胀锥(3)、设置于工作台(1)上的左固定支座(4)和右固定支座(5)、设置于左右固定座之间且可沿工作台水平滑动的左滑动支座(6)和右滑动支座(7),左滑动支座(6)内开设有通孔,通孔内设置有位于左固定支座(4)和右滑动支座(7)之间的膨胀管(8),通孔与膨胀管(8)之间设置有套设于膨胀管(8)外壁上的弹性内圈,左滑动支座(6)将膨胀管(8)分隔为左管段和右管段,左管段和右管段分别为轴向膨胀段和径向膨胀段,径向膨胀段的外壁上分布有多个径向膨胀应力位移传感器(9),轴向膨胀段的外壁上分布有多个轴向膨胀应力位移传感器(10),所述膨胀管(8)的右端部焊接有法兰盘(11),法兰盘(11)固定于右滑动支座(7)上,所述左固定支座(4)的右端面上固设有沿膨胀管(8)轴向伸入于径向膨胀段内的套筒(12),套筒(12)内设置有沿其轴向设置的连接杆(13),左固定支座(4)的左端面上固定安装有径向膨胀液压缸(14),径向膨胀液压缸(14)的活塞轴伸入于套筒(12)内,且活塞轴的右端部与连接杆(13)的左端部之间设置有径向膨胀拉力位移传感器(15);所述变径膨胀锥(3)设置于径向膨胀段内,上爪盘(17)固设于套筒(12)的右端面上,且其中心孔与套筒(12)连通,上爪盘(17)的右端面上固设有上膨胀块(19),下爪盘(18)位于上爪盘(17)的右侧,且其左端面上固设有下膨胀块(20),膨胀锥中心拉杆(16)的左端部贯穿上爪盘(17)的中心孔且与连接杆(13)的右端部固连,膨胀锥中心拉杆(16)的右端部顺次贯穿上膨胀块(19)、下膨胀块(20)且固设于下爪盘(18)上;所述右固定支座(5)的右端面上固定安装有轴向膨胀液压缸(21),轴向膨胀液压缸(21)的活塞轴与右滑动支座(7)的右端部之间设置有轴向膨胀拉力位移传感器(22),所述数据处理器(2)与径向膨胀应力位移传感器(9)、轴向膨胀应力位移传感器(10)、径向膨胀拉力位移传感器(15)和轴向膨胀拉力位移传感器(22)通过信号线(28)电连接;所述左滑动支座(6)和右滑动支座(7)的底部均设置有导轮(24),所述导轮(24)支撑于水平滑槽(23)的底表面上;所述左固定支座(4)和右固定支座(5)的端面上均开设有通槽(25),所述径向膨胀液压缸(14)的活塞轴贯穿左固定支座(4)的通槽(25)设置,所述轴向膨胀液压缸(21)的活塞轴贯穿右固定支座(5)的通槽(25)设置;所述径向膨胀应力位移传感器(9)均匀分布于径向膨胀段的外壁上,所述轴向膨胀应力位移传感器(10)均匀分布于轴向膨胀段的外壁上。
2.根据权利要求1所述的一种变径膨胀锥试验装置,其特征在于:所述工作台(1)的顶表面上位于左固定支座(4)和右固定支座(5)之间有水平滑槽(23)。
3.根据权利要求1所述的一种变径膨胀锥试验装置,其特征在于:所述右滑动支座(7)的左端面上开设有多个与法兰盘(11)上法兰孔相对应的螺纹孔(26),所述法兰盘(11)经螺钉(27)贯穿法兰孔且与螺纹孔(26)螺纹连接固定于右滑动支座(7)上。
CN201910702822.7A 2019-07-31 2019-07-31 一种变径膨胀锥试验装置 Active CN110487640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910702822.7A CN110487640B (zh) 2019-07-31 2019-07-31 一种变径膨胀锥试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910702822.7A CN110487640B (zh) 2019-07-31 2019-07-31 一种变径膨胀锥试验装置

Publications (2)

Publication Number Publication Date
CN110487640A CN110487640A (zh) 2019-11-22
CN110487640B true CN110487640B (zh) 2024-04-05

Family

ID=68549148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910702822.7A Active CN110487640B (zh) 2019-07-31 2019-07-31 一种变径膨胀锥试验装置

Country Status (1)

Country Link
CN (1) CN110487640B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082745B (zh) * 2020-08-28 2022-07-22 西南石油大学 一种适用于岐型管件的多轴变频疲劳试验装置
CN113640133B (zh) * 2021-08-11 2024-05-07 中国工程物理研究院激光聚变研究中心 一种基于扩胀法的封口薄膜力学性能测试装置
CN114378761A (zh) * 2022-02-09 2022-04-22 哈尔滨电气动力装备有限公司 锁紧杯冲凿工具

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3330669A1 (de) * 1983-08-25 1985-04-11 Fritz Mächtle GmbH & Co. KG, 7015 Korntal-Münchingen Spreizduebel mit axialer verformungszone
US5540101A (en) * 1995-05-09 1996-07-30 Roctest Ltd. Borehole directional dilatometer
CN101957293A (zh) * 2010-09-17 2011-01-26 西安三环科技开发总公司 一种实体膨胀管复合加载膨胀试验装置
CN201803905U (zh) * 2010-09-17 2011-04-20 西安三环科技开发总公司 一种实体膨胀管复合加载膨胀试验装置
CN102023118A (zh) * 2010-10-14 2011-04-20 西安三环科技开发总公司 一种对实体膨胀管进行复合载荷膨胀试验的方法
CN102996089A (zh) * 2012-11-24 2013-03-27 西南石油大学 带变径膨胀锥的稠油热采水平井多级液压膨胀尾管悬挂系统
RU2488090C1 (ru) * 2011-12-29 2013-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб
CN104897717A (zh) * 2015-03-25 2015-09-09 中国科学院武汉岩土力学研究所 室内岩样轴向与径向热膨胀系数测试装置
CN105928643A (zh) * 2016-04-26 2016-09-07 西南科技大学 膨润土双向膨胀力测量仪
CN106769535A (zh) * 2017-01-11 2017-05-31 中国石油集团石油管工程技术研究院 一种实体膨胀管带载荷弯曲膨胀试验方法
CN106813817A (zh) * 2016-02-26 2017-06-09 中国辐射防护研究院 双向膨胀应力测量试验仪
CN106840913A (zh) * 2017-01-11 2017-06-13 中国石油集团石油管工程技术研究院 一种实体膨胀管带载荷弯曲膨胀试验装置
WO2017114149A1 (zh) * 2015-12-30 2017-07-06 中国石油天然气集团公司 适用于膨胀管钻井的机械液压双作用膨胀装置
CN107037075A (zh) * 2017-05-31 2017-08-11 河南理工大学 一种膨胀注浆料固化过程膨胀性测试装置及测试方法
CN107345881A (zh) * 2017-08-17 2017-11-14 北京探矿工程研究所 可膨胀波纹管膨胀试验系统
CN108590601A (zh) * 2018-04-08 2018-09-28 西南石油大学 一种注水扩容膨胀施工参数优选的实验方法
CN109632497A (zh) * 2018-12-13 2019-04-16 大港油田集团有限责任公司 一种用于膨胀管膨胀的实验装置和实验方法
CN210775053U (zh) * 2019-07-31 2020-06-16 西南石油大学 一种变径膨胀锥试验装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775015B (zh) * 2012-10-18 2016-11-16 中国石油化工股份有限公司 套管井下膨胀工具及使用其膨胀套管方法
US9557315B2 (en) * 2013-07-29 2017-01-31 Schlumberger Technology Corporation Confining pressure measurement for zonal isolation evaluation

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3330669A1 (de) * 1983-08-25 1985-04-11 Fritz Mächtle GmbH & Co. KG, 7015 Korntal-Münchingen Spreizduebel mit axialer verformungszone
US5540101A (en) * 1995-05-09 1996-07-30 Roctest Ltd. Borehole directional dilatometer
CN101957293A (zh) * 2010-09-17 2011-01-26 西安三环科技开发总公司 一种实体膨胀管复合加载膨胀试验装置
CN201803905U (zh) * 2010-09-17 2011-04-20 西安三环科技开发总公司 一种实体膨胀管复合加载膨胀试验装置
CN102023118A (zh) * 2010-10-14 2011-04-20 西安三环科技开发总公司 一种对实体膨胀管进行复合载荷膨胀试验的方法
RU2488090C1 (ru) * 2011-12-29 2013-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб
CN102996089A (zh) * 2012-11-24 2013-03-27 西南石油大学 带变径膨胀锥的稠油热采水平井多级液压膨胀尾管悬挂系统
CN104897717A (zh) * 2015-03-25 2015-09-09 中国科学院武汉岩土力学研究所 室内岩样轴向与径向热膨胀系数测试装置
WO2017114149A1 (zh) * 2015-12-30 2017-07-06 中国石油天然气集团公司 适用于膨胀管钻井的机械液压双作用膨胀装置
CN106813817A (zh) * 2016-02-26 2017-06-09 中国辐射防护研究院 双向膨胀应力测量试验仪
CN105928643A (zh) * 2016-04-26 2016-09-07 西南科技大学 膨润土双向膨胀力测量仪
CN106769535A (zh) * 2017-01-11 2017-05-31 中国石油集团石油管工程技术研究院 一种实体膨胀管带载荷弯曲膨胀试验方法
CN106840913A (zh) * 2017-01-11 2017-06-13 中国石油集团石油管工程技术研究院 一种实体膨胀管带载荷弯曲膨胀试验装置
CN107037075A (zh) * 2017-05-31 2017-08-11 河南理工大学 一种膨胀注浆料固化过程膨胀性测试装置及测试方法
CN107345881A (zh) * 2017-08-17 2017-11-14 北京探矿工程研究所 可膨胀波纹管膨胀试验系统
CN108590601A (zh) * 2018-04-08 2018-09-28 西南石油大学 一种注水扩容膨胀施工参数优选的实验方法
CN109632497A (zh) * 2018-12-13 2019-04-16 大港油田集团有限责任公司 一种用于膨胀管膨胀的实验装置和实验方法
CN210775053U (zh) * 2019-07-31 2020-06-16 西南石油大学 一种变径膨胀锥试验装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
套损井多次补贴用可变径膨胀锥设计与性能分析;刘言理;聂上振;齐月魁;杨延征;高振强;;石油钻探技术(第05期);全文 *
膨胀管变径膨胀工具结构优化设计;唐兴波;李黔;刘永刚;;石油矿场机械(第11期);全文 *

Also Published As

Publication number Publication date
CN110487640A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN110487640B (zh) 一种变径膨胀锥试验装置
CN108106945A (zh) 一种套管非均匀外挤加载试验装置及套管形变计算方法
CN106862901A (zh) 压装设备及其压装机构
CN104634665A (zh) 一种管材充液胀形试验方法及装置
AU2020101815A4 (en) An experimental instrument for rock mass tension and compression synergy
CN105334007A (zh) 能实现工件压装及气密检测的夹具
CN210775053U (zh) 一种变径膨胀锥试验装置
CN101957293B (zh) 一种实体膨胀管复合加载膨胀试验装置
CN112903957B (zh) 泥页岩应力-损伤-钻井液相互作用实验装置及测试方法
CN105806709A (zh) 一种管材性能测试方法及设备
CN103542802B (zh) 连续管椭圆度在线检测装置
CN205449453U (zh) 一种水平定向钻穿越冲击钻具性能测试装置
CN112834219B (zh) 一种轴承试验机用加载工装总成及加载试验轴承的方法
CN108318345B (zh) 多方位角井眼破裂压力测试装置
CN110095236B (zh) 一种封隔器胶筒密封性能测试装置
US2578031A (en) Apparatus for transversely testing cylindrical members
CN103545999A (zh) 一种电机转子u线整体并线劈拉扭头成型装置
CN205400664U (zh) 一种多功能压缩式封隔器胶筒单元实验装置
CN209356139U (zh) 一种封隔器胶筒性能评估试验装置
JP2005525521A (ja) 水/油圧、空気圧及び/又はオレオ式空気圧シリンダの閉筒方法並び手段
CN205301090U (zh) 防砂筛管水压试验装置
CN106525898B (zh) 一种可测试岩石导热系数的真三轴试验装置
CN114459652B (zh) 一种用于评价可膨胀管及其外部密封模块性能的试验装置及其评价方法
CN113916647B (zh) 一种岩石裂隙剪切渗流耦合试验装置及其试验方法
CN111562070B (zh) 一种机器人组件气密性检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant